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Abstract
It is well known that each barrier function defines an interior point algorithm and
each barrier function is determined by its univariate kernel function. In this paper we
present a new large-update primal-dual interior point algorithm for solving P∗-linear
complementarity problem (LCP) based on a parametric version of the kernel function
in (Bai et al. in SIAM J. Optim. 13:766-782, 2003). We show that the algorithm has
O((1 + 2κ )(logp)3

√
n(logn) log nμ0

ε
) iteration complexity, where p is a barrier function

parameter and κ is the handicap of the matrix. This is the best known complexity
result for such a method.
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1 Introduction
In this paper, we consider the standard form of LCP as follows:

s =Mx + q, xs = , x ≥ , s≥ , (.)

where x, s,q ∈ Rn and M ∈ Rn×n is a P∗-matrix and xs denotes the componentwise
(Hadamard) product of the vectors x and s.
The matrixM is a P∗-matrix if it is a P∗(κ)-matrix for some κ ≥ , where P∗(κ) := {M ∈

Rn×n | ( + κ)
∑

i∈I+(ξ )[ξ ]i[Mξ ]i +
∑

i∈I–(ξ )[ξ ]i[Mξ ]i ≥ ,∀ξ ∈ Rn}, where [Mξ ]i denotes
the ith component of the vector Mξ , I+(ξ ) = { ≤ i ≤ n : ξi[Mξ ]i ≥ }, I–(ξ ) = { ≤ i ≤ n :
ξi[Mξ ]i < }. Note thatM is a P∗()-matrix if and only ifM is positive semidefinite.
In the following, we give some examples for P∗(κ)-matrices.

Example . The matrix

M =

(
  + κ

– 

)

is P∗(κ), for all κ ≥ . Indeed, since x(Mx) = (( + κ)xx, –xx)T , for xx > , I+ = {}
and I– = {}. Hence ( + κ)( + κ)xx – xx = κxx( + κ) ≥  for all κ ≥ . For
xx < , I+ = {} and I– = {}. Then ( + κ)(–xx) + ( + κ)xx = –κxx ≥ , for all
κ ≥ . Thus,M is P∗(κ), for all κ ≥ .
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Example . For c ≥ , the matrix

M =

⎛
⎜⎝

  + κ 
–  
  c

⎞
⎟⎠

is P∗(κ), for all κ ≥ . x(Mx) = ((+κ)xx, –xx, cx)T . If xx > , I+ = {, } and I– = {}.
Hence ( + κ)xx + c( + κ)x – xx = κ( + κ)xx + c( + κ)x ≥ , for all κ ≥ . If
xx < , I+ = {, } and I– = {}. ( + κ)(–xx + cx) + ( + κ)xx = c( + κ)x ≥ , for
all κ ≥ . Thus,M is P∗(κ), for all κ ≥ .

Linear complementarity problems (LCPs) havemany applications in science, economics
and engineering. LCPs include linear and quadratic programming, fixed point problems
and sets of piecewise-linear equations, bimatrix equilibrium points and variational in-
equalities []. A large-update interior point method (IPM) is one of the most efficient nu-
merical methods for various optimization problems.
Peng-Roos-Terlaky [–] proposed new variants of interior pointmethods (IPMs) based

on self-regular barrier functions and achieved so far the best known complexity for large-
update methods with a specific self-regular barrier function. Bai-Ghami-Roos [] pro-
posed a new primal-dual IPM for linear optimization (LO) problem based on eligible bar-
rier functions and a unified scheme for analyzing the algorithm based on four conditions
of the kernel function and Bai-Lesaja-Roos [] generalized to P∗(κ)-LCP. Cho [] andCho-
Kim [] extended the complexity analysis for LO problem to P∗(κ)-LCP. Amini-Haseli []
and Amini-Peyghami [] introduced generalized versions of the kernel functions in []
and improved the complexity results for large-update methods for LO and P∗(κ)-LCP, re-
spectively. Recently, Lesaja-Roos [] proposed a unified analysis of the IPM for P∗(κ)-LCP
based on the class of eligible barrier functions which was first introduced by Bai-Ghami-
Roos [] for LO. Wang-Bai [] generalized interior point algorithm for LO to P-matrix
LCP over symmetric cones based on the same kernel function.Wang-Lesaja [] extended
the full NT-step infeasible IPM for symmetric cone LO to the Cartesian P∗(κ)-symmetric
cone LCP and the algorithm is small-update method.
The most challenging question in this research area is whether or not there exists a ker-

