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Abstract
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1 Introduction
Using different forms of contractive conditions in various generalizedmetric spaces, there
is a large number of extensions of the Banach contraction principle []. Some of such gen-
eralizations are obtained via rational contractive conditions. Recently, Azam et al. [] es-
tablished some fixed point results for a pair of rational contractive mappings in complex
valued metric spaces. Also, in [], Nashine et al. proved some common fixed point theo-
rems for a pair of mappings satisfying certain rational contractions in the framework of
complex valued metric spaces. In [], the authors proved some unique fixed point results
for an operator T satisfying certain rational contractive condition in a partially ordered
metric space. In fact, their results generalize the main result of Jaggi [].
Ran and Reurings started the studying of fixed point results on partially ordered sets in

[], where they gave many useful results in matrix equations. Recently, many researchers
have focused on different contractive conditions in complete metric spaces endowed with
a partial order and obtained many fixed point results in such spaces. For more details on
fixed point results in ordered metric spaces we refer the reader to [, ] and [].
Czerwik in [] introduced the concept of a b-metric space. Since then, several papers

dealt with fixed point theory for single-valued and multi-valued operators in b-metric
spaces (see, e.g., [–] and [, ]).

Definition  Let X be a (nonempty) set and s ≥  be a given real number. A function
d : X ×X →R

+ is a b-metric if the following conditions are satisfied:

(b) d(x, y) =  iff x = y,
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(b) d(x, y) = d(y,x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)]

for all x, y, z ∈ X.
In this case, the pair (X,d) is called a b-metric space.

Definition  [] Let (X,d) be a b-metric space.
(a) A sequence {xn} in X is called b-convergent if and only if there exists x ∈ X such

that d(xn,x)→  as n→ ∞.
(b) {xn} in X is said to be b-Cauchy if and only if d(xn,xm) → , as n,m → ∞.
(c) The b-metric space (X,d) is called b-complete if every b-Cauchy sequence in X is

b-convergent.

The following example (corrected from []) illustrates that a b-metric need not be a
continuous function.

Example  Let X =N∪ {∞} and d : X ×X →R be defined by

d(m,n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, ifm = n,

| 
m – 

n |, if one ofm,n is even and the other is even or ∞,

, if one ofm,n is odd and the other is odd (andm �= n) or ∞,

, otherwise.

Then d(m,p) ≤ 
 (d(m,n)+d(n,p)) for allm,n,p ∈ X. Thus, (X,d) is a b-metric space (with

s = /). Let xn = n for each n ∈N. So d(n,∞) = 
n →  as n→ ∞ that is, xn → ∞, but

d(xn, ) = �  = d(∞, ) as n→ ∞.

Lemma  [] Let (X,d) be a b-metric space with s≥ , and suppose that {xn} and {yn} are
b-convergent to x and y, respectively. Then


s
d(x, y)≤ lim inf

n→∞ d(xn, yn)≤ lim sup
n→∞

d(xn, yn) ≤ sd(x, y).

Moreover, for each z ∈ X, we have


s
d(x, z) ≤ lim inf

n→∞ d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

LetS denote the class of all real functions β : [, +∞)→ [, ) satisfying the condition

β(tn)→  implies that tn → , as n→ ∞.

In order to generalize the Banach contraction principle, Geraghty proved the following.

Theorem  [] Let (X,d) be a complete metric space, and let f : X → X be a self-map.
Suppose that there exists β ∈S such that

d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y)
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holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard
sequence {f nx} converges to z.

Amini-Harandi and Emami [] generalized the result of Geraghty to the framework of
a partially ordered complete metric space as follows.

Theorem  Let (X,d,	) be a complete partially ordered metric space. Let f : X → X be
an increasing self-map such that there exists x ∈ X with x 	 fx. Suppose that there exists
β ∈S such that

d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y)

holds for all x, y ∈ X with y 	 x. Assume that either f is continuous or X is such that if an
increasing sequence {xn} in X converges to x ∈ X, then xn 	 x for all n. Then f has a fixed
point in X. Moreover, if for each x, y ∈ X there exists z ∈ X comparable with x and y, then
the fixed point of f is unique.

In [], some fixed point theorems for mappings satisfying Geraghty-type contractive
conditions are proved in various generalized metric spaces. As in [], we will consider
the class F of functions β : [,∞)→ [, /s) such that

β(tn)→ 
s

implies that tn → , as n→ ∞.

Theorem  [] Let s > , and let (X,D, s) be a complete metric type space. Suppose that a
mapping f : X → X satisfies the condition

D(fx, fy) ≤ β
(
D(x, y)

)
D(x, y)

for all x, y ∈ X and some β ∈ F . Then f has a unique fixed point z ∈ X, and for each x ∈ X
the Picard sequence {f nx} converges to z in (X,D, s).

Also, by unification of the recent results obtained by Zabihi and Razani [] we have the
following result.

