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Abstract
In this paper, we obtain the superstability of the functional equation
f (pr,qs) + f (ps,qr) = θ (pq, rs)f (p,q)f (r, s) for all p,q, r, s ∈ G, where G is an Abelian group,
f a functional on G2, and θ a cocycle on G2. This functional equation is a generalized
form of the functional equation f (pr,qs) + f (ps,qr) = f (p,q)f (r, s), which arises in the
characterization of symmetrically compositive sum-form distance measures, and as
products of some multiplicative functions. In reduction, they can be represented as
exponential functional equations. Also we investigate the superstability with
following functional equations: f (pr,qs) + f (ps,qr) = θ (pq, rs)f (p,q)g(r, s),
f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)f (r, s), f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)g(r, s),
f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)h(r, s).
MSC: 39B82; 39B52

Keywords: distance measure; superstability; multiplicative function; stability of
functional equation

1 Introduction
Let (G, ·) be an Abelian group. Let I denote the open unit interval (, ). Let R and C

denote the set of real and complex numbers, respectively. Let R+ = {x ∈R | x > } be a set
of positive real numbers and Rk = {x ∈ R | x > k > } for some k ∈R.
Further, let

�o
n =

{
P = (p,p, . . . ,pn)

∣∣∣∣  < pk < ,
n∑
k=

pk = 

}

denote the set of all n-ary discrete complete probability distributions (without zero prob-
abilities), that is, �o

n is the class of discrete distributions on a finite set � of cardinality n
with n ≥ . Over the years, many distance measures between discrete probability distri-
butions have been proposed. The Hellinger coefficient, the Jeffreys distance, the Chernoff
coefficient, the directed divergence, and its symmetrization J-divergence are examples of
such measures (see [] and []).
Almost all similarity, affinity or distance measures μn : �o

n × �o
n → R+ that have been

proposed between two discrete probability distributions can be represented in the sum
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form

μn(P,Q) =
n∑
k=

φ(pk ,qk), (.)

where φ : I × I →R is a real-valued function on unit square, or a monotonic transforma-
tion of the right side of (.), that is,

μn(P,Q) = ψ

( n∑
k=

φ(pk ,qk)

)
, (.)

where ψ : R → R+ is an increasing function on R. The function φ is called a generating
function. It is also referred to as the kernel of μn(P,Q).
In information theory, for P andQ in�o

n, the symmetric divergence of degree α is defined
as

Jn,α(P,Q) =


α– – 

[ n∑
k=

(
pα
k q

–α
k + p–α

k qα
k
)
– 

]
.

It is easy to see that Jn,α(P,Q) is symmetric. That is, Jn,α(P,Q) = Jn,α(Q,P) for all P,Q ∈ �o
n.

Moreover, it satisfies the composition law

Jnm,α(P ∗ R,Q ∗ S) + Jnm,α(P ∗ S,Q ∗ R)

= Jn,α(P,Q) + Jm,α(R,S) + λJn,α(P,Q)Jm,α(R,S)

for all P,Q ∈ �o
n and R,S ∈ �o

m where λ = α– –  and

P ∗ R = (pr,pr, . . . ,prm,pr, . . . ,prm, . . . ,pnrm).

In view of this, symmetrically compositive statistical distance measures are defined as fol-
lows. A sequence of symmetric measures {μn} is said to be symmetrically compositive if
for some λ ∈R,

μnm(P 	 R,Q 	 S) +μnm(P 	 S,Q 	 R)

= μn(P,Q) + μm(R,S) + λμn(P,Q)μm(R,S)

for all P,Q ∈ �o
n, S,R ∈ �o

m, where

P ∗ R = (pr,pr, . . . ,prm,pr, . . . ,prm, . . . ,pnrm).

Chung, Kannappan, Ng and Sahoo [] characterized symmetrically compositive sum-
form distance measures with a measurable generating function. The following functional
equation:

(FE) f (pr,qs) + f (ps,qr) = f (p,q)f (r, s)
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holding for all p,q, r, s ∈ I was instrumental in the characterization of symmetrically com-
positive sum-form distance measures. They proved the following theorem giving the gen-
eral solution of this functional equation (FE).

