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Abstract
In this paper, a class of refinable functions is given by smoothening pseudo-splines in
order to get divergence free and curl free wavelets. The regularity and stability of
them are discussed. Based on that, the corresponding Riesz wavelets are constructed.
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1 Introduction
We denote by Z and R the set of integers and real numbers, respectively. Let Lp(R) stand
for the classical Lebesgue space

Lp(R) :=
{
f ,

∫
R

∣∣f (t)∣∣p dt < +∞
}

with the norm ‖f ‖p = (
∫
R

|f (t)|p dt) p and L∞(R) consisting of all Lebesguemeasurable and
bounded functions on R. Similarly, the discrete space �p(Z) := {{an},∑n |an|p < +∞,n ∈
Z} with ‖{an}‖p = (

∑
n |an|p)


p . As usual, given f ∈ L(R) ∩ L(R), its Fourier transform is

defined by

f̂ (ω) :=
∫
R

f (x)e–ixω dx

onR. The Fourier transform of a function in L(R) is understood as the unitary extension.
We write h = f ∗ g for the convolution h(x) =

∫
R
f (x – t)g(t)dt, defined for any pair of

functions f and g such that the integral exists almost everywhere. Clearly, ĥ(ω) = f̂ (ω)ĝ(ω)
in the frequency domain, when all the Fourier transforms exist in that formula. Given
g ∈ L(R), {g(x– k),k ∈ Z} is called a Riesz basis of its linearly generating space, if for each
{λk} ∈ �(Z) there exist two positive constants A and B such that

A
∑
k∈Z

λ
k ≤

∥∥∥∥∑
k∈Z

λkg(x – k)
∥∥∥∥


≤ B

∑
k∈Z

λ
k . (.)

The numbers A, B are called lower Riesz bound and upper Riesz bound, respectively.
Multiresolution analysis provides a classical method to construct wavelets.

Definition  A multiresolution analysis of L(R) means a sequence of closed linear sub-
spaces Vj of L(R) which satisfies

© 2014 Zhuang and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/359
mailto:zhuangzhitao@ncwu.edu.cn
http://creativecommons.org/licenses/by/2.0


Zhuang and Yang Journal of Inequalities and Applications 2014, 2014:359 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/359

(i) Vj ⊂ Vj+, j ∈ Z,
(ii) f (x) ∈ Vj if and only if f (x) ∈ Vj+,
(iii)

⋃
j∈ZVj = L(R) and

⋂
j∈ZVj = {},

(iv) there exists a function φ ∈ L(R) such that {φ(x – k),k ∈ Z} forms a Riesz basis
of V.

The function φ in Definition  is said to be a scaling function, if it satisfies

φ(x) =
∑
k

akφ(x – k) (.)

for some sequence {ak} ∈ �(Z). Define the Fourier series ĉ of a sequence {ck} ∈ �(Z) by

ĉ(ξ ) :=
∑
k∈Z

cke–ikξ , ξ ∈R.

Then the refinement equation (.) becomes

φ̂(ξ ) = â(ξ /)φ̂(ξ /), ξ ∈ R.

The function â is called the refinementmask of φ. The pseudo-spline of Type I was first in-
troduced in [] to construct tight framelets. The pseudo-spline of Type II was first studied
by Dong and Shen in []. There have been many developments in the theory of pseudo-
splines over the past ten years [, ]. Its applications in image denoising and image in-
painting are also very extensive [, ]. The pseudo-spline is defined by its refinementmask.
The refinement mask of a pseudo-spline of Type I with order (m,�) is given by

∣∣â(ξ )∣∣ := ∣∣âm,�(ξ )
∣∣ := cosm(ξ /)

�∑
j=

(
m + �

j

)
sinj(ξ /) cos(�–j)(ξ /) (.)

and the refinement of a pseudo-spline of Type II with order (m,�) is given by

â(ξ ) := âm,�(ξ ) := cosm(ξ /)
�∑
j=

(
m + �

j

)
sinj(ξ /) cos(�–j)(ξ /). (.)

