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Abstract
In this paper, we present several matrix trace inequalities on Hermitian and
skew-Hermitian matrices, which play an important role in designing and analyzing
interior-point methods (IPMs) for semidefinite optimization (SDO).
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1 Introduction
SDO is the generalization of linear optimization (LO), which is convex optimization over
the intersection of an affine set and the cone of positive semidefinite matrices. Several
IPMs designed for LO have been successfully extended to SDO [, ]. Some matrix trace
inequalities are developed and applied in the analysis of IPMs for SDO (see [–]). In [],
Yang proved the arithmetic mean-geometric mean inequality for positive definite matri-
ces, which was an open question proposed by Bellman in []; Neudecke used a different
method in [] to show a slightly relaxed version of Yang’s result in []; In [], Coope con-
sidered alternative proofs of some simple matrix trace inequalities in [–] and further
studied properties of products of Hermitian and positive (semi)definite matrices; In [],
Yang gave a new proof of the result obtained by Yang in [] and extended it to a gen-
eralized positive semidefinite matrix. Based on the work in [–], Chang established a
matrix trace inequality for products of Hermitian matrices in [], which partly answers a
conjecture proposed by Bellman in []. In addition, Yang gave a matrix trace inequality
for products of positive semidefinite matrices in []; In [], Yang et al. established a ma-
trix trace inequality for positive semidefinite matrices, which improved the result given
by Yang in []. Although there have been many results on matrix trace inequality, some
important matrix trace inequality problems have not been fully solved. In this paper, we
will provide several matrix trace inequalities on Hermitian and skew-Hermitian matrices,
which play an important role in designing and analyzing IPMs for SDO.
This paper is organized as follows: In Section , a matrix trace inequality on ×  Her-

mitian and skew-Hermitian matrices is provided, and its simple proof is given by using
an elementary method. However, it is difficult for us to use this method to deal with the
high-dimensional case. Based on Lemmas  and  in Section , the high-dimensional case
will be shown as Corollary  in Section . In Section , some conclusions are made.
The following notations are used throughout the paper.N, R+, C, and Cn denote the set

of natural numbers, the set of nonnegative real numbers, the set of complex numbers and
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the set of vectors with n components, respectively. Cn×n is the space of all n× nmatrices
over C. Define

Span{v, . . . , vn} = {kv + · · · + knvn|ki ∈ C, i = , , . . . ,n},

where v, v, . . . , vn ∈ Cn. The vector inner product of α ∈ Cn and β ∈ Cn is defined by
(α,β). | · | and ‖ · ‖ denote modules for complex numbers and the -norm for vectors,
respectively. For A,B ∈ Cn×n, A∗ represents the conjugate transpose of A, A ≥ B (A > B)
means that A – B is positive semidefinite (positive definite). For any Hermitian positive
definite matrix Q, the expression Q 

 denotes the Hermitian square root of Q. Similarly,
the power Qr can be defined for any Q >  and r ∈ R.

2 Preliminary results
In this section, we will present a matrix trace inequality on  ×  Hermitian and skew-
Hermitian matrices.

Lemma  Let N >  andM be ×Hermitian and skew-Hermitianmatrices, respectively.
Then

tr
((
(N +M)∗(N +M)

)– 

) ≤ tr

(
N–).

Proof From N > , there exists a unitary matrix U such that

N =U�U∗,

where

� = diag{n,n} and n ≥ n > .

Hence,

tr
(
N–) = tr

(
�–)

and

tr
((
(N +M)∗(N +M)

)– 

)
= tr

(((
� +U∗MU

)∗(
� +U∗MU

))– 

)
,

where U∗MU is a skew-symmetric matrix.
Without loss of generality, let

N = diag{n,n} and M =

[
 m
–m̄ 

]
,

where n ≥ n > . Then

N +M =

[
n m
–m̄ n

]
.
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Thus

(N +M)(N +M)∗ =

[
n + |m| m(n – n)
m̄(n – n) n + |m|

]
.

From

det
(
λI – (N +M)(N +M)∗

)
= ,

it follows that

λ –
(
n + n + |m|)λ +

(
nn + |m|) = . ()

Suppose λ and λ are two roots of (), where λ ≥ λ. According to Weda’s theorem, we
obtain

{
λ + λ = n + n + |m|,
λλ = nn + n |m| + |m|. ()

From (), it is easy to compute that

(
√
λ

+
√
λ

)

=
λ + λ + 

√
λλ

λλ

=
n + n + |m| + (nn + |m|)

(nn + |m|)

=
(n + n) + |m|
(nn + |m|) . ()

On the other hand, it is clear that

 ≤ nn
(
n + n

)|m| + (n + n)|m|. ()

According to (), it follows that

|m|nn ≤ nn(n + n)|m| + (n + n)|m|.

This implies

nn

(n + n) + |m|nn ≤ (

nn + |m|)(n + n). ()

Thus, () can be written as

(n + n) + |m|
(nn + |m|) ≤ (n + n)

nn
.

This, together with (), yields

(
√
λ

+
√
λ

)

≤ (n + n)

nn
=

(

n

+

n

)

,
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i.e.,

√
λ

+
√
λ

≤ 
n

+

n

.

Hence,

tr
((
(N +M)∗(N +M)

)–/) ≤ tr
(
N–). �

Remark  In this lemma, Weda’s theorem is applied to prove the matrix trace inequality
of ×  Hermitian and skew-Hermitian matrices. However, it is difficult for us to extend
this result to the high-dimensional case, because it is too complex for us to compute the
matrix traces of n× nHermitian and skew-Hermitian matrices by usingWeda’s theorem,
when n≥ .