Suppose f : I →R satisfies the functional equation (FE), that is,

f (pr,qs) + f (ps,qr) = f (p,q)f (r, s)

for all p,q, r, s ∈ I . Then

f (p,q) =M(p)M(q) +M(q)M(p), (.)

where M,M : R → C are multiplicative functions. Further, either M and M are
both real orM is the complex conjugate ofM. The converse is also true.

The stability of the functional equation (FE), as well as the four generalizations of (FE),
namely,

(FEfg ) f (pr,qs) + f (ps,qr) = f (p,q)g(r, s),
(FEgf ) f (pr,qs) + f (ps,qr) = g(p,q)f (r, s),
(FEgg ) f (pr,qs) + f (ps,qr) = g(p,q)g(r, s),
(FEgh) f (pr,qs) + f (ps,qr) = g(p,q)h(r, s)

for all p,q, r, s ∈G, were studied by Kim and Sahoo in [, ]. For other functional equations
similar to (FE), the interested reader should refer to [–], and [].
The present work continues the study for the stability of the Pexider type functional

equation of (FE) added a cocycle property to the conditions in the results [, ]. These
functional equations arise in the characterization of symmetrically compositive sum-form
distance measures, products of some multiplicative functions. In reduction, they can be
represented as a (hyperbolic) cosine (sine, trigonometric) functional equation, exponen-
tial, and Jensen functional equation, respectively.
Tabor [] investigated the cocycle property. The definition of cocycle as follows:

Definition  A function θ :G →R is a cocycle if it satisfies the equation

θ (a,bc)θ (b, c) = θ (ab, c)θ (a,b), ∀a,b, c ∈G.

For example, if F(x, y) = f (x)f (y)
f (xy) for a function f : R → R+, then F is a cocycle. Also if

θ (x, y) = ln(x) ln(y) for a function θ : R+
 → (R, +), then θ is a cocycle, that is, θ (a,bc) +

θ (b, c) = θ (ab, c) + θ (a,b), and in this case, it is well known that θ (x, y) is represented by
B(x, y) +M(xy) –M(x) –M(y) where B is an arbitrary skew-symmetric biadditive function
and M is some function []. If θ (x, y) = aln(x) ln(y), then θ : R

+ → (R, ·) is a cocycle and in
this case, θ (x, y) is represented by eB(x,y)eM(xy)–M(x)–M(y).
Let us consider the generalized characterization of a symmetrically compositive sum

form related to distance measures with a cocycle:

(CDM) f (pr,qs) + f (ps,qr) = θ (pq, rs)f (p,q)f (r, s)

for all p,q, r, s ∈ G and where f , θ are functionals on G, which can be represented as
exponential functional equation in reduction.
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In fact, if f (x, y) = 
x +


y , then f (pr,qs) + f (ps,qr) = f (p,q)f (r, s), and also if f (x, y) = alnxy,

and θ (x, y) =  then f , θ satisfy the equation f (pr,qs) + f (ps,qr) = θ (pq, rs)f (p,q)f (r, s).
This paper aims to investigate the superstability of four generalized functional equations

of (CDM), namely, as well as that of the following type functional equations:

(GMfffg ) f (pr,qs) + f (ps,qr) = θ (pq, rs)f (p,q)g(r, s),
(GMffgf ) f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)f (r, s),
(GMffgg ) f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)g(r, s),
(GMffgh) f (pr,qs) + f (ps,qr) = θ (pq, rs)g(p,q)h(r, s).

2 Superstability of the equations
In this section, we investigate the superstability of (CDM) and four generalized functional
equations (GMfffg ), (GMffgf ), (GMffgg ), and (GMffgh).

Theorem  Let f , g : G → R, φ : G → R+ be functions and a function θ : G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)h(r, s)
∣∣ ≤ φ(r, s) ∀p,q, r, s ∈G. (.)

and |f (p,q) – g(p,q)| ≤ M for all p,q ∈G and some constant M.
Then either g is bounded or h satisfies (CDM).