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric d
on X such that (X,d) is a b-complete b-metric space (with parameter s > ). Let f : X → X
be an increasing mapping with respect to 	 such that there exists an element x ∈ X with
x 	 f (x). Suppose there exists β ∈F such that

sd(fx, fy) ≤ β
(
d(x, y)

)
M(x, y) + LN(x, y) (.)

for all comparable elements x, y ∈ X, where L≥ ,

M(x, y) =max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(fx, fy)

}

and

N(x, y) =min
{
d(x, fx),d(x, fy),d(y, fx),d(y, fy)

}
.
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If f is continuous, or,whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X,
one has xn 	 u for all n ∈ N, then f has a fixed point. Moreover, the set of fixed points of f
is well ordered if and only if f has one and only one fixed point.

The aim of this paper is to present some fixed point theorems for rational Geraghty con-
tractive mappings in partially ordered b-metric spaces. Our results extend some existing
results in the literature.

2 Main results
Let F denotes the class of all functions β : [,∞) → [, s ) satisfying the following condi-
tion:

lim sup
n→∞

β(tn) =

s

implies that tn → , as n→ ∞.

Definition  Let (X,d,	) be a b-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type I if there exists β ∈F such that

d(fx, fy) ≤ β
(
M(x, y)

)
M(x, y) (.)

for all comparable elements x, y ∈ X, where

M(x, y) =max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(x, y)

,
d(x, fx)d(y, fy)
 + d(fx, fy)

}
.

Theorem  Let (X,	) be a partially ordered set and suppose there exists a b-metric d on
X such that (X,d) is a b-complete b-metric space (with parameter s > ). Let f : X → X
be an increasing mapping with respect to 	 such that there exists an element x ∈ X with
x 	 f (x). Suppose f is a rational Geraghty contraction of type I. If

(I) f is continuous, or,
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X , one has

xn 	 u for all n ∈N,
then f has a fixed point.
Moreover, the set of fixed points of f is well ordered if and only if f has one and only one

fixed point.

Proof Let xn = f n(x) for all n ≥ . Since x 	 f (x) and f is increasing, we obtain by in-
duction that

x 	 f (x) 	 f (x) 	 · · · 	 f n(x) 	 f n+(x) 	 · · · .

We do the proof in the following steps.
Step I: We show that limn→∞ d(xn,xn+) = . Since xn 	 xn+ for each n ∈N, then by (.)

d(xn,xn+) = d(fxn–, fxn)

≤ β
(
M(xn–,xn)

)
M(xn–,xn), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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where

M(xn–,xn) = max

{
d(xn–,xn),

d(xn–, fxn–)d(xn, fxn)
 + d(xn–,xn)

,

d(xn–, fxn–)d(xn, fxn)
 + d(fxn–, fxn)

}

= max

{
d(xn–,xn),

d(xn–,xn)d(xn,xn+)
 + d(xn–,xn)

,
d(xn–,xn)d(xn,xn+)

 + d(xn,xn+)

}

≤ max
{
d(xn–,xn),d(xn,xn+)

}
.

If max{d(xn–,xn),d(xn,xn+)} = d(xn,xn+), then from (.),

d(xn,xn+) ≤ β
(
M(xn,xn+)

)
d(xn,xn+)

<

s
d(xn,xn+)

< d(xn,xn+), (.)

which is a contradiction.
Hence, max{d(xn–,xn),d(xn,xn+)} = d(xn–,xn), so from (.),

d(xn,xn+) ≤ β
(
M(xn–,xn)

)
d(xn–,xn). (.)

Since {d(xn,xn+)} is a decreasing sequence, then there exists r ≥  such that limn→∞ d(xn,
xn+) = r. We prove r = . Suppose on contrary that r > . Then, letting n → ∞, from (.)
we have

r ≤ lim
n→∞β

(
M(xn–,xn)

)
r,

which implies that 
s ≤  ≤ limn→∞ β(M(xn–,xn)). Now, as β ∈ F we conclude that

M(xn–,xn) → , which yields r = , a contradiction. Hence, r = . That is,

lim
n→∞d(xn–,xn) = . (.)

Step II: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Suppose the con-
trary, i.e., {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find
two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i and d(xmi ,xni ) ≥ ε. (.)

This means that

d(xmi ,xni–) < ε. (.)

From (.) and using the triangular inequality, we get

ε ≤ d(xmi ,xni ) ≤ sd(xmi ,xmi+) + sd(xmi+,xni ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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By taking the upper limit as i → ∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+,xni ). (.)

The definition ofM(x, y) and (.) imply

lim sup
i→∞

M(xmi ,xni–)

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi , fxmi )d(xni–, fxni–)
 + d(xmi ,xni–)

,

d(xmi , fxmi )d(xni–, fxni–)
 + d(fxmi , fxni–)

}

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi ,xmi+)d(xni–,xni )
 + d(xmi ,xni–)

,

d(xmi ,xmi+)d(xni–,xni )
 + d(xmi+,xni )

}

≤ ε.

