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1 Introduction
In this paper, we assume that H is a real Hilbert space and C C H is a nonempty closed

convex subset. Recall that a mapping 7' : C — C is said to be Lipschitzian if
||Tu— TuT” < K||u—uTH, Yu,u' € C,

where « > 0 is a constant, which is in general called the Lipschitz constant. If k =1, T is
called nonexpansive.

A mapping T': C — C is said to be pseudocontractive if
(Tu —Tu'u- u*) < ||u —uf ”2, Yu,u' € C.

We use Fix(T) to denote the set of fixed points of T'.

In the literature, there are a large number references associated with the fixed point
algorithms for the pseudocontractive mappings. See, for instance, [1-24]. (The interest
of pseudocontractions lies in their connection with monotone operators; namely, 7T is a
pseudocontraction if and only if the complement / — T is a monotone operator.)

Now there exists an example which shows that Mann iteration does not converge for
the pseudocontractive mappings [2]. At present, it is still an interesting topic to construct
algorithms for finding the fixed points of the pseudocontractive mappings.

On the other hand, there are perturbations always occurring in the iterative processes
because the manipulations are inaccurate. Recently, in order to find the fixed points of the
nonexpansive mappings, Yao and Shahzad [25] introduced the following algorithms with

perturbations and obtained the strong convergence results.
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Algorithm 1.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a nonexpansive mapping. For given x, € C, define a sequence {x,,} in the
following manner:

Ky = projc[amum +(1- am)Txm], m >0, (1.1)

where {a,,} is a sequence in [0,1] and the sequence {u,,} C H is a small perturbation for
the m-step iteration satisfying ||u,,|| — 0 as m — oo.

Theorem 1.2 Suppose Fix(T) # (. Then, as «,, — 0, the sequence {x,,} generated by the
implicit method (1.1) converges to x € Fix(T'), which is the minimum-norm fixed point of T .

Algorithm 1.3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — C be a nonexpansive mapping. For given x € C, define a sequence {x,} in the
following manner:

X1 = (L= Bu)xn + By projc[anun +(1- an)Txn]» n=0, (1.2)

where {o,} and {8, } are two sequences in (0, 1) and the sequence {u,} C H isa perturbation
for the n-step iteration.

Theorem 1.4 Suppose that Fix(T) # . Assume the following conditions are satisfied:
(i) limyooay =0andy 2o ay, = 00;
(i) 0<liminf, , B, <limsup,_, . B, <L
(i) D0 o llunl < 00
Then the sequence {x,} generated by the explicit iterative method (1.2) converges to x €
Fix(T), which is the minimum-norm fixed point of T.

Note that the idea of the iterative algorithms with perturbations has been extended to
the other topics, see, for example, [26].

Motivated by the above ideas and the results in the literature, in the present paper, we
present two algorithms with variant anchors for finding the fixed points of the pseudo-
contractive mappings in Hilbert spaces. Strong convergence results are given. As special
cases, we can find the minimum-norm fixed point of the pseudocontractive mappings.

2 Preliminaries
Recall that the metric projection proj. : H — C is defined by

projox := arg\rfryleircl lx—yll, xeH.
It is obvious that proj.- satisfies
lx—projexll < llx—yll, VyeC,
and is characterized by
projcx € C, {(x—proj-x,y —projox) <0, VyeC.

The following two lemmas will be useful for our main results.
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Lemma 2.1 ([24]) Let C be a closed convex subset of a Hilbert space H. Let T : C — C
be a Lipschitzian pseudocontractive mapping. Then Fix(T) is a closed convex subset of C

and the mapping I — T is demiclosed at 0, i.e., whenever {x,} C C is such that x,, —~ x and
(I-T)x, — 0, then (I -T)x=0.

Lemma 2.2 ([27]) Assume {a,} is a sequence of nonnegative real numbers such that
Aps1 = (1 - yn)an + )/nam n=>0,

where {y,} is a sequence in (0,1) and {3,} is a sequence in R such that

(1) Z;io VYn = 005
(i) limsup,_, o8, <0 0r Y o2y [8,Yul < 0.
Then lim,,—, o a,, = 0.

3 Main results
In the sequel, we assume that C is a nonempty closed convex subset of a real Hilbert space
H and T : C — C is a k-Lipschitzian pseudocontractive mapping with nonempty fixed
points set Fix(T).

The first result is on the convergence of the path for the pseudocontractive mappings.
Now, we define our path as follows.