Proof Let g be an unbounded solution of inequality (.). Then there exists a sequence
{(xn, yn)|n ∈N} in G such that  �= |g(xn, yn)| → ∞ as n→ ∞.
Letting p = xn, q = yn in (.) and dividing by |θ (xnyn, rs)g(xn, yn)|, we have∣∣∣∣ f (xnr, yns) + f (xns, ynr)

θ (xnyn, rs)g(xn, yn)
– h(r, s)

∣∣∣∣ ≤ φ(r, s)
k|g(xn, yn)| .

Passing to the limit as n → ∞, we obtain

h(r, s) = lim
n→∞

f (xnr, yns) + f (xns, ynr)
θ (xnyn, rs)g(xn, yn)

. (.)

Letting p = xnp, q = ynq in (.) and dividing by |g(xn, yn)|, we have∣∣∣∣ f (xnpr, ynqs) + f (xnps, ynqr)
g(xn, yn)

–
θ (xnpynq, rs)g(xnp, ynq)

g(xn, yn)
h(r, s)

∣∣∣∣
≤ φ(r, s)

|g(xn, yn)| →  (.)

as n→ ∞.
Letting p = xnq, q = ynp in (.) and dividing by |g(xn, yn)|, we have∣∣∣∣ f (xnqr, ynps) + f (xnqs, ynpr)

g(xn, yn)
–

θ (xnqynp, rs)g(xnq, ynp)
g(xn, yn)

h(r, s)
∣∣∣∣

≤ φ(r, s)
|g(xn, yn)| →  (.)

as n→ ∞.
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Note that for any a, b, c in G, θ (ba, c)θ (b,a) = θ (b,ac)θ (a, c) by the definition of the co-
cycle. Letting pq = a, xnyn = b, and rs = c we have

θ (xnynpq, rs)θ (xnyn,pq)
θ (xnyn,pqrs)

= θ (pq, rs)

for any p, q, r, s, xn, yn in G. Thus, from (.), (.), and (.), we obtain

∣∣h(pr,qs) + h(ps,qr) – θ (pq, rs)h(p,q)h(r, s)
∣∣

= lim
n→∞

∣∣∣∣ f (xnpr, ynqs) + f (xnqs, ynpr) + f (xnps, ynqr) + f (xnqr, ynps)
θ (xnyn,prqs)g(xn, yn)

– θ (pq, rs)h(p,q)h(r, s)
∣∣∣∣

≤ lim
n→∞

∣∣∣∣ 
θ (xnyn,prqs)

∣∣∣∣ ·
∣∣∣∣ f (xnpr, ynqs) + f (xnps, ynqr)

g(xn, yn)

–
θ (xnpynq, rs)g(xnp, ynq)h(r, s)

g(xn, yn)

∣∣∣∣
+ lim

n→∞

∣∣∣∣ 
θ (xnyn,prqs)

∣∣∣∣ ·
∣∣∣∣ f (xnqr, ynps) + f (xnqs, ynpr)

g(xn, yn)

–
θ (xnqynp, rs)g(xnq, ynp)h(r, s)

g(xn, yn)

∣∣∣∣
+

∣∣h(r, s)∣∣ lim
n→∞

∣∣∣∣θ (xnynpq, rs)θ (xnyn,pq)θ (xnyn,pqrs)
· g(xnp, ynq) + g(xnq, ynp)

θ (xnyn,pq)g(xn, yn)

– θ (pq, rs)h(p,q)
∣∣∣∣

≤ h(r, s)θ (pq, rs) lim
n→∞

∣∣∣∣ f (xnp, ynq) + f (xnq, ynp)
θ (xnyn,pq)g(xn, yn)

+
(g – f )(xnp, ynq) + (g – f )(xnq, ynp)

θ (xnyn,pq)g(xn, yn)
– h(p,q)

∣∣∣∣
≤ h(r, s)θ (pq, rs) lim

n→∞

∣∣∣∣ M
kg(xn, yn)

∣∣∣∣
+ h(r, s)θ (pq, rs) lim

n→∞

∣∣∣∣ f (xnp, ynq) + f (xnq, ynp)
θ (xnyn,pq)g(xn, yn)

– h(p,q)
∣∣∣∣

= . �

Theorem  Let f , g : G → R, φ : G → R+ be functions and a function θ : G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)h(r, s)
∣∣ ≤ φ(p,q) ∀p,q, r, s ∈G, (.)

and |f (p,q) – h(p,q)| ≤ M for all p,q ∈G and some constant M.
Then either h is bounded or g satisfies (CDM).