nel function for which the iteration bound for large-update method is the same as or even
better than currently best known bound for such methods []. Bai-Ghami-Roos [] pro-
posed a new efficient large-update IPM for LO based on a barrier-type function which is
not a barrier function in the usual sense since it has finite value at the boundary of the fea-
sible region. Despite this, they obtained the best known iteration bound. Ghami [] pro-
posed various versions of interior point algorithms based on kernel functions and showed
that the kernel function in [] seems promising through numerical tests. Wang-Bai []
proposed a generalized version of the kernel function in [] which has a parameter in the
growth term for P∗(κ)-horizontal LCPs and obtained the best known complexity bound
when the parameter value equals , i.e. the same kernel function in []. This implies that
the parameter in the growth term does not improve the complexity of the algorithm ex-
cept .
Motivated by this, we introduce a parameter in the barrier term of the kernel function

in [] and obtained the best known complexity result for large-update methods for all
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parameters. Note that when the parameter in the barrier term grows, the barrier function
grows faster when t approaches zero.
The paper is organized as follows: In Section , we introduce the generic IPM and give

some examples of P∗(κ)-matrices. In Section , we introduce a class of barrier functions
and propose a new large-update interior point algorithm for P∗-LCP. In Section , we
derive the complexity results for the algorithm. Finally concluding remarks are given in
Section .
Throughout the paper, Rn

+ and Rn
++ denote the set of n-dimensional nonnegative vectors

and positive vectors, respectively. For x ∈ Rn, [x]i and x denote the ith component and
the smallest component of the vector x, respectively. We denote by D the diagonal matrix
from a vector d and e, the n-dimensional vector of ones. The index set I := {, , . . . ,n}.
For g(t), g(t) : R++ → R++, g(t) =O(g(t)) if there exists a positive constant c such that
g(t) ≤ cg(t), for all t > , and g(t) = �(g(t)) if there exist positive constants c and c
such that cg(t) ≤ g(t) ≤ cg(t), for all t > . For a ∈ R, 	a
 := max{m ∈ Z | m ≤ a} and
�a� :=min{n ∈ Z | n≥ a}, where Z is the set of integers. log denotes the natural logarithm.

2 Preliminaries
In this section we recall some basic concepts and introduce the generic interior point
algorithm. The basic idea of IPMs for LCP is to replace the second equation in (.) by the
parameterized equation xs = μe, μ > . Now we consider the following system:

s =Mx + q, xs = μe, x > , s > . (.)

Without loss of generality, we assume that (.) satisfies the interior point condition (IPC),
i.e., there exists a (x, s) >  such that s = Mx + q []. Since M is a P∗(κ)-matrix for
some κ ≥  and (.) satisfies the IPC, the system (.) has a unique solution for μ > .We
denote the solution of (.) by (x(μ), s(μ)) which is called the μ-center for μ > . The set
of μ-centers is called the central path of (.). Since the limit of the μ-centers satisfies (.)
as μ → , it yields the solution for (.) []. IPMs follow the central path approximately
and approach the solution of (.) as μ → .
For given (x, s) := (x, s), by applying Newton’s method to the system (.), we have the

following Newton system:

–M�x +�s = , S�x +X�s = μe – xs, (.)

where X := diag(x) and S := diag(s). By Lemma . of [], the system (.) has a unique
solution (�x,�s). By taking a step along the search direction (�x,�s), one constructs a
new iteration (x+, s+), where

x+ := x + α�x, s+ := s + α�s,

for some step size α ≥ . For notational convenience, we define the following:

v :=
√
xs
μ
, d :=

√
x
s
, dx :=

v�x
x

, ds :=
v�s
s

. (.)
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Algorithm  The generic interior point algorithm
Input:

A threshold parameter τ > ;
an accuracy parameter ε > ;
a fixed barrier update parameter θ ,  < θ < ;
(x, s) >  and μ >  such that 
l(x, s,μ) ≤ τ .

begin
x := x; s := s; μ := μ;
while nμ ≥ ε do (outer loop)
begin

μ := ( – θ )μ;
while 
l(v) > τ do (inner loop)
begin
solve the system (.) and (.) for �x and �s;
determine a step size α;
x := x + α�x;
s := s + α�s;
v :=

√
xs
μ
;

end
end

end

Using (.), we can rewrite the system (.) as follows:

–M̄dx + ds = , dx + ds = v– – v, (.)

where M̄ := DMD and D := diag(d). Note that the right-hand side of the second equation
in (.) equals the negative gradient of the classical logarithmic barrier function
l(v), i.e.,

dx + ds = –∇
l(v), (.)

where 
l(v) :=
∑n

i= ψl(vi) and ψl(t) := t–
 – log t, for t > . We call ψl the kernel function

of the classical logarithmic barrier function 
l(v).
Assuming that we are given a strictly feasible point (x, s) which is in a τ -neighborhood

of the given μ-center, the generic interior point algorithm works as in Algorithm .