Now, from (.) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
d(xmi+,xni )

≤ lim sup
i→∞

β
(
M(xmi ,xni–)

)
lim sup
i→∞

M(xmi ,xni–)

≤ ε lim sup
i→∞

β
(
M(xmi ,xni–)

)
,

which implies that 
s ≤ lim supi→∞ β(M(xmi ,xni–)). Now, as β ∈ F we conclude that

M(xmi ,xni–) → , which yields d(xmi ,xni–) → . Consequently,

d(xmi ,xni ) ≤ sd(xmi ,xni–) + sd(xni–,xni ) → ,

which is a contradiction to (.). Therefore, {xn} is a b-Cauchy sequence. b-Completeness
of X shows that {xn} b-converges to a point u ∈ X.
Step III: u is a fixed point of f .
First, let f be continuous, so we have

u = lim
n→∞xn+ = lim

n→∞ fxn = fu.

Now, let (II) holds. Using the assumption onX we have xn 	 u. Now, we show that u = fu.
By Lemma 


s
d(u, fu) ≤ lim sup

n→∞
d(xn+, fu)

≤ lim sup
n→∞

β
(
M(xn,u)

)
lim sup
n→∞

M(xn,u),

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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where

lim
n→∞M(xn,u) = lim

n→∞max

{
d(xn,u),

d(xn, fxn)d(u, fu)
 + d(xn,u)

,
d(xn, fxn)d(u, fu)
 + d(fxn, fu)

}

=max{,}
= .

Therefore, from the above relations, we deduce that d(u, fu) = , so u = fu.
Finally, suppose that the set of fixed point of f is well ordered. Assume to the contrary

that u and v are two fixed points of f such that u �= v. Then by (.),

d(u, v) = d(fu, fv) ≤ β
(
M(u, v)

)
M(u, v) = β

(
d(u, v)

)
d(u, v) <


s
d(u, v), (.)

because

M(u, v) =max

{
d(u, v),

d(u,u)d(v, v)
 + d(u, v)

}
= d(u, v).

So we get d(u, v) < 
s d(u, v), a contradiction. Hence u = v, and f has a unique fixed point.

Conversely, if f has a unique fixed point, then the set of fixed points of f is a singleton, and
so it is well ordered. �

Definition  Let (X,d) be a b-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type II if there exists β ∈F such that

d(fx, fy) ≤ β
(
M(x, y)

)
M(x, y) (.)

for all comparable elements x, y ∈ X, where

M(x, y) = max

{
d(x, y),

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

,

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + d(x, fy) + d(y, fx)

}
.

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to	 such that there exists an element x ∈ X with x 	 f (x). Suppose
f is a rational Geraghty contractive mapping of type II. If

(I) f is continuous, or,
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X , one has

xn 	 u for all n ∈N,
then f has a fixed point.
Moreover, the set of fixed points of f is well ordered if and only if f has one and only one

fixed point.

Proof Set xn = f n(x). Since x 	 f (x) and f is increasing, we obtain by induction that

x 	 f (x) 	 f (x) 	 · · · 	 f n(x) 	 f n+(x) 	 · · · .

We do the proof in the following steps.

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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Step I:We show that limn→∞ d(xn,xn+) = . Since xn 	 xn+ for each n ∈N, then by (.)

d(xn,xn+) = d(fxn–, fxn)

≤ β
(
M(xn–,xn)

)
M(xn–,xn)

≤ β
(
d(xn–,xn)

)
d(xn–,xn)

<

s
d(xn–,xn)

≤ d(xn–,xn), (.)

because

M(xn–,xn) = max

{
d(xn–,xn),

d(xn–, fxn–)d(xn–, fxn) + d(xn, fxn)d(xn, fxn–)
 + s[d(xn–, fxn–) + d(xn, fxn)]

,

d(xn–, fxn–)d(xn–, fxn) + d(xn, fxn)d(xn, fxn–)
 + d(xn–, fxn) + d(xn, fxn–)

}

= max

{
d(xn–,xn),

d(xn–,xn)d(xn–,xn+) + d(xn,xn+)d(xn,xn)
 + s[d(xn–,xn) + d(xn,xn+)]

,

d(xn–,xn)d(xn–,xn+) + d(xn,xn+)d(xn,xn)
 + d(xn–,xn+) + d(xn,xn)

}

= d(xn–,xn).

Therefore, {d(xn,xn+)} is decreasing. Then there exists r ≥  such that limn→∞ d(xn,
xn+) = r.Wewill prove that r = . Suppose to the contrary that r > . Then, letting n → ∞,
from (.)


s
r ≤ lim

n→∞β
(
d(xn–,xn)

)
r,

which implies that d(xn–,xn) → . Hence, r = , a contradiction. So,

lim
n→∞d(xn–,xn) =  (.)

holds true.
Step II: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Suppose the con-

trary, i.e., {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find
two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i and d(xmi ,xni ) ≥ ε. (.)

This means that

d(xmi ,xni–) < ε. (.)

As in the proof of Theorem , we have

ε

s
≤ lim sup

i→∞
d(xmi+,xni ). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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From the definition ofM(x, y) and the above limits,

lim sup
i→∞

M(xmi ,xni–)

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi , fxmi )d(xmi , fxni–) + d(xni–, fxni–)d(xni–, fxmi )
 + s[d(xmi , fxmi ) + d(xni–, fxni–)]

,

d(xmi , fxmi )d(xmi , fxni–) + d(xni–, fxni–)d(xni–, fxmi )
 + d(xmi , fxni–) + d(xni–, fxmi )

}

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi ,xmi+)d(xmi ,xni ) + d(xni–,xni )d(xni–,xmi+)
 + s[d(xmi ,xmi+) + d(xni–,xni )]

,

d(xmi ,xmi+)d(xmi ,xni ) + d(xni–,xni )d(xni–,xmi+)
 + d(xmi ,xni ) + d(xni–,xmi+)

}

≤ ε.