Proof For h to be an unbounded solution of inequality (.), we can choose a sequence
{(xn, yn)|n ∈N} in G such that  �= |h(xn, yn)| → ∞ as n→ ∞.
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Letting r = xn, s = yn in (.) and dividing by |θ (pq,xnyn)h(xn, yn)|, we have∣∣∣∣ f (pxn,qyn) + f (pyn,qxn)
θ (pq,xnyn)h(xn, yn)

– g(p,q)
∣∣∣∣ ≤ φ(p,q)

k|h(xn, yn)| .

Passing to the limit as n → ∞, we obtain

g(p,q) = lim
n→∞

f (pxn,qyn) + f (pyn,qxn)
θ (pq,xnyn)h(xn, yn)

. (.)

Replacing r = rxn, s = syn in (.) and dividing by |h(xn, yn)|, we have∣∣∣∣ f (prxn,qsyn) + f (psyn,qrxn)
h(xn, yn)

– θ (pq, rxnsyn)g(p,q)
h(rxn, syn)
h(xn, yn)

∣∣∣∣
≤ φ(p,q)

|h(xn, yn)| →  (.)

as n→ ∞.
Replacing r = ryn, s = sxn in (.) and dividing by |h(xn, yn)|, we have∣∣∣∣ f (pryn,qsxn) + f (psxn,qryn)

h(xn, yn)
– g(p,q)θ (pq, rynsxn)

h(ryn, sxn)
h(xn, yn)

∣∣∣∣
≤ φ(p,q)

|h(xn, yn)| →  (.)

as n→ ∞.
Thus from (.), (.), and (.), we obtain

∣∣g(pr,qs) + g(ps,qr) – θ (pq, rs)g(p,q)g(r, s)
∣∣

= lim
n→∞

∣∣∣∣ f (prxn,qsyn) + f (pryn,qsxn) + f (psxn,qryn) + f (psyn,qrxn)
θ (prqs,xnyn)h(xn, yn)

– θ (pq, rs)g(p,q)g(r, s)
∣∣∣∣

≤ lim
n→∞

∣∣∣∣ 
θ (pqrs,xnyn)

∣∣∣∣ ·
∣∣∣∣ f (prxn,qsyn) + f (psyn,qrxn)

h(xn, yn)

– g(p,q)θ (pq, rxnsyn)
h(rxn, syn)
h(xn, yn)

∣∣∣∣
+ lim

n→∞

∣∣∣∣ 
θ (pqrs,xnyn)

∣∣∣∣ ·
∣∣∣∣ f (pryn,qsxn) + f (psxn,qryn)

h(xn, yn)

– g(p,q)θ (pq, rynsxn)
h(ryn, sxn)
h(xn, yn)

∣∣∣∣
+

∣∣g(p,q)∣∣ lim
n→∞

∣∣∣∣θ (pq, rxnsyn)θ (rs,xnyn)θ (pqrs,xnyn)
· h(rxn, syn) + h(ryn, sxn)

θ (rs,xnyn)h(xnyn)

– θ (pq, rs)g(r, s)
∣∣∣∣

=
∣∣g(p,q)∣∣θ (pq, rs) lim

n→∞

∣∣∣∣ (h – f )(rxn, syn) + (h – f )(ryn, sxn)
θ (rs,xnyn)h(xn, yn)
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+
f (rxn, syn) + f (ryn, sxn)

θ (rs,xnyn)h(xn, yn)
– g(r, s)

∣∣∣∣
≤ ∣∣g(p,q)∣∣θ (pq, rs) M

k|h(xn, yn)|

+
∣∣g(p,q)∣∣θ (pq, rs) lim

n→∞

∣∣∣∣ f (rxn, syn) + f (ryn, sxn)
θ (rs,xnyn)h(xn, yn)

– g(r, s)
∣∣∣∣

= . �

Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)g(r, s)
∣∣ ≤ φ(p,q) or φ(r, s)

for any p,q, r, s ∈ G and |f (p,q) – g(p,q)| ≤ M for all p,q ∈ G and some constant M. Then
either g is bounded or g satisfies (CDM).

Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)f (p,q)g(r, s)
∣∣ ≤ φ(p,q)

for any p,q, r, s ∈ G. Then either g is bounded, or f satisfies (CDM) and also f and g satisfy
(GMfffg ).

Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)f (p,q)g(r, s)
∣∣ ≤ φ(r, s)

for any p,q, r, s ∈G. Then either f is bounded, or g satisfies (CDM) and also g and f satisfy

(GMgggf ) g(pr,qs) + g(ps,qr) – θ (pq, rs)g(p,q)f (r, s).

Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)f (r, s)
∣∣ ≤ φ(p,q) ∀p,q, r, s ∈G

for any p,q, r, s ∈ G. Then either f is bounded, or g satisfies (CDM) and also f and g satisfy
(GMgggf ).

Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)f (r, s)
∣∣ ≤ φ(r, s) ∀p,q, r, s ∈G

for any p,q, r, s ∈ G. Then either g is bounded, or f satisfies (CDM) and also f and g satisfy
(GMfffg ).
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Corollary  Let f , g :G → R, φ :G → R+ be functions and a function θ :G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)f (r, s)
∣∣ ≤ φ(p,q) ∀p,q, r, s ∈G

for any p,q, r, s ∈ G. Then either f is bounded, or g satisfies (CDM) and also f and g satisfy
(GMgggf ).

Corollary  Let k >  and f , g :G →R, φ :G →R+ be functions satisfying∣∣f (pr,qs) + f (ps,qr) – kln(pq) ln(rs)f (p,q)f (r, s)
∣∣ ≤ φ(p,q) or φ(r, s)

for any p,q, r, s ∈ G. Then either f is bounded or f satisfies the following equation:

f (pr,qs) + f (ps,qr) = kln(pq) ln(rs)f (p,q)f (r, s).

Corollary  Let f , g :G → R, φ :G →R+ be functions satisfying∣∣f (pr,qs) + f (ps,qr) – f (p,q)f (r, s)
∣∣ ≤ φ(p,q) or φ(r, s)

for any p,q, r, s ∈ G. Then either f is bounded or f satisfies (FE).

Theorem  Let f , g : G → R, φ : G → R+ be functions and a function θ : G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)f (p,q)g(r, s)
∣∣ ≤ ε

for any p,q, r, s ∈ G. Then f (or g) is bounded, or f and g satisfy (CDM) and also f , g , θ
satisfy (GMfffg ).

Proof Replacing g(p,q) by f (p,q) and h(r, s) by g(r, s) for all p,q, r, s ∈ G in Theorem ,
we find that f is bounded or g satisfies (CDM). Note that f is bounded iff g is bounded.
Namely, for all p,q, r, s ∈G

∣∣g(r, s)∣∣ ≤ ε + f (pr,qs) + f (ps,qr)
k|f (p,q)| .

Let g be unbounded. Then f is unbounded by a similar method to the proof of Theo-
rem ; g satisfies (CDM). Now by a similar method to the calculation in Theorem  with
the unboundedness of g , we have

f (p,q) = lim
n→∞

f (pxn,qyn) + f (pyn,qxn)
θ (pq,xnyn)g(xn, yn)

for any r, s,xn, yn ∈G. Since g satisfies (CDM), we have

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)f (p,q)g(r, s)
∣∣

= lim
n→∞

∣∣∣∣ f (prxn,qsyn) + f (pryn,qsxn) + f (psxn,qryn) + f (psyn,qrxn)
θ (prqs,xnyn)g(xn, yn)
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– θ (pq, rs)f (p,q)g(r, s)
∣∣∣∣