The mask of Type I is obtained by taking the square root of the mask of Type II using
the Fejér-Riesz lemma [], i.e. â(ξ ) = |â(ξ )|. The corresponding pseudo-spline can be
defined in terms of their Fourier transform, i.e.

kφ̂m,�(ξ ) :=
∞∏
j=

kâm,�
(
–jξ

)
, k = , .

In order to smoothen the pseudo-spline, one can use the convolution method. Take the
smoothed pseudo-spline

φn,m,� = φm,� ∗ χ[– 
 ,


 ]

∗ · · · ∗ χ[– 
 ,


 ]︸ ︷︷ ︸

n–m

,
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where χ[– 
 ,


 ]

denotes the characteristic function of interval [– 
 ,


 ] and n ≥ m. This is

equivalent to

φ̂n,m,�(ξ ) = φ̂m,�(ξ )
(
sin(ξ /)

ξ /

)n–m

.

Thus the symbol of φn,m,� becomes

ân,m,�(ξ ) = φ̂n,m,�(ξ )/φ̂n,m,�(ξ ) = âm,�(ξ )
(
cos(ξ /)

)n–m.
Therefore, we define the smoothed pseudo-spline by its refinement mask for Type I:

|ân,m,�| := cosn(ξ /)
�∑
j=

(
m + �

j

)
sinj(ξ /) cos(�–j)(ξ /) (.)

and for Type II:

φ̂r,m,� := cosr(ξ /)
�∑
j=

(
m + �

j

)
sinj(ξ /) cos(�–j)(ξ /),

where r ≥ m. When r = m, it is the pseudo-spline. When r 
= m, it can be considered
as an extension of pseudo-spline. Define the translated form of the Type II by

T φ̂r,m,�(ξ ) := e–ir
ξ
 φ̂r,m,�(ξ ).

Then we get the differential relation

Tφ′
r+,m,�(x) = Tφr,m,�(x) – Tφr,m,�(x – ). (.)

This inherits the property of a B-spline.

Remark  One may think that smoothing the pseudo-splines by convolving them with
B-splines seems unnecessary since one can simply increase m of the original pseudo-
splines. However, by increasing m, we cannot get the differential relation (.), which is
important for the construction of divergence free wavelets and curl free wavelets in the
analysis of incompressible turbulent flows [, ].

Remark  Similar to the definition of (.), we can define a smoothed dual pseudo-spline
by its refinement mask,

b̂n,m,�(ξ ) = eiξ / cosn+(ξ /)
�∑
j=

(
m + / + �

j

)
sinj(ξ /) cos(�–j)(ξ /), (.)

as an extension of dual pseudo-splines in [] and get the corresponding wavelets.

Remark  In addition, one can assume n ∈ R in (.) and (.), as a generalization of
fractional splines in [].
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2 Some lemmas
This section gives some lemmas that will be used to prove several results of this paper.We
start with some results from [].

Lemma  [] For given nonnegative integers m, j, �,

�

(
m + �

�

) 
 ≤

�∑
j=

(
m + �

j

)
for all m ≥  and  ≤ � ≤ m – .

This lemma will be used in Section  in order to prove the Riesz basis property of
wavelets. Define Pm,�(y) :=

∑�
j=

(m+�

j
)
yj( – y)�–j, Rm,�(y) := ( – y)mPm,�(y) and Rr,m,� =

( – y) r Pm,�(y) where y = sin(ξ /), r, m, � are nonnegative integers and r ≥ m. Then
one can find that

Rm,�
(
sin(ξ /)

)
= âm,�(ξ ) and Rr,m,�

(
sin(ξ /)

)
= âr,m,�(ξ )

and the following lemma holds.

Lemma  [] For nonnegative integers m and � with � ≤ m – , let Pm,� and Rm,� be the
polynomials defined above. Then
() Pm,�(y) =

∑�
j=

(m–+j
j

)
yj;

() R′
m,�(y) = –(m + �)

(m+�–
�

)
y�( – y)m–.

With the two lemmas in hand, the basic property of the polynomial Rr,m,�, which will be
used in Section , is given.

Lemma  For nonnegative integers r,m and �,
() define Q(y) := Rr,m,�(y) + Rr,m,�( – y); then

min
y∈[,]

Q(y) =Q
(



)
= –

r
 –�

�∑
j=

(
m + �

j

)
;

() define S(y) := R
r,m,�(y) + R

r,m,�( – y); then

min
y∈[,]

S(y) = S
(



)
= –r–�

(
�∑
j=

(
m + �

j

))

.