For fixed ¢,t € (0,1) and u; € H, we define a mapping G, : C — C by

Gux = (1-¢)projc[tu, + (1 - t)x] + ¢ Tx, VxeC,

where proj. : H — C is the metric projection from H on C.
Next, we show that the mapping G, is strongly pseudocontractive. Indeed, for x,y € C,
we have
(G —Gy,x—y) = (1- ;)(projc[tu, +(1- t)x] - projc[tut +(1- t)y],x —y)
+{(Ix - Ty,x —y)
< (1= ) |projc[tu + (1~ t)x] ~ projc[tu, + (1= 2)y] Il -yl
+ e -yl
< 1= -lx-yI* +¢llx -yl
=[1-a-0e]lx-y1*

Since ¢,t €(0,1),1- (1 -¢)t € (0,1). Hence, G; is a strongly pseudocontractive mapping.
By [2], G; has a unique fixed point x; € C. That is, x; satisfies

xe = (1-)proje[tus + 1 - t)x| + ¢ Txy, V2 €(0,1). (3.1)
Remark 3.1 u; € H can be seen as a perturbation.
Next, we prove the convergence of the path (3.1).

Theorem 3.2 Iflim;_,ou; = u € H, then the path {x;} defined by (3.1) converges strongly to
ProjFix(T)(M)~
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Proof Let p € Fix(T). We get from (3.1) that

e —pll> = (1- C)(ijc[mt +(1- t)xt] — DXt —17) +&(Tx, - p, %, — p)
< @-¢)|projc[tu; + @ - t)x.] - p|lIx: - pll + ¢ llx: — plI?
<@ =0)||tlue - p) + (L= )%, = )| Il = Il + ¢ e — I

< @=0[A =Dl = pll + thue = pll]llxe = pll + ¢ |l = plI>.
It follows that
lx: = pll < llu: - pll.
Since lim,_, ¢ #; = u € H, there exists a constant M > 0 such that sup, (o ) |4, —u|| < M. So,
% = pll < llus = pll < lluey —ull + lu = pll <M + |lu—pl|.

Thus, {x;} is bounded.
By (3.1), we have

ll = Teell = || (1= &) proje[tue + (1= £)x,] + & Ty = Txt

<({1- C)”projc[tut +(1- t)xt] — Tx; ||

<(@1- C)[”xz = Tl + tlluse —xz”]-

Therefore,

-0 -0t

lloey = T || < loey — x|l <

(late = el + e = wl}) = 0
(ast— 0). (3.2)
Let {t,} C (0,1) be a sequence satisfying ¢, — 0* as n — oo. Put x,, := x,,. By (3.2), we get
lim ||x, — Tx,| = 0. (3.3)
n—0oQ
By (3.1), we obtain

llxe = pl* = 1 - f)(Projc[Wt +(1- t)xt] 2 —P) +¢(Tx — p, %, — p)

<Q- ;)Hprojc[tut +(1- t)xt] —P“ lx: = pll + ¢ Nl — plI?
=<
2

—_

(|lprojc[tu: + 1 - t)x.] - p|* + I = pI?) + ¢l - pII%.

=

Hence,

lx; - pl? < Hprojc[tut +(1- t)xt] —pHZ

< | —p+ tlu —x)|°

Page 4 of 12
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= |l — I + 2t (us — x5, — p) + £ |y —
= |l —P||2 —2t(x — p, % — p) + 2t{uy — p, X — p) + t2||14t —xt”z

= (1=28) |l — plI* + 28w, — p,x, — p) + |1 — x|
It follows that

t
| —P||2 <{us—p,x:—p) + §||Mt —xt”Z

< (Ut — p,x; — p) + tM. (3.4)

2
Here M; > 0 is a constant such that sup,q ;) 14=2-

< M;. In particular, we obtain
%, = plI* <ty — p%u — p) + taM1,  Vp € Fix(T). (3.5)

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} satisfying x,, — x* € C
weakly. By (3.3), we get

lim ||%,, — Tx,,|l = 0. (3.6)

Applying Lemma 2.1 to (3.6) to deduce x* € Fix(T).
By (3.5), we derive

”xni —x* ||2 < (u,,l. — & %, —x*) + by, M. (3.7)
Since u,,, —x* — u —x* and t,,, — 0, we deduce that x,,, — x* by (3.7). By (3.5), we have
||x* —p”2 < (u - p,x* —p>, Vp € Fix(T). (3.8)