Now, from (.) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
d(xmi+,xni )≤ lim sup

i→∞
β
(
M(xmi ,xni–)

)
lim sup
i→∞

M(xmi ,xni–)

≤ ε lim sup
i→∞

β
(
M(xmi ,xni–)

)
,

which implies that 
s ≤ lim supi→∞ β(M(xmi ,xni–)). Now, as β ∈F we conclude that {xn} is

a b-Cauchy sequence. b-Completeness of X shows that {xn} b-converges to a point u ∈ X.
Step III: u is a fixed point of f .
First, let f be continuous, so we have

u = lim
n→∞xn+ = lim

n→∞ fxn = fu.

Now, let (II) hold. Using the assumption on X we have xn 	 u. Now, we show that u = fu.
By Lemma 


s
d(u, fu) ≤ lim sup

n→∞
d(xn+, fu)

≤ lim sup
n→∞

β
(
M(xn,u)

)
lim sup
n→∞

M(xn,u)

= ,

because

lim
n→∞M(xn,u) = lim

n→∞max

{
d(xn,u),

d(xn, fxn)d(xn, fu) + d(u, fu)d(u, fxn)
 + s[d(xn, fxn) + d(u, fu)]

,

d(xn, fxn)d(xn, fu) + d(u, fu)d(u, fxn)
 + d(xn, fu) + d(xn, fu)

}

http://www.journalofinequalitiesandapplications.com/content/2014/1/373
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= max{,}
= .

Therefore, d(u, fu) = , so u = fu. �

Definition  Let (X,d) be a b-metric space. A mapping f : X → X is called a rational
Geraghty contraction of type III if there exists β ∈F such that

d(fx, fy) ≤ β
(
M(x, y)

)
M(x, y) (.)

for all comparable elements x, y ∈ X, where

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

,

d(x, fy)d(x, y)
 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

}
.

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to	 such that there exists an element x ∈ X with x 	 f (x). Suppose
f is a rational Geraghty contractive mapping of type III. If

(I) f is continuous, or,
(II) whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X , one has

xn 	 u for all n ∈N,
then f has a fixed point.
Moreover, the set of fixed points of f is well ordered if and only if f has one and only one

fixed point.

Proof Set xn = f n(x).
Step I:We show that limn→∞ d(xn,xn+) = . Since xn 	 xn+ for each n ∈ N, then by (.)

d(xn,xn+) = d(fxn–, fxn)

≤ β
(
M(xn–,xn)

)
M(xn–,xn)

≤ β
(
d(xn–,xn)

)
d(xn–,xn)

<

s
d(xn–,xn)

≤ d(xn–,xn), (.)

because

M(xn–,xn) = max

{
d(xn–,xn),

d(xn–, fxn–)d(xn, fxn)
 + s[d(xn–,xn) + d(xn–, fxn) + d(xn, fxn–)]

,

d(xn–, fxn)d(xn–,xn)
 + sd(xn–, fxn–) + s[d(xn, fxn–) + d(xn, fxn)]

}

= max

{
d(xn–,xn),

d(xn–,xn)d(xn,xn+)
 + s[d(xn–,xn) + d(xn–,xn+) + d(xn,xn)]

,
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d(xn–,xn+)d(xn–,xn)
 + sd(xn–,xn) + s[d(xn,xn) + d(xn,xn+)]

}

≤ max

{
d(xn–,xn),

d(xn–,xn)s[d(xn,xn–) + d(xn–,xn+)]
s[d(xn–,xn) + d(xn–,xn+) + d(xn,xn)]

}

= d(xn–,xn).

Therefore, {d(xn,xn+)} is decreasing. Similar to what we have done in Theorems  and ,
we have

lim
n→∞d(xn–,xn) = . (.)

Step II: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Suppose the con-
trary, i.e., {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find
two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i and d(xmi ,xni ) ≥ ε. (.)

This means that

d(xmi ,xni–) < ε. (.)

From (.) and using the triangular inequality, we get

ε ≤ d(xmi ,xni ) ≤ sd(xmi ,xmi+) + sd(xmi+,xni ).

By taking the upper limit as i → ∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+,xni ). (.)

Using the triangular inequality, we have

d(xmi ,xni ) ≤ sd(xmi ,xni–) + sd(xni–,xni ).

Taking the upper limit as i → ∞ in the above inequality and using (.) we get

lim sup
i→∞

d(xmi ,xni ) ≤ εs. (.)

Again, using the triangular inequality, we have

d(xmi ,xni ) ≤ sd(xmi ,xmi+) + sd(xmi+,xni–) + sd(xni–,xni ).