3 New algorithm
Consider a class of kernel functions ψ(t) as follows:

ψ(t) :=
(logp)(t – )


+


σ

(
pσ (–t) – 

)
, p ≥ e,σ ≥ , t > . (.)

Then we have the first three derivatives of ψ(t) as follows:

ψ ′(t) = (logp)
(
t – pσ (–t)),

ψ ′′(t) = (logp)
(
 + σ (logp)pσ (–t)),

ψ ()(t) = –σ (logp)pσ (–t).

(.)
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From (.) and (.), we have for p ≥ e, σ ≥  and t > ,

ψ ′() = ψ() = , ψ ′′(t) > logp, lim
t→+

ψ(t) < ∞, lim
t→∞ψ(t) =∞. (.)

From (.), ψ(t) is strictly convex and has a minimum value  at t = .

Lemma . Let ψ(t) be defined as in (.). Then for p ≥ e and σ ≥ ,
(i) tψ ′′(t) +ψ ′(t) ≥ , t > 

σ logp ,
(ii) tψ ′′(t) –ψ ′(t) ≥ , t > ,
(iii) ψ ()(t) < , t > .

Proof For (i), using (.) with t > 
σ logp , we have

tψ ′′(t) +ψ ′(t) = t(logp) +
(
σ (logp)t – 

)
(logp)pσ (–t) > .

For (ii), tψ ′′(t) –ψ ′(t) = (σ (logp)t + )(logp)pσ (–t) > , t > .
For (iii), it is clear from (.). �

Corollary . Let t, t ≥ 
σ logp . By Lemma .(i) and Lemma .. in [], we have

ψ(
√
tt) ≤ 

 (ψ(t) +ψ(t)), i.e., ψ(t) is exponentially convex, for all t > 
σ logp .

Remark . By Lemma .(ii), (iii), and Lemma . in [],ψ ′′(t)ψ ′(βt)–βψ ′(t)ψ ′′(βt) > ,
t > , β > .

Lemma . For ψ(t) as in (.), we have

logp


(t – ) ≤ ψ(t) ≤ 
 logp

(
ψ ′(t)

), p≥ e,σ ≥ , t > .

Proof Using (.), we have

ψ(t) =
∫ t



∫ ξ


ψ ′′(ζ )dζ dξ ≥

∫ t



∫ ξ


(logp)dζ dξ =

logp


(t – )

and

ψ(t) =
∫ t



∫ ξ


ψ ′′(ζ )dζ dξ ≤ 

logp

∫ t



∫ ξ


ψ ′′(ξ )ψ ′′(ζ )dζ dξ

=


logp

∫ t


ψ ′′(ξ )ψ ′(ξ )dξ =


logp

∫ t


ψ ′(ξ )dψ ′(ξ ) =


 logp

(
ψ ′(t)

). �

Lemma . Let � : [,∞)→ [,∞) be the inverse function of ψ(t) for t ≥ . Then we have

�(u) ≤  +

√
u
logp

, p≥ e,u ≥ .

Proof Let u := ψ(t) for t ≥ . Then �(u) = t. Using the first inequality in Lemma ., we
have u =ψ(t) ≥ logp

 (t – ). Then we have t = �(u) ≤  +
√

u
logp . �
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Lemma . Let ρ : [,∞) → (, ] be the inverse function of – 
ψ

′(t) for  < t ≤ . Then

ρ(z)≥ σ (logp)–log( z
logp+)

σ logp , p > e, σ ≥ , z ≥ .

Proof Let z := – 
ψ

′(t), for  < t ≤ . By the definition of ρ , ρ(z) = t, for z ≥  and
z = –ψ(t). By (.) and  < t ≤ , pσ (–t) = z

logp + t ≤ z
logp + . Hence t = ρ(z) ≥

σ (logp)–log( z
logp+)

σ logp . �

Define for ψ(t) as in (.) and v ∈ Rn
++,


(v) := 
(x, s,μ) :=
n∑
i=

ψ
(
[v]i

)
. (.)

Since 
(v) is strictly convex and minimal at v = e, we have


(v) =  ⇔ v = e ⇔ x = x(μ), s = s(μ).