Assume that there exists another subsequence {2} of {x,} satisfying Xy —> x" weakly.
Similarly, we can prove that Xy — x" € Fix(T), which satisfies

|x"=p|* <(u-pa"—p), VpeFix(D). (3.9)
In (3.8), we pick up p = x" to get

| =2 < (- &, 2% — ). (3.10)
In (3.9), we pick up p = x* to get

o =2 * < (- a, " - 2%). (3.11)
Adding (3.10) and (3.11), we deduce

|+ -] <0,

Thus, x* = x". This indicates that the weak limit set of {x,} is singleton and the path {x,}
converges strongly to x* = projg;,(r) (1) by (3.8). This completes the proof. O
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Corollary 3.3 The path {x,} defined by
x =1 -¢)proje[(1— )] + ¢ Tx,,  VE€(0,1),
converges strongly to projg;r)(0), which is the minimum-norm fixed point of T.
Now, we introduce another algorithm, which is an explicit manner.

Algorithm 3.4 Let {g,} and {¢,} be two real number sequences in (0,1). Let {u,} C H be
a sequence. For x € C arbitrarily, let the sequence {x,} be generated by

%na1 = (1= £n) Proje[ Guthn + (1= Gu)&u| + Cn Ty 1> 0. (312)

Theorem 3.5 Assume the following conditions are satisfied:
(C1) 1My so0 G = liMymse £ = lim, o0 & = 0;
(C2) lim,,pou,=ucH.
Then we have
(1) the sequence {x,} is bounded,;
(2) the sequence {x,} is asymptotically regular, that is, lim,_, « ||%4+1 — %] = 0.
Further, if Y - 6n = 00 and lim,,_, o ”x"*;in’x”” = 0, then the sequence {x,} converges strongly

to projg;y ) (14).

Proof By the condition (C1), we can find a sufficiently large positive integer m such that

(e +1)(k + 2)(5‘,,, + 28, + i) > 0. (3.13)

m

1
1o ——
12 -

Let p € Fix(T). For fixed m, we pick up a constant M, > 0 such that
max{|lxo = pll, I#1 = plls-. s 1%m-1 = Pl 41%m — pIl + 4lltt — pll} < M>. (3.14)

Next, we show that [|x,,.1 — p|| < Ms. Set y, = projc[s,un + 1 — ¢,)x,] for all n > 0. Thus,
we have x,,,1 = (1 — £4)yn + $uTx, for all m > 0.

Since I — T is monotone, we have
(I = T)xms1s %mir = p) = (I = T)%pms1 — (U = T)p, %1 — p) = 0.
By (3.12), we obtain

I%ms1 = PI% = (L= &) G = 2 Xomsr = D) + G (T = s Xoms1 = )
= (L= &m)ym = Smittm — (1 = Gm)&ms Xme1 — D)
+ (1= &) Smttm + (L= S = P, Xmar — D)
+ S (T = Py Xma1 — P)
= (1= Zn)ym — Smtbm — (1 = G X1 — D)

+ (1 - Cm)(xm —PrXm+1 _p) + (1 - é‘m)gm(’/tm = Xmr Xm+l —P>

Page 6 of 12
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+ En{Txm = P X1 — )
= (L= &)Y — Smtbm — (1= Gn)%ms X1 — )
+ (Xm = P %ma1 = P) = (1= En) S (X1 — Py Xma1 = p)
= (1= &) Sm Xm = X1, X1 = P) = (L= $n) S (P = iy Xms1 — P)
+ (T — Txys1,%me1 — P) + Cn(Xmsl — Xy X1 — D)

= Xma1 — Thma1s X1 — P)-

Note that

”ym — Smthm — (1 = G)%m ” S Mym =%l + Simllm — tn |
= ||pr0jc[§mum +(1- §m)xm] —Xm ” + S ll%m — tm|

< 26mll%m — tmll.