Taking the upper limit as i → ∞ in the above inequality and using (.) we get

lim sup
i→∞

d(xmi+,xni–) ≥
ε

s
. (.)
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From the definition ofM(x, y) and the above limits,

lim sup
i→∞

M(xmi ,xni–)

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi , fxmi )d(xni–, fxni–)
 + s[d(xmi ,xni–) + d(xmi , fxni–) + d(xni–, fxmi )]

,

d(xmi , fxni–)d(xmi ,xni–)
 + sd(xmi , fxmi ) + s[d(xni–, fxmi ) + d(xni–, fxni–)]

}

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi ,xmi+)d(xni–,xni )
 + s[d(xmi ,xni–) + d(xmi ,xni ) + d(xni–,xmi+)]

,

d(xmi ,xni )d(xmi ,xni–)
 + sd(xmi ,xmi+) + s[d(xni–,xmi+) + d(xni–,xni )]

}

≤ ε.

Now, from (.) and the above inequalities, we have

ε

s
≤ lim sup

i→∞
d(xmi+,xni )

≤ lim sup
i→∞

β
(
M(xmi ,xni–)

)
lim sup
i→∞

M(xmi ,xni–)

≤ ε lim sup
i→∞

β
(
M(xmi ,xni–)

)
,

which implies that 
s ≤ lim supi→∞ β(M(xmi ,xni–)). Now, as β ∈F we conclude that {xn} is

a b-Cauchy sequence. b-Completeness of X shows that {xn} b-converges to a point u ∈ X.
Step III: u is a fixed point of f .
When f is continuous, the proof is straightforward.
Now, let (II) hold. By Lemma 


s
d(u, fu) ≤ lim sup

n→∞
d(xn+, fu)

≤ lim sup
n→∞

β
(
M(xn,u)

)
lim sup
n→∞

M(xn,u),

where

lim
n→∞M(xn,u) = lim

n→∞max

{
d(xn,u),

d(xn, fxn)d(u, fu)
 + s[d(xn,u) + d(xn, fu) + d(u, fxn)]

,

d(xn, fu)d(xn,u)
 + sd(xn, fxn) + s[d(u, fu) + d(u, fxn)]

}
= max{,}
= .

Therefore, from the above relations, we deduce that d(u, fu) = , so u = fu. �

If in the above theorems we take β(t) = r, where  ≤ r < 
s , then we have the following

corollary.
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Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space, and let f : X → X be an increasing
mapping with respect to	 such that there exists an element x ∈ X with x 	 f (x). Suppose
that

d(fx, fy) ≤ rM(x, y)

for all comparable elements x, y ∈ X, where

M(x, y) =max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(x, y)

,
d(x, fx)d(y, fy)
 + d(fx, fy)

}

or

M(x, y) = max

{
d(x, y),

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

,

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + d(x, fy) + d(y, fx)

}
,

or

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

,

d(x, fy)d(x, y)
 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

}
.

If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one
has xn 	 u for all n ∈N , then f has a fixed point.

Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space, and let f : X → X be an increasing
mapping with respect to	 such that there exists an element x ∈ X with x 	 f (x). Suppose

d(fx, fy) ≤ ad(x, y) + b
d(x, fx)d(y, fy)
 + d(x, y)

+ c
d(x, fx)d(y, fy)
 + d(fx, fy)

or

d(fx, fy) ≤ ad(x, y) + b
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

 + s[d(x, fx) + d(y, fy)]

+ c
d(x, fx)d(x, fy) + d(y, fy)d(y, fx)

 + d(x, fy) + d(y, fx)
,

or

d(fx, fy) ≤ ad(x, y) + b
d(x, fx)d(y, fy)

 + s[d(x, y) + d(x, fy) + d(y, fx)]

+ c
d(x, fy)d(x, y)

 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

for all comparable elements x, y ∈ X, where a,b, c≥  and  ≤ a + b + c < 
s .
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If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one
has xn 	 u for all n ∈N, then f has a fixed point.

Corollary  Let (X,	,d) be an ordered b-complete b-metric space, and let f : X → X be
an increasing mapping with respect to 	 such that there exists an element x ∈ X with
x 	 f m(x) and

d
(
f mx, f my

) ≤ β
(
M(x, y)

)
M(x, y)

for all comparable elements x, y ∈ X, where

M(x, y) =max

{
d(x, y),

d(x, f mx)d(y, f my)
 + d(x, y)

,
d(x, f mx)d(y, f my)
 + d(f mx, f my)

}

or

M(x, y) = max

{
d(x, y),

d(x, f mx)d(x, f my) + d(y, f my)d(y, f mx)
 + s[d(x, f mx) + d(y, f my)]

,

d(x, f mx)d(x, f my) + d(y, f my)d(y, f mx)
 + d(x, f my) + d(y, f mx)

}
,

or

M(x, y) = max

{
d(x, y),

d(x, f mx)d(y, f my)
 + s[d(x, y) + d(x, f my) + d(y, f mx)]

,

d(x, f my)d(x, y)
 + sd(x, f mx) + s[d(y, f mx) + d(y, f my)]

}

for some positive integer m.
If f m is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X

one has xn 	 u for all n ∈N, then f has a fixed point.

Let Ψ be the family of all nondecreasing functions ψ : [,∞)→ [,∞) such that

lim
n→∞ψn(t) = 

for all t > .