We use 
(v) as the proximity function to measure the distance between the current itera-
tion and corresponding μ-center. Also, we define the norm-based proximity measure δ(v)
as follows:

δ(v) :=


∥∥∇
(v)

∥∥ =


‖dx + ds‖. (.)

Note that δ(v) =  ⇔ v = e ⇔ 
(v) = . In this paper, we replace the right-hand side of
(.), –∇
l(v), by –∇
(v) as in (.). This defines a new search direction and proximity
function.
In the following we compute upper bound of proximity function during an outer itera-

tion.

Lemma . Let δ(v) and 
(v) be defined as in (.) and (.), respectively. Then δ(v) ≥√
logp
 
(v), v ∈ Rn

++, p ≥ e.

Proof Using (.) and the second inequality of Lemma .,

δ(v) =



n∑
i=

(
ψ ′([v]i)) ≥ logp



n∑
i=

ψ
(
[v]i

)
=
logp



(v).

Hence we have δ(v)≥
√

logp
 
(v). �

Lemma . Let L ≥  and 
(v)≤ L. If σ ≥  +  log( + L) and p≥ e, then v ≥ 
σ logp .

Proof If v ≥ , then v ≥  > 
σ logp . Suppose that v < . Let t := v. Since 
(v)≤ L, ψ(t) ≤

L, i.e., (logp)(t–)
 + 

σ
(pσ (–t) – ) ≤ L. This implies that 

σ
(pσ (–t) – ) ≤ L + (logp)(–t)

 ≤ L +
logp
 , p–σ t ≤ +σ (L+ logp

 )
pσ– . Let g(σ ) :=

+σ (L+ logp
 )

pσ– . Then g(σ ) is monotone decreasing in σ .

Since σ ≥  +  log( + L) and p ≥ e, p–σ t ≤ +(+ log(+L))(L+ logp
 )

p log(+L) ≤ +(+ log(+L))(L+ logp
 )

e log(+L) =
+(+ log(+L))(L+ logp

 )
(+L) .

http://www.journalofinequalitiesandapplications.com/content/2014/1/363
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Let g(L) :=
+(+ log(+L))(L+ logp

 )
(+L) . Then p–σ t ≤ g(L) and hence t ≥ 

σ logp log
p

g(L)
. Let

g(p,L) := p
g(L)

:= p(+L)

+(+ log(+L))(L+ logp
 )

. g(p,L) is monotone increasing in p and L, respec-

tively. Since p ≥ e and L ≥ , g(p,L) ≥ e
+.(+ log) ≥ .. Hence t ≥ log(.)

σ logp ≥ 
σ logp . �

4 Complexity analysis
In this section we give the iteration complexity of the algorithm for large-updatemethods.
For complexity analysis of the algorithm we follow a similar framework to the one defined
in [] for LO problems. In the followingwe compute the bound of the growth of the barrier
function during an outer iteration of the algorithm.
Using Lemma .(ii), (iii), and Theorem . in [], we obtain the following lemma.

Lemma . Let � be defined as in Lemma .. If 
(v)≤ τ , then


(βv) ≤ nψ

(
β�

(
τ

n

))
, v ∈ Rn

++,β ≥ . (.)

In the following we compute the upper bounds of 
(v) when we update the barrier
parameter μ.

Theorem . Let  < θ <  and v+ := v√
–θ

. If 
(v)≤ τ , then we have


(v+) ≤ θ (logp)n + 
√
τ (logp)n + τ

( – θ )
, p≥ e.

Proof Define ψb(t) := 
σ
(pσ (–t) – ). Then ψ(t) = (logp)(t–)

 + ψb(t) and ψ ′
b(t) = –(logp)×

pσ (–t) <  and ψb() = . Hence, we have

ψ(t)≤ (logp)(t – )


, t ≥ ,p≥ e. (.)

Using Lemma ., (.), and Lemma ., we have


(v+) ≤ nψ

(
√
 – θ

�

(
τ

n

))
≤ n logp



(
�( τ

n )
 – θ

– 
)

≤ n logp


( ( +
√

τ
n logp )



 – θ
– 

)

=
θ (logp)n + 

√
τ (logp)n + τ

( – θ )
. �

Define


̄ :=
θ (logp)n + 

√
τ (logp)n + τ

( – θ )
. (.)

We will use 
̄ for the upper bounds of 
(v) for large-update methods.