Proof Since Rr,m,�(y) = ( – y) r –mRm,�(y), its derivative is

R′
r,m,�(y) = –

(
r

–m

)
( – y)

r
 –m–Rm,�(y) + ( – y)

r
 –mR′

m,�(y).

So the derivative is Q′(y) = R′
r,m,�(y) + R′

r,m,�( – y) = I + II , where

I =
(
r

–m

)
y
r
 –m–Rm,�( – y) –

(
r

–m

)
( – y)

r
 –m–Rm,�(y)
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and

II = ( – y)
r
 –mR′

m,�(y) – y
r
 –mR′

m,�( – y).

Now, we compute them, respectively. For I , by using () of Lemma , one has

I =
(
r

–m

) �∑
j=

(
m –  + j

j

)[
y
r
 –( – y)j – yj( – y)

r
 –

]
.

For II , by using () of Lemma , one has

II = (m + �)
(
m + � – 

�

)[
y
r
 –( – y)� – ( – y)

r
 –y�

]
.

For j = , . . . ,�, since y r
 –(– y)j ≤ (– y) r –yj for all y ∈ [,  ] and y

r
 –(– y)j ≥ (– y) r –yj

for all y ∈ [  , ], one has

Q′(y) = I + II

{
≤ , y ∈ [,  ];
≥ , y ∈ [  , ].

This means Q(y) reaches its minimum value at the point y = /. Furthermore,

Q(/) = Rr,m,�(/) = –
r
 Pm,�(/) = –

r
 –�

�∑
j=

(
m + �

j

)
.

This completes the proof of (). For () of this lemma, since

S(y) = R
r,m,�(y) + R

r,m,�( – y) = ( – y)r–mR
m,�(y) + yr–mR

m,�( – y),

we have S′(y) = III + IV , where

III = (r – m)
[
yr–m–R

m,�( – y) – ( – y)r–m–R
m,�(y)

]
and

IV = ( – y)r–mRm,�(y)R′
m,�(y) – yr–mRm,�( – y)R′

m,�( – y).

For III , by () of Lemma , we have

III = (r – m)
[
yr–P

m,�( – y) – ( – y)r–P
m,�(y)

]
= (r – m)

((
�∑
j=

(
m –  + j

j

)
y

 (r–)( – y)j

)

–

(
�∑
j=

(
m –  + j

j

)
( – y)


 (r–)yj

))
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= (r – m)

(
�∑
j=

(
m –  + j

j

)(
y

 (r–)( – y)j + ( – y)


 (r–)yj

))

×
(

�∑
j=

(
m –  + j

j

)(
y

 (r–)( – y)j – ( – y)


 (r–)yj

))
.

For IV , by () of Lemma , we have

IV


= ( – y)r–mPm,�(y)R′
m,�(y) – yr–mPm,�( – y)R′

m,�( – y)

= R′
m,�(y)

�∑
j=

(
m –  + j

j

)
yj( – y)r–m – R′

m,�( – y)
�∑
j=

(
m –  + j

j

)
( – y)jyr–m

= (m + �)
(
m –  + j

j

)(
�∑
j=

(
m –  + j

j

)(
yr–( – y)�+j – y�+j( – y)r–

))
.

Since

y

 (r–)( – y)j – ( – y)


 (r–)yj

{
≤ , y ∈ [,  ];
≥ , y ∈ [  , ],

and for every j,

yr–( – y)�+j – y�+j( – y)r–
{

≤ , y ∈ [,  ];
≥ , y ∈ [  , ],

we have

S′(y) = III + IV

{
≤ , y ∈ [,  ];
≥ , y ∈ [  , ].

This means S(y) reaches its minimum at point y = /. Furthermore, we have

S(/) = 
(
–

r
 Pm,�(y)

) = –r–�
(

�∑
j=

(
m –  + j

j

))

.

This completes the lemma. �

3 Regularity and stability of scaling function
In this section, we discuss the regularity and stability of a scaling function generated by
the refinement mask of a smoothed pseudo-spline. Let

φ̂(ξ ) :=
∞∏
j=

â
(
–jξ

)
.