Lemma  If ψ ∈ Ψ , then the following are satisfied.
(a) ψ(t) < t for all t > ;
(b) ψ() = .

As an example ψ(t) = kt, for all t ≥ , where k ∈ [, ), and ψ(t) = ln(t + ), for all t ≥ ,
are in Ψ .

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space, and let f : X → X be an increasing
mapping with respect to	 such that there exists an element x ∈ X with x 	 f (x). Suppose
that

sd(fx, fy) ≤ ψ
(
M(x, y)

)
, (.)
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where

M(x, y) =max

{
d(x, y),

d(x, fx)d(y, fy)
 + d(x, y)

,
d(x, fx)d(y, fy)
 + d(fx, fy)

}

for all comparable elements x, y ∈ X. If f is continuous, then f has a fixed point.Moreover,
the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Proof Since x 	 f (x) and f is increasing, we obtain by induction that

x 	 f (x) 	 f (x) 	 · · · 	 f n(x) 	 f n+(x) 	 · · · .

Putting xn = f n(x), we have

x 	 x 	 x 	 · · · 	 xn 	 xn+ 	 · · · .

If there exists n ∈N such that xn = xn+ then xn = fxn and so we have nothing to prove.
Hence, we assume that d(xn,xn+) > , for all n ∈N.
In the following steps, we will complete the proof.
Step I: We will prove that

lim
n→∞d(xn,xn+) = .

Using condition (.), we obtain

d(xn+,xn) ≤ sd(xn+,xn) = sd(fxn, fxn–)≤ ψ
(
M(xn,xn–)

)
,

because

M(xn–,xn) = max

{
d(xn–,xn),

d(xn–, fxn–)d(xn, fxn)
 + d(xn–,xn)

,

d(xn–, fxn–)d(xn, fxn)
 + d(fxn–, fxn)

}

= max

{
d(xn–,xn),

d(xn–,xn)d(xn,xn+)
 + d(xn–,xn)

,
d(xn–,xn)d(xn,xn+)

 + d(xn,xn+)

}

≤ max
{
d(xn–,xn),d(xn,xn+)

}
.

If max{d(xn–,xn),d(xn,xn+)} = d(xn,xn+), then

d(xn,xn+) ≤ sd(xn,xn+) = sd(fxn–,xn)

≤ ψ
(
M(xn–,xn)

)
<M(xn–,xn) ≤ d(xn,xn+), (.)

which is a contradiction. Hence, max{d(xn–,xn),d(xn,xn+)} = d(xn–,xn), so from (.),

d(xn,xn+) ≤ sd(xn,xn+) = sd(fxn–,xn)

≤ ψ
(
M(xn–,xn)

)
<M(xn–,xn) ≤ d(xn–,xn). (.)
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Hence,

d(xn,xn+) ≤ sd(xn,xn+) ≤ ψ
(
d(xn–,xn)

)
.

By induction,

d(xn+,xn) ≤ ψ
(
d(xn,xn–)

) ≤ ψ(d(xn–,xn–))
≤ · · · ≤ ψn(d(x,x)). (.)

As ψ ∈ Ψ , we conclude that

lim
n→∞d(xn,xn+) = . (.)

Step II: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Suppose the con-
trary, i.e., {xn} is not a b-Cauchy sequence. Then there exists ε >  for which we can find
two subsequences {xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i and d(xmi ,xni ) ≥ ε. (.)

This means that

d(xmi ,xni–) < ε. (.)

From (.) and using the triangular inequality, we get

ε ≤ d(xmi ,xni ) ≤ sd(xmi ,xmi+) + sd(xmi+,xni ).

Taking the upper limit as i → ∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+,xni ). (.)

From the definition ofM(x, y) and the above limits,

lim sup
i→∞

M(xmi ,xni–)

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi , fxmi )d(xni–, fxni–)
 + d(xmi ,xni–)

,

d(xmi , fxmi )d(xni–, fxni–)
 + d(fxmi , fxni–)

}

= lim sup
i→∞

max

{
d(xmi ,xni–),

d(xmi ,xmi+)d(xni–,xni )
 + d(xmi ,xni–)

,

d(xmi ,xmi+)d(xni–,xni )
 + d(xmi+,xni )

}

≤ ε.
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Now, from (.) and the above inequalities, we have

ε = s · ε

s
≤ s lim sup

i→∞
d(xmi+,xni )

≤ lim sup
i→∞

ψ
(
M(xmi ,xni–)

)
≤ ψ(ε) < ε,

which is a contradiction. Consequently, {xn} is a b-Cauchy sequence. b-Completeness of
X shows that {xn} b-converges to a point u ∈ X.
Step III: Now we show that u is a fixed point of f ,

u = lim
n→∞xn+ = lim

n→∞ fxn = fu,

as f is continuous. �

Theorem  Under the same hypotheses as Theorem , without the continuity assumption
of f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X,
xn 	 u for all n ∈N. Then f has a fixed point.