Then we have

I%me1 =PI < (U= ) |9 = St = (L = 6% | %1 = |

+ 1%m = Pl %mer = pll = (1= ) S| %mar — pII?
+ (1= 2m) S (1%me1 = Xl + 1t = P1|) %1 — P
+ (1 T — Tt Il + 1%me1 — X ) %1 — P

<2 - &) SmllXm — wn %1 =PIl + 1% — Pl %1 — Pl
+ (L= &) Sm(1%me1 = Xl + s = P11 %1 = P
— (1= Zm) Smlmsr =PI + Ll + Dll%mir = Xl [5ms1 = Pl

< 1%m =PI Emer =PI+ 2= E) G (116 = 21 + 128 = P11 %1 — Pl

- (1 - gm)gm”xmﬂ —P||2 + (gm + é‘m)(’( + 1)||xm+1 _xm” ||xm+1 —P||

Hence,

[1 + (1 - é‘m)gm]”xmﬂ —P|| = ||xm —P|| + 2§m(||xm —19|| + ||um —P||)

+ (i + D(Sm + Sm) 1%me1 = Xl (3.15)
By (3.12), we have
”xm+1 _xm” f (1 - Cm) ||pr0JC[§mum + (1 - gm)xm] —Xm || + Cm” Txm - me
< (U= m) Sm (1 =PIl + N2t = 1) + S (| Tt = Il + [l = i)
< Sm(I1%m = Il + 1t = pII) + Gk + 1)l — p
= (K + 1)(§m + gm)||xm =Pl + Smllum — pll
(3.16)

<(x+ 2)(§m + gm)MZ

Page 7 of 12
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From condition (C1), we deduce ¢,, — 0 and ¢,, — 0 as m — oo. Therefore, we get
lim %41 — %l = 0.
m—0Q

That is, the sequence {x,,} is asymptotically regular.
By (3.15) and (3.16), we have

[1 + (1 - gm)gm] ||xm+1 —P”

<% =PIl + S (215 = pll + 2l — p) + (c + Dk +2) (S + $m)* M

< (1 + %gm)Mz + (k + 1)k +2)(Sm + Em)* M.

This together with (3.13) and (3.14) imply that

(112 = &) = (k€ + 1)k +2)(Sm + &)’
”xm+1 —P” S |:]- - 1+ (1 _ {m)gm :|M2
{ (1/2 = &) smlL = g0z (i + 1)k +2)(Gm + 28m + (G )] }
= 1 — M2
1+ (1 - é-m)gm
< M,.

By induction, we get
%, —pll =M, Vn=0.

So {x,} is bounded.
By (3.12), we have

1% = Toull < % = Zaa | + %01 — T |
< 1% = X | + (1 = §n)||Pr0jc[§nMn +(1- gn)xn] - Tx, ||

< Moy = X1l + A = )l — Tl + Gl — .

It follows that

1 Sn
1en = Txpll < — %0 — i Il + =11 — 24, .
n n

By the condition lim,,_, » g—;‘ =0 and the assumption lim,,_, » W =0, we deduce
lim [|x, — T, || = 0. (3.17)
n— 00

Let the net {z;} be defined by z; = (1 — ¢) projc[tu; + (1 — t)z;] + { Tz;. By Theorem 3.2, we
know that z, converges strongly to projg;(r) (). Next, we prove

lim sup(projg;y 7 (#) = 1, Projgiy 7y (1) — yu) < .

n—0o0
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By the definition of {z;}, we have
ze =%y = (1= ) (projc[tue + A = O)z,] = %) + £ (T2 = Txn) + $ (Tt — %).
It follows that

llze = %all® = (1= ¢)(proje[tue + (1= O)z¢] = %nr 2¢ — %) + £ (T2 — Ttn, 2 — %)
+ §(Tx — X 2t — %)
= (1= ¢)projc[tus + (1 - Oz, - tuy — 1 = £)ze, 20 — %)
+ (L=t + A= 0)z¢ — %, 20 — %) + (T2 — T, 2 — %)

+ 8Ty — Xn 2t — Xn).
Since x,, € C, by the characteristic inequality of metric projection, we have
(projc[tut +(1- t)zt] —tu; — (1 -8z 2 — xy,> <0.
Then

lze = xall> < (1= )t + (A= 020 — Xs 2¢ — %) + ¢ |20 — %)
+ &1 Ty — x| l|2: — %4l
= (L= )llze = xull®> = A = O)tlze — e 2 = x0) + £ |2 = %l

+ 1 Txn — %ulll2: — %l
which implies that

¢
(2 — ez = %) < ——— 1T — %[l 2 — X |-

T A-o

By (3.17), we deduce

lim sup limsup(z; — u;,z; — %) < 0. (3.18)
t—0 n—00

Note the fact that the two limits limsup,_, , and limsup,,_, ., are interchangeable. This to-

gether with z; — projgy ) (#), #; — u and (3.18) implies that

lim sup(projFiX(T)(u) —-u, projFix(T)(u) - x,,) <0.