In order to prove the high-dimensional case of Lemma , we need to give the following
two lemmas.

Lemma  [] Let A ∈Cn×n. Then x∗(A +A∗)x≤ 
√
x∗A∗Ax, ∀x ∈Cn, ‖x‖ = .

Lemma [] Let H =H∗ ∈Cn×n with eigenvalues λ(H) ≥ λ(H)≥ · · · ≥ λn(H) and their
corresponding orthonormal eigenvectors v, v, . . . , vn, respectively. Define

V = span{vp, vp+, . . . , vq}, ≤ p ≤ q ≤ n.

Then

λp(H) ≥ v∗Hv≥ λq(H)

for any v ∈ V with ‖v‖ = .

3 Main results
In this section, we develop several matrix trace inequalities on Hermitian and skew-
Hermitian matrices. Furthermore, Lemma  is extended to the high-dimensional case as
Corollary .

Theorem  Let

A ∈Cn×n, H =
A +A∗


.

If σ(A),σ(A), . . . ,σn(A) and λ(H),λ(H), . . . ,λn(H) are singular values of A and eigenval-
ues of H , respectively. They are arranged in such a way that

σ(A) ≥ σ(A) ≥ · · · ≥ σn(A), λ(H) ≥ λ(H) ≥ · · · ≥ λn(H).

Then

σk(A) ≥ λk(H),

where k = , , . . . ,n.
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Proof From the definition of singular values of A, it follows that

σ 
 (A), σ 

 (A), . . . , σ 
n (A)

are eigenvalues of A∗A, and their corresponding orthonormal eigenvectors of A∗A are
denoted as u,u, . . . ,un, respectively. Suppose v, v, . . . , vn are orthonormal eigenvectors
of H , and

λ(H), λ(H), . . . , λn(H)

are eigenvalues of H corresponding to these orthonormal eigenvectors, respectively. De-
fine

Wk = Span{vk , vk+, . . . , vn}

and

Wkn = Span{u,u, . . . ,uk},

where k = , , . . . ,n. It is clear that

dim(Wk) = n – k +  and dim(Wkn) = k.

Then

dim(Wk) + dim(Wkn) = n + .

According to the dimensional formula, it follows that

dim(Wk +Wkn) + dim(Wk ∩Wkn) = dim(Wk) + dim(Wkn).

This implies that

dim(Wk ∩Wkn) 
= {}.

From Lemma , it follows that

σ 
k (A) ≥ w∗(A∗A

)
w and w∗Hw≥ λk(A)

for any w ∈Wk ∩Wkn with ‖w‖ = . According to Lemma , we obtain

σk(A) ≥
√
w∗(A∗A

)
w≥ w∗Hw≥ λk(H),

where k = , , . . . ,n. This completes the proof. �
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Remark  In this section, we prove Theorem  by using a simple and elementary method,
which is slightly different from the proofmethod in []. This theorem reveals the relation-
ship between singular values and eigenvalue of matrices. Based on it, several matrix trace
inequalities on Hermitian and skew-Hermitian matrices will be obtained immediately.

Theorem Let A ∈ Cn×n,H = A+A∗
 .The following matrix trace inequalities are satisfied.

(I) If H ≥ , then

tr
((
A∗A

)r) ≥ tr
(
Hr), ∀r ∈ R+.

(II) If H > , then

tr
((
A∗A

)–r) ≤ tr
(
H–r), ∀r ∈ R+.

(III)

tr
((
A∗A

) k+


) ≥ tr
(
Hk+), ∀k ∈N.

Proof (I) From Theorem , it follows that

tr
((
A∗A

)r) = n∑
i=

λi
((
A∗A

)r)

=
n∑
i=

(
λi

(
A∗A

))r

=
n∑
i=

(
σi(A)

)r

≥
n∑
i=

(
λi(H)

)r

=
n∑
i=

λi
(
Hr)

= tr
(
Hr), ∀r ∈ R+.

Similar to the proof of (I), we can easily verify that (II) and (III) hold. This completes the
proof. �

Let

A =M +N , H =
A +A∗


,

where N ∈Cn×n andM ∈Cn×n be Hermitian and skew-Hermitian matrices, respectively.
By using Theorem , the following conclusions will be obtained immediately.

Corollary  Let N ∈ Cn×n and M ∈ Cn×n be Hermitian and skew-Hermitian matrices,
respectively. The following matrix trace inequalities are satisfied.
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(I) If H ≥ , then

tr
((
(N +M)∗(N +M)

)r) ≥ tr
(
Nr).

(II) If H > , then

tr
((
(N +M)∗(N +M)

)–r) ≤ tr
(
N–r).

(III)

tr
((
(N +M)∗(N +M)

) k+


) ≥ tr
(
Nk+).

Based on Corollary , the following results can be obtained when r = 
 . This implies that

the proof of the general case of Lemma  is completed.

Corollary  Let N ∈ Cn×n and M ∈ Cn×n be a Hermitian and skew-Hermitian matrices,
respectively. The following matrix trace inequalities are satisfied.

(I) If N ≥ , then

tr
((
(N +M)∗(N +M)

) 

) ≥ tr(N).

(II) If N > , then

tr
((
(N +M)∗(N +M)

)– 

) ≤ tr

(
N–).

4 Conclusions
This paper proves severalmatrix trace inequalities onHermitian and skew-Hermitianma-
trices. These matrix trace inequalities can be applied to design and analyze interior-point
methods (IPMs) for semidefinite optimization (SDO). In addition, matrix trace inequali-
ties have many potential applications in control theory, for example, stabilization of time-
delay systems (see [–]).
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