Proof By repeating the proof of Theorem , we construct an increasing sequence {xn} in
X such that xn → u ∈ X. Using the assumption on X we have xn 	 u. Now we show that
u = fu. By (.) we have

d(fu,xn) = d(fu, fxn–) ≤ ψ
(
M(u,xn–)

)
, (.)

where

M(u,xn–) =max

{
d(u,xn–),

d(u, fu)d(xn–, fxn–)
 + d(fu, fxn–)

,
d(u, fu)d(xn–, fxn–)

 + d(u,xn–)

}

=max

{
d(u,xn–),

d(u, fu)d(xn–,xn)
 + d(fu,xn)

,
d(u, fu)d(xn–,xn)
 + d(u,xn–)

}
.

Letting n → ∞,

lim sup
n→∞

M(u,xn–) = . (.)

Again, taking the upper limit as n → ∞ in (.) and using Lemma  and (.),


s
d(fu,u) ≤ lim sup

n→∞
d(fu,xn)

≤ lim sup
n→∞

ψ
(
M(u,xn–)

)
= .

So we get d(fu,u) = , i.e., fu = u. �
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Remark  In Theorems  and , we can replaceM(x, y) by the following:

M(x, y) = max

{
d(x, y),

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + s[d(x, fx) + d(y, fy)]

,

d(x, fx)d(x, fy) + d(y, fy)d(y, fx)
 + d(x, fy) + d(y, fx)

}

or

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)
 + s[d(x, y) + d(x, fy) + d(y, fx)]

,

d(x, fy)d(x, y)
 + sd(x, fx) + s[d(y, fx) + d(y, fy)]

}
.

Example  Let X = {, , } and define the partial order 	 on X by

	:=
{
(, ), (, ), (, ), (, ), (, ), (, )

}
.

Consider the function f : X → X given as

f =

(
  
  

)
,

which is increasing with respect to 	. Let x = . Hence, f (x) = , so x 	 fx. Define first
the b-metric d on X by d(, ) = , d(, ) = , d(, ) = 

 , and d(x,x) = . Then (X,d) is a
b-complete b-metric space with s = 

 . Let β ∈F is given by

β(t) =



e
–t
 , t ≥ 

and β() ∈ [,  ). Then

d(f , f ) = d(, ) =



≤ β
(
M(, )

)
M(, ) = β().

This is because

M(, ) =max

{
d(, ),

d(, f )d(, f )
 + d(f , f )

,
d(, f )d(, f )

 + d(, )

}

=max

{
d(, ),

d(, )d(, )
 + d(, )

,
d(, )d(, )
 + d(, )

}
= .

Also,

d(f , f ) = d(, ) =



≤ β
(
M(, )

)
M(, ) = β(),

because

M(, ) =max

{
d(, ),

d(, f )d(, f )
 + d(f , f )

,
d(, f )d(, f )

 + d(, )

}

=max

{
d(, ),

d(, )d(, )
 + d(, )

,
d(, )d(, )
 + d(, )

}
= .
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Also,

d(f , f ) = d(, ) =  ≤ β
(
M(, )

)
M(, ).

Hence, f satisfies all the assumptions of Theorem  and thus it has a fixed point (which is
u = ).

Example  LetX = [, ] be equippedwith the usual order and b-complete b-metric given
by d(x, y) = |x – y| with s = . Consider the mapping f : X → X defined by f (x) = 

x
e–x

and the function β given by β(t) = 
 . It is easy to see that f is an increasing function and

 ≤ f () = . For all comparable elements x, y ∈ X, by the mean value theorem, we have

d(fx, fy) =
∣∣∣∣ xe–x – 


ye–y


∣∣∣∣


≤ 

∣∣xe–x – ye–y

 ∣∣
≤ 


|x – y| ≤ 


d(x, y) = β

(
d(x, y)

)
d(x, y)

≤ β
(
M(x, y)

)
M(x, y).

So, from Theorem , f has a fixed point.

Example  Let X = [, ] be equipped with the usual order and b-complete b-metric d be
given by d(x, y) = |x – y| with s = . Consider the mapping f : X → X defined by f (x) =

 ln(x

 + ) and the function ψ ∈ Ψ given by ψ(t) = 
 t, t ≥ . It is easy to see that f is

increasing and  ≤ f () = . For all comparable elements x, y ∈ X, using the mean value
problem, we have

d(fx, fy) =
∣∣∣∣  ln

(
x + 

)
–


ln

(
y + 

)∣∣∣∣


≤ 


|x – y|

=


d(x, y) = ψ

(
d(x, y)

) ≤ ψ
(
M(x, y)

)
,

so, using Theorem , f has a fixed point.