Remark . Let L := 
̄. Without loss of generality, we can assume that L ≥ . Indeed,
when p ≥ e, τ ≥  and n ≥ , L ≥ θn+

√
τn+τ

(–θ ) ≥ θn+
√
n+

(–θ ) ≥ θ+
–θ

>  if θ > 
 . In the algo-

rithm we take σ :=  +  log( + L).

http://www.journalofinequalitiesandapplications.com/content/2014/1/363
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Remark . For large-update method with τ = O(n) and θ = �(), we have 
̄ =
O((logp)n) and σ =O(log((logp)n)).

In the following we compute a default step size which keeps the iterates strictly feasible
and decreases the value of barrier function during inner iterations. For fixed μ, if we take
a step size α, then we have new iterations x+ := x+α�x, s+ := s+α�s. Using (.), we have

x+ = x
(
e + α

�x
x

)
= x

(
e + α

dx
v

)
=
x
v
(v + αdx),

s+ = s
(
e + α

�s
s

)
= s

(
e + α

ds
v

)
=
s
v
(v + αds).

Thus we have

v+ :=
√
x+s+
μ

=
√
(v + αdx)(v + αds).

Define for α > ,

f (α) := 
(v+) –
(v). (.)

Then f (α) is the difference of proximities between a new iteration and a current iteration
for fixed μ. Assume that for some α ≥ , [v]i + α[dx]i > 

σ logq and [v]i + α[ds]i > 
σ logq , for

all i ∈ I . By Corollary .,


(v+) = 

(√

(v + αdx)(v + αds)
) ≤ 


(

(v + αdx) +
(v + αds)

)
.

Define

f(α) :=


(

(v + αdx) +
(v + αds)

)
–
(v).

Thenwe have f (α)≤ f(α) and f () = f() = . By taking the derivative of f(α) with respect
to α, we have

f ′
 (α) =




n∑
i=

(
ψ ′([v]i + α[dx]i

)
[dx]i +ψ ′([v]i + α[ds]i

)
[ds]i

)
.

Using (.) and (.), we have

f ′
 () =



∇
(v)T (dx + ds) = –



∇
(v)T∇
(v) = –δ(v). (.)

Differentiating f ′
 (α) with respect to α, we have

f ′′
 (α) =




n∑
i=

(
ψ ′′([v]i + α[dx]i

)
[dx]i +ψ ′′([v]i + α[ds]i

)
[ds]i

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/363
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Since f ′′
 (α) > , f(α) is strictly convex in α unless dx = ds = . Since M is a P∗(κ)-matrix

andM�x =�s from (.), for �x ∈ Rn,

( + κ)
∑
i∈I+

[�x]i[�s]i +
∑
i∈I–

[�x]i[�s]i ≥ ,

where I+ = {i ∈ I : [�x]i[�s]i ≥ } and I– = I – I+. Since dxds = v�x�s
xs = �x�s

μ
and μ > , we

have

( + κ)
∑
i∈I+

[dx]i[ds]i +
∑
i∈I–

[dx]i[ds]i ≥ .

For notational convenience, we denote δ := δ(v), 
 := 
(v), σ+ :=
∑

i∈I+ [dx]i[ds]i and σ– :=
–
∑

i∈I– [dx]i[ds]i. To estimate the bound for ‖dx‖ and ‖ds‖, we need the following technical
lemma.

Lemma . (Modification of Lemma . in []) σ+ ≤ δ and σ– ≤ ( + κ)δ.

Lemma . (Modification of Lemma . in [])
∑n

i=([dx]i + [ds]i ) ≤ ( + κ)δ, ‖dx‖ ≤
δ

√
 + κ and ‖ds‖ ≤ δ

√
 + κ .

Using (.) and Lemma ., we have the following lemma.

Lemma . (Modification of Lemma . in []) Let δ be defined as in (.). Then we have

f ′′
 (α)≤ ( + κ)δψ ′′(v – αδ

√
 + κ).

Using (.) and Lemma ., we have the following lemma.

Lemma . (Modification of Lemma . in []) If the step size α satisfies the inequality

–ψ ′(v – αδ
√
 + κ) +ψ ′(v) ≤ δ√

 + κ
, (.)

then f ′
 (α)≤ .

Lemma . (Modification of Lemma . in []) Let ρ be defined as in Lemma . and
a :=  + √

+κ . Then, in the worst case, the largest step size α satisfying (.) is given by

ᾱ :=


δ
√
 + κ

(
ρ(δ) – ρ(aδ)

)
. (.)