n—0o0

Note that ||y, — x,|| = 0 and u, — u — 0. We derive

lim sup(projg;y 7 (#) = t, Projgiy ) (1) — yu) < O.

n—0o0
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Finally, we prove that x,, — projg; ) (#). Note that

(T2 — Projgiy ) (1), %ns1 — Projgiy ) (1))
= <Txn = POjgix(r) (1), % — PrOjFix(T)(”)> + (Txn = PrOjgix(r) (1), X1 — x,,)

< [} = Projgsxcr @) |* + || Tn = Projgsxry 0| 1941 = x4 (3.19)

and

||J’n — PrOjgi(r) (%) ”2
= (¥ = Guttn — (L= G1)%us Y — PrOjpiy ()
+ (Suttn + (1= G — PrOjgiy 1) (1), Y — PIOJiy 1) (1)
< {Snttn + (1 = 6u)%n = PIOjiy 1) (), ¥ = PrOJgi () ()
= (1= 6u){%n — PrOjgiy(r) (1), Y — PrOjgiy(r (1))
- S‘n(PrOjFix(T)(”) —UnYn — PrOjFix(T)(”))

< (l_gn)
-2

. 1 .
||x,, - PTOJFix(T)(”) ||2 +3 ||)’n - prOJFix(T)(M) ||2
2

- §n(Pr0jFix(T)(”) ~UnYn — projFix(T)(u)>'

Then

”J’n - prOjFix(T)(u) ”2 <(-6n) ||x,, - PrOjFix(T)(”) ”2

= 26{Projgiy r (1) = ths Yn — Projgse () (0))- (3.20)

By (3.12), (3.16), and (3.20), we get

6.1 = Projsy iy ()|

= |1 = &) (9 = PrOlgin(r) () + L T = PrOjpix(r) (1) ”2

< @~ &) (v — Projesy e )|
+ 28( T — Projgiy ry (1) X1 — PrOjpiy ) (1))

< (1= 2> (A = )| %n — Projgiy(r (1) ||2 + 28| % — Projpiy ) (1) ||2
= 264(1 = £)*(Projgiy 1) () = tns Yu — PrOjgiy 1 (1)
+ 28 || Tn = projsx ) ()| 11 = 24

= [1- (=266 % = profrixery @) | + &7 |5 = projginry @)
+26u(1 = &) (Projgis ) (4) — thny PrOjgig 1) (1) — Vi)
+ 28| T, = Projgix () | (e + 2)(, + &) Mo

= (1= )| = PrOjgsxcry (@) | + Vs (3.21)

Page 10 of 12
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where y,, = (1 - 2¢,)¢, and

2(1 - Cl‘l)z . . ;3 . ,
e W@rojmm(u) = s PTOfrix(r) (1) = i) + (- 284)6n % = Projixcr) ()|
" n n
28, .
* 1-2¢, | T — projgixer () || ( +2)M,
+ 2—4”2” T, — Projp (@) || (€ +2)M,
(1 - Zgn)gn ! Fix(T) :

It is clear that ) .- ¥, = 00 and limsup,,_, ., §, < 0. We can therefore apply Lemma 2.2 to
(3.21) and conclude that x,, — projg;, () as n — oo. This completes the proof. O

Corollary 3.6 Let {c,} and {¢,} be two real number sequences in (0,1). For xy € C arbi-
trarily, let the sequence {x,} be generated by

Xns1 = (1= Cn)projc[(l - §n)xn] +&Ixy, n>0. (3.22)

Assume lim,_, o0 ¢, = lim,_, oo ?—Z =lim,_ 00 i—i = 0. Then we have

(1) the sequence {x,} is bounded,

(2) the sequence {x,} is asymptotically regular, that is, lim,_, oo || Xn+1 — %4 = 0.
Further,if Y - 6u = 00 and lim,,_, « ”’C”*glin_x"” = 0, then the sequence {x,} converges strongly
to projg;y1(0), which is the minimum-norm fixed point of T.

Proof Letting u, = u = 0 in (3.12), we obtain (3.22). Consequently, by Theorem 3.5, we
find that the sequence {x,} generated by (3.22) converges strongly to projg;,(7(0), which

is the minimum-norm fixed point of T 0
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