3 Application
In this section, we present an application where Theorem  can be applied. This applica-
tion is inspired by [] (also, see [] and []).
Let X = C([,T]) be the set of all real continuous functions on [,T]. We first endow X

with the b-metric

d(u, v) = max
t∈[,T]

(∣∣u(t) – v(t)
∣∣)p

for all u, v ∈ X where p > . Clearly, (X,d) is a complete b-metric space with parameter
s = p–. Secondly, C([,T]) can also be equipped with a partial order given by

x 	 y iff x(t)≤ y(t) for all t ∈ [,T].
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Moreover, as in [] it is proved that (C([,T]),	) is regular, that is, whenever {xn} in X is
an increasing sequence such that xn → x as n→ ∞, we have xn 	 x for all n ∈N∪ {}.
Consider the first-order periodic boundary value problem

{
x′(t) = f (t,x(t)),
x() = x(T),

(.)

where t ∈ I = [,T] with T >  and f : [,T]×R→R is a continuous function.
A lower solution for (.) is a function α ∈ C[,T] such that

{
α′(t) ≤ f (t,α(t)),
α()≤ α(T),

(.)

where t ∈ I = [,T].
Assume that there exists λ >  such that for all x, y ∈ X we have

∣∣f (t,x(t)) + λx(t) – f
(
t, y(t)

)
– λy(t)

∣∣ ≤ λ

p–
p
√
ln

(∣∣x(t) – y(t)
∣∣p + 

)
. (.)

Then the existence of a lower solution for (.) provides the existence of an unique solution
of (.).
Problem (.) can be rewritten as

{
x′(t) + λx(t) = f (t,x(t)) + λx(t),
x() = x(T).

Consider
{
x′(t) + λx(t) = δ(t) = F(t,x(t)),
x() = x(T),

where t ∈ I .
Using the variation of parameters formula, we get

x(t) = x()e–λt +
∫ t


e–λ(t–s)δ(s)ds, (.)

which yields

x(T) = x()e–λT +
∫ T


e–λ(T–s)δ(s)ds.

Since x() = x(T), we get

x()
[
 – e–λT]

= e–λT
∫ T


eλ(s)δ(s)ds

or

x() =


eλT – 

∫ T


eλsδ(s)ds.
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Substituting the value of x() in (.) we arrive at

x(t) =
∫ T


G(t, s)δ(s)ds,

where

G(t, s) =

{
eλ(T+s–t)
eλT– ,  ≤ s≤ t ≤ T ,

eλ(s–t)
eλT– ,  ≤ t ≤ s ≤ T .

Now define the operator S : C[,T] → C[,T] by

Sx(t) =
∫ T


G(t, s)F

(
s,x(s)

)
ds.

The mapping S is nondecreasing []. Note that if u ∈ C[,T] is a fixed point of S then
u ∈ C[,T] is a solution of (.).
Let x, y ∈ X. Then we have

p–
∣∣Sx(t) – Sy(t)

∣∣ = p–
∣∣∣∣
∫ T


G(t, s)F

(
s,x(s)

)
ds –

∫ T


G(t, s)F

(
s, y(s)

)
ds

∣∣∣∣
≤ p–

∫ T



∣∣G(t, s)∣∣[∣∣F(
s,x(s)

)
– F

(
s, y(s)

)∣∣]ds
≤ p–

∫ T



∣∣G(t, s)∣∣ λ

p–
p
√
ln

(∣∣x(t) – y(t)
∣∣p + 

)
ds

≤ λ p
√
ln

(
d(x, y) + 

)[∫ t



eλ(T+s–t)

eλT – 
ds +

∫ T

t

eλ(s–t)

eλT – 
ds

]

= λ p
√
ln

(
d(x, y) + 

)[ 
λ(eλT – )

(
eλ(T+s–t)|t + eλ(s–t)|Tt

)]

= λ p
√
ln

(
d(x, y) + 

)[ 
λ(eλT – )

(
eλT – eλ(T–t) + eλ(T–t) – 

)]

= p
√
ln

(
d(x, y) + 

)
≤ p

√
ln

(
M(x, y) + 

)
,

or, equivalently,

p–
(∣∣Sx(t) – Sy(t)

∣∣)p ≤ ln
(
M(x, y) + 

)
,

which shows that

p–d(Sx,Sy)≤ ln
(
M(x, y) + 

)
,

where

M(x, y) =max

{
d(x, y),

d(x,Sx)d(y,Sy)
 + d(x, y)

,
d(x,Sx)d(y,Sy)
 + d(Sx,Sy)

}
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or

M(x, y) = max

{
d(x, y),

d(x,Sx)d(x,Sy) + d(y,Sy)d(y,Sx)
 + p–[d(x,Sx) + d(y,Sy)]

,

d(x,Sx)d(x,Sy) + d(y,Sy)d(y,Sx)
 + d(x,Sy) + d(y,Sx)

}
,

or

M(x, y) = max

{
d(x, y),

d(x,Sx)d(y,Sy)
 + p–[d(x, y) + d(x,Sy) + d(y,Sx)]

,

d(x,Sy)d(x, y)
 + p–d(x,Sx) + p–[d(y,Sx) + d(y,Sy)]

}
.

Finally, let α be a lower solution for (.). In [] it was shown that α 	 S(α).
Hence, the hypotheses of Theorem  are satisfied with ψ(t) = ln(t + ). Therefore, there

exists a fixed point x̂ ∈ C[,T] such that Sx̂ = x̂.

Remark  In the above theorem, we can replace (.) by the following inequality:

∣∣f (t,x(t)) + λx(t) – f
(
t, y(t)

)
– λy(t)

∣∣ ≤ λ


p–
p

p
√
e–M(x,y)M(x, y) (.)

for all x �= y ∈ X.
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