Lemma . (Modification of Lemma . in []) Let ρ and ᾱ be defined as in Lemma ..
Then

ᾱ ≥ 
( + κ)ψ ′′(ρ(aδ))

.

Let

α̃ :=


( + κ)ψ ′′(ρ(aδ))
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/363
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Letting t := ρ(aδ), we have  < t ≤  and –ψ ′(t) = aδ. By (.) and  ≤ a ≤ , we have

(logp)pσ (–t) ≤ (logp) + δ. (.)

By (.) with (.) and σ ≥ , (.), Lemma . with 
 ≥ τ ≥  and p≥ e,

α̃ ≥ 
σ ( + κ)(logp)( + pσ (–t) logp)

≥ 
σ ( + κ)(logp)( + δ + logp)

≥ 
σδ( + κ)(logp)(

√
 +  +

√
 logp)

≥ 
σδ( + κ)(logp)( +

√
)
.

Define the default step size α̂ as follows:

α̂ :=


σδ( + κ)(logp)( +
√
)
. (.)

Using Lemma ., Lemma ., and (.), [v]i + ᾱ[dx]i ≥ v – ᾱ
√
 + κδ ≥ 

σ logp –


σ
√
+κ(logp)(+

√
) ≥ (  –


(+

√
) logp )


σ logp ≥ (  –


+

√
 )


σ logp >


σ logp , for all i ∈ I . In the same

way, [v]i + ᾱ[dx]i > 
σ logp , for all i ∈ I . Hence we can use the exponential convexity of ψ(t).

Lemma . (Lemma .. in []) Let a function h be twice differentiable and convex with
h() = , h′() <  and let h attain its (global)minimum at t∗ > . If h′′(t) is monotonically
increasing on t ∈ [, t∗], then

h(t) ≤ th′()


, ≤ t ≤ t∗.

Using f() = , (.), ψ ′′′ < , and Lemma ., we have the following lemma.

Lemma . Let ᾱ be defined as in (.). If the step size α is such that α ≤ ᾱ, then

f (α)≤ –αδ.

Using Lemma ., (.), and Lemma ., we have the following theorem.

Theorem . For α̂ as in (.), f (α̂)≤ – 




(+
√
)(+κ)σ (logp)



.

Proposition . (Proposition .. in []) Let t, t, . . . , tK̄ be a sequence of positive num-
bers such that

tk+ ≤ tk – λt–γ

k , k = , , . . . , K̄ – ,

where λ >  and  < γ ≤ . Then K̄ ≤ 	 tγ
λγ


.

We define the value of 
(v) after the μ-update as 
 and the subsequent values in the
same outer iteration are denoted as 
k , k = , , . . . . Then we have 
 ≤ 
̄. If we let K be
the number of inner iterations per an outer iteration, then we have 
K– > τ ,  ≤ 
K ≤ τ .
In the following theorem we give the bound for the total number of iterations.
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Theorem. Let a P∗(κ)-LCP be given. If τ ≥ , then the total number of iterations of the
algorithm to get an ε-approximate solution is bounded by

⌈
( +

√
)( + κ)σ (logp)  
̄





θ
log

nμ

ε

⌉
. (.)

Proof Using Proposition . with γ := 
 and λ := 

(+
√
)(+κ)σ (logp)



, we obtain the num-

ber of inner iterations 
√
( +

√
)( + κ)σ (logp)  
̄



 . If the central path parameter μ

has the initial value μ >  and is updated bymultiplying – θ ,  < θ < , then after at most
� 

θ
log nμ

ε
� iterations we have nμ < ε []. For the total number of iterations, we multiply

the number of inner iterations by that of the outer iterations. Hence the total number of

iterations is bounded by � (+
√
)(+κ)σ (logp)


 
̄





θ
log nμ

ε
�. �

5 Concluding remarks
Wang-Bai [] defined a parametric version of the kernel function in [], the parameter is
in the growth term of the kernel function, and generalized the algorithm for LO to P∗(κ)-
LCPs based on this kernel function. Ghami-Roos-Steihaug [] extended the algorithm
for LO to semidefinite optimization based on the kernel function in []. However, they
obtained the best known complexity bound for large-update methods when the kernel
function takes the form in [].
Motivated by this, we consider a parametric version of the kernel function in [] with

parameters in the barrier term of the kernel function. For large-updatemethods, by taking
τ =O(n) and θ = �(), we obtained O(( + κ)(logp)

√
n(logn) log nμ

ε
), for p ≥ e, which

is the best known complexity bound for such a method.
Further research will be concerned with a numerical test and extension to general prob-

lems.
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