Then the decay of |φ̂| can be characterized by |â| as stated in the following theorem.

http://www.journalofinequalitiesandapplications.com/content/2014/1/359
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Theorem  [] Let â(ξ ) be a refinement mask of the refinable function φ of the form

∣∣â(ξ )∣∣ = cosn(ξ /)
∣∣L(ξ )∣∣, ξ ∈ [–π ,π ].

Suppose that

∣∣L(ξ )∣∣ ≤
∣∣∣∣L

(
π


)∣∣∣∣ for |ξ | ≤ π

,

∣∣L(ξ )L(ξ )∣∣ ≤
∣∣∣∣L

(
π


)∣∣∣∣ for
π


≤ |ξ | ≤ π .

Then |φ̂(ξ )| ≤ C( + |ξ |)–n+κ , with κ = log(L(| π )|)/ log, and this decay is optimal.

In order to use this lemma, one needs to consider the polynomial corresponding toL(ξ ).
In fact, Dong and Shen give an important proposition to estimate it in the following propo-
sition.

Proposition  [] Let Pm,�(y) be defined as in Section ,wherem, � are nonnegative integers
with � ≤ m – . Then

Pm,�(y) ≤ Pm,�

(



)
for y ∈

[
,




]
,

Pm,�(y)Pm,�
(
y( – y)

) ≤
(
Pm,�

(



))

for y ∈
[


, 

]
.

Combing Theorem  and Proposition , we have the following theorem, which charac-
terizes the regularity of a smoothed pseudo-spline.

Theorem  Let φ be the smoothed pseudo-spline of Type II with order r,m, �, then

∣∣φ̂(ξ )∣∣ ≤ C
(
 + |ξ |)–r+κ ,

where κ = log(Pm,�(  ))/ log. Consequently, φ ∈ Cα–ε where α = r – κ – . Furthermore,
let φ be the smoothed pseudo-spline of Type I with order n,m, �. Then

∣∣φ̂(ξ )∣∣ ≤ C
(
 + |ξ |)–n+ κ

 .

Consequently, φ ∈ Cα–ε with α = n – κ
 – .

Proof Notice that |L(ξ )| in Theorem  is exactly Pm,�(sin( ξ

 )) and y( – y) = sin(ξ ); one
can easily prove this theorem by Theorem  and Proposition . �

This theorem shows kφ ∈ L(R) for k = , . Since r ≥ m, the regularity of φ is bet-
ter than a pseudo-spline but the support is longer. For r = , m = , � =  the smoothed
pseudo-spline φr,m,� is shown in Figure .
Now, we consider the stability of the smoothed pseudo-spline. When φ is compactly

supported in L(R), it was shown by Jia and Micchelli [] that the upper Riesz bound in

http://www.journalofinequalitiesandapplications.com/content/2014/1/359
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Figure 1 The scaling function 2φ3,2,1.

(.) always exists. Furthermore, they assert that the existence of a lower Riesz bound is
equivalent to

(
φ̂(ξ + kπ )

)
k∈Z 
=  for all ξ ∈R, (.)

where  denotes the zero sequence in �(Z). Since a smoothed pseudo-spline is compactly
supported and belongs to L(R) for k = , , the stability is equivalent to (.).

Theorem  Smoothed pseudo-splines are stable.

Proof By the definition of refinement mask, for each fixed r
 ≥ m ≥  and for any  ≤ � ≤

m – , cosm(ξ /)≤ âr,m,�(ξ ) holds for all ξ ∈ R. Therefore, we have

∣∣B̂r(ξ )
∣∣ ≤ ∣∣φ̂r,m,�(ξ )

∣∣,
where Br stands for the B-spline with order r. Since Br is stable, the vector (B̂r(ξ +
kπ ))k∈Z 
= . Hence (φ̂r,m,�(ξ + kπ ))k∈Z 
= .
For a smoothed pseudo-spline of Type I, since ân,m,�(ξ ) = |ân,m,�| = ân,m,�(ξ ) ·

ân,m,�(–ξ ), one has

φ̂n,m,�(ξ ) = φ̂n,m,�(ξ ) · φ̂n,m,�(–ξ ).