≤ lim
n→∞

∣∣∣∣ 
θ (pqrs,xnyn)

∣∣∣∣ ·
∣∣∣∣ f (prxn,qsyn) + f (psyn,qrxn)

g(xn, yn)

– f (p,q)θ (pq, rxnsyn)
g(rxn, syn)
g(xn, yn)

∣∣∣∣
+ lim

n→∞

∣∣∣∣ 
θ (pqrs,xnyn)

∣∣∣∣ ·
∣∣∣∣ f (pryn,qsxn) + f (psxn,qryn)

g(xn, yn)

– f (p,q)θ (pq, rynsxn)
g(ryn, sxn)
g(xn, yn)

∣∣∣∣
+

∣∣f (p,q)∣∣ lim
n→∞

∣∣∣∣θ (pq, rxnsyn)θ (rs,xnyn)θ (pqrs,xnyn)
· g(rxn, syn) + g(ryn, sxn)

θ (rs,xnyn)g(xnyn)

– θ (pq, rs)g(r, s)
∣∣∣∣

=
∣∣f (p,q)∣∣ lim

n→∞

∣∣∣∣θ (pq, rxnsyn)θ (rs,xnyn)θ (pqrs,xnyn)
· g(rxn, syn) + g(ryn, sxn)

θ (rs,xnyn)g(xnyn)

– θ (pq, rs)g(r, s)
∣∣∣∣

=
∣∣f (p,q)∣∣∣∣θ (pq, rs)g(r, s) – θ (pq, rs)g(r, s)

∣∣ = .

Thus f and g imply the required (GMfffg ). The same procedure implies that the above
inequalities change to

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)f (p,q)f (r, s)
∣∣

≤ ∣∣f (p,q)∣∣ lim
n→∞

∣∣∣∣θ (pq, rxnsyn)θ (rs,xnyn)θ (pqrs,xnyn)
· f (rxn, syn) + f (ryn, sxn)

θ (rs,xnyn)g(xnyn)
– θ (pq, rs)f (r, s)

∣∣∣∣
=

∣∣f (p,q)∣∣∣∣θ (pq, rs)f (r, s) – θ (pq, rs)f (r, s)
∣∣ = ,

as desired. �

The proof of the following theorem is the same procedure as in the proof of Theorem .

Theorem  Let f , g : G → R, φ : G → R+ be functions and a function θ : G → Rk be a
cocycle satisfying

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)f (r, s)
∣∣ ≤ ε

for any p,q, r, s ∈ G. Then f (or g) is bounded, or f and g satisfy (CDM) and also f , g , θ
satisfy (GMfffg ).

Example  Let

f (x, y) = alnxy +
ε


, g(x, y) = alnxy, θ (x, y) = .
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Then we have

∣∣f (p,q) – g(p,q)
∣∣ ≤ ε



and

∣∣f (pr,qs) + f (ps,qr) – θ (pq, rs)g(p,q)g(r, s)
∣∣

=
∣∣alnprqs + alnpsqr + ε – alnpqaln rs

∣∣
= ε.

Thus g satisfies (CDM). But f , g , θ being nonzero functions do not satisfy (GMffgg ).

Let (S;
) and (̃S;
) be a semigroup and a groupwith semigroup operation 
, respectively.

Theorem  Let f , g,h : S, S̃ →R and φ : S, S̃ →R be a nonzero function satisfying

∣∣f (p 
 r,q 
 s) + f (p 
 s,q 
 r) – θ (pq, rs)f (p,q)g(r, s)
∣∣

≤
{
(i) φ(r, s) ∀p,q, r, s ∈ S̃,
(ii) φ(p,q) ∀p,q, r, s ∈ S.

(.)

(a) In case (i), let |f (p,q) – g(p,q)| ≤ M for all p,q ∈ S and some constantM.
Then either g is bounded or h satisfies (CDM).

(b) In case (ii), let |f (p,q) – h(p,q)| ≤M for all p,q ∈G and some constantM.
Then either h is bounded or g satisfies (CDM).
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