Therefore, the set of zeros of φ̂n,m,�(ξ ) is contained in that of φ̂n,m,�(ξ ) and this guarantees
the stability of φ(ξ ). �

This theorem shows the stability of a smoothed pseudo-spline. From the definition of
a Riesz basis, one can find that the translate of a smoothed pseudo-spline is also linearly
independent.

4 Riesz wavelets
Since all smoothed pseudo-splines are compactly supported, refinable, stable in L(R), the
sequence of spaces (Vn)n∈Z defined via Definition  forms an MRA. The corresponding
wavelets can be constructed by the classical method. Define

ψ̂(ξ ) = b̂
(

ξ



)
φ̂

(
ξ



)
, where b̂(ξ ) = e–iξ â(ξ + π )

http://www.journalofinequalitiesandapplications.com/content/2014/1/359
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and X(ψ) := {ψn,k = n/ψ(n – k),n,k ∈ Z}. Then X(ψ) is a Riesz basis. To prove this, the
following theorem is needed.

Theorem  [] Let â(ξ ) be a finitely supported refinement mask of a refinable function
φ ∈ L(R) with â() =  and â(π ) = , such that â can be factorized into the form

∣∣â(ξ )∣∣ = cosn(ξ /)
∣∣L(ξ )∣∣, ξ ∈ [–π ,π ],

where L is the Fourier series of a finitely supported sequence with L(π ) 
= . Suppose that

∣∣â(ξ )∣∣ + ∣∣â(ξ + π )
∣∣ 
= , ξ ∈ [–π ,π ].

Define ψ̂(ξ ) := e–iξ â(ξ + π )φ̂(ξ ) and L̃ := L(ξ )
|â(ξ )|+|â(ξ+π )| . Assume that ‖L(ξ )‖L∞(R) < n–

and ‖L̃(ξ )‖L∞(R) < n–. Then X(ψ) is a Riesz basis for L(R).

From the above theorem, the key step is to estimate the upper Riesz bound of |L(ξ )| and
|L̃(ξ )|. Notice that

∣∣ân,m,�(ξ )
∣∣ = ân,m,�(ξ ) = cosn(ξ /)Pm,�

(
sin(ξ /)

)
.

One has |L(ξ )| = (Pm,�(sin(ξ /)))

 , |L(ξ )| = Pm,�(sin(ξ /)) and

|L̃| = (Pm,�(y))



Rn,m,�(y) + Rn,m,�( – y)
, |L̃| = Pm,�(y)

R
r,m,�(y) + R

r,m,�( – y)
.

Thus, we have the following theorem.

Theorem  Let kφ, k = ,  be the smoothed pseudo-spline of Types I and II with order
(r,n,m,�). The refinement masks ka are given in (.) and (.). Define

kψ̂(ξ ) := e–iξ kâ(ξ + π )kφ̂(ξ ).

Then X(ψ) forms a Riesz basis for L(R).

Proof By () of Lemma , one obtains

‖L̃‖L∞(R) = sup
y∈[,]

(Pm,�(y))



Rn,m,�(y) + Rn,m,�( – y)

≤
(m+�

�

) 


miny∈[,](Rn,m,�(y) + Rn,m,�( – y))

≤ n+�–(m+�

�

) 
∑�

j=
(m+�

j
) .

Applying Lemma , one obtains ‖L̃∞‖ ≤ n– < n– 
 . Similarly, one can get

‖L̃‖L∞(R) ≤ r– < r–

 .

http://www.journalofinequalitiesandapplications.com/content/2014/1/359
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Figure 2 The corresponding wavelets.

Notice that

∣∣kâ(ξ )∣∣ + ∣∣kâ(ξ + π )
∣∣ ≤  for all ξ ∈R.

Hence, |kL(ξ )| ≤ |kL̃(ξ )| for k = , . By using Theorem , one gets the desired result. �

By definition, the wavelets are also in L(R) and have the same regularity as the scaling
function. Still, the support is longer than for pseudo-splinewavelets. For r = ,m = , � = ,
the smoothed pseudo-spline ψ,, is shown in Figure .
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