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Abstract
Let H1, H2 be real Hilbert spaces, C ⊆ H1 be a nonempty closed convex set, and 0 /∈ C.
Let A : H1 → H2, B : H1 → H2 be two bounded linear operators. We consider the
problem to find x ∈ C such that Ax = –Bx (0 = Ax + Bx). Recently, Eckstein and Svaiter
presented some splitting methods for finding a zero of the sum of monotone
operator A and B. However, the algorithms are largely dependent on the maximal
monotonicity of A and B. In this paper, we describe some algorithms for finding a zero
of the sum of A and B which ignore the conditions of the maximal monotonicity of A
and B.
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1 Introduction and preliminaries
Let H, H, H be real Hilbert spaces, C ⊆H be a nonempty closed convex set and  /∈ C.
Let A :H →H, B :H →H be two bounded linear operators. We consider the interest-
ing problem of finding x ∈ C such that

Ax = –Bx (or  = Ax + Bx). (.)

For convenience, we denote the problem by P .
For P it is generally difficult to find zeroes of A and B separately. To overcome this

difficulty, Eckstein and Svaiter [] present the splitting methods for finding a zero of the
sum of monotone operator A and B. Three basic families of splitting methods for this
problem were identified in []:
(i) The Douglas/Peaceman-Rachford family, whose iteration is given by

yk =
[
(I + ξB)– + I

]
xk ,

zk =
[
(I + ξA)– + I

]
yk ,

xk+ = ( – ρk)xk + ρkzk ,

where ξ >  is a fixed scalar, and {ρk} ⊆ (, ] is a sequence of relaxation parameters.
(ii) The double backward splitting method, with iteration given by

yk = (I + λkB)–xk ,
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xk+ = (I + λkA)–yk ,

where {λk} ⊆ (,∞) a sequence of regularization parameters.
(iii) The forward-backward splitting method, with iteration given by

yk ∈ (I – λkA)–xk ,

xk+ = (I + λkB)–yk ,

where {λk} ⊆ (,∞) a sequence of regularization parameters.
Convergence results for the scheme (i), in the case in which {ρk} is contained in a com-

pact subset of (, ), can be found in []; the convergence analysis of the double backward
scheme given by (ii), which can be found in [] and []; the standard convergence analysis
for (iii) one can see []. However, the convergence results are largely dependent on the
maximal monotonicity of A and B. It is therefore the aim of this paper to construct new
algorithms for problem P which ignore the conditions of the maximal monotonicity of A
and B.
The paper is organized as follows. In Section , we define the concept of the minimal

norm solution of the problem P (.). Using Tychonov regularization, we obtain a net of
solutions for someminimization problemapproximating suchminimal norm solution (see
Theorem .). In Section , we introduce an algorithm and prove the strong convergence
of the algorithm,more importantly, its limit is theminimum-norm solution of the problem
P (.) (see Theorem .). In Section , we introduce KM-CQ-like iterative algorithm
which converge strongly to a solution of the problem P (.) (see Theorem .).
Throughout the rest of this paper, I denotes the identity operator on Hilbert space H ,

Fix(T) the set of the fixed points of an operator T and ∇f the gradient of the functional
f :H → R. An operator T on a Hilbert space H is nonexpansive if, for each x and y in H ,
‖Tx – Ty‖ ≤ ‖x – y‖. T is said to be averaged, if there exist  < α <  and a nonexpansive
operator N such that T = ( – α)I + αN .
We know that the projection PC from H onto a nonempty closed convex subset C of H

is a typical example of a nonexpansive and averaged mapping, which is defined by

PC(w) = argmin
x∈C ‖x –w‖.

It is well known that PC(w) is characterized by the inequality

〈
w – PC(w),x – PC(w

〉 ≤ , ∀x ∈ C.

We now collect some elementary facts which will be used in the proofs of our main
results.

Lemma . [, ] Let X be a Banach space, C a closed convex subset of X, and T : C → C
a nonexpansive mapping with Fix(T) 
= ∅. If {xn} is a sequence in C weakly converging to x
and if {(I – T)xn} converges strongly to y, then (I – T)x = y.

Lemma . [] Let {sn} be a sequence of nonnegative real numbers, {αn} a sequence of real
numbers in [, ] with

∑∞
n= αn = ∞, {un} a sequence of nonnegative real numbers with
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∑∞
n= un < ∞, and {tn} a sequence of real numbers with lim supn tn ≤ . Suppose that

sn+ = ( – αn)sn + αntn + un, ∀n ∈N .

Then limn→∞ sn = .

Lemma . [] Let {wn}, {zn} be bounded sequences in a Banach space and let {βn} be a se-
quence in [, ]which satisfies the following condition:  < lim infn→∞ βn ≤ lim supn→∞ βn <
. Suppose that wn+ = (–βn)wn +βnzn and lim supn→∞ ‖zn+ – zn‖–‖wn+ –wn‖ ≤ , then
limn→∞ ‖zn –wn‖ = .

Lemma. [] Let f be a convex and differentiable functional and let C be a closed convex
subset of H . Then x ∈ C is a solution of the problem

min
x∈C f (x)

if and only if x ∈ C satisfies the following optimality condition:

〈∇f (x), v – x
〉 ≥ , ∀v ∈ C.

Moreover, if f is, in addition, strictly convex and coercive, then the minimization problem
has a unique solution.

Lemma . [] Let A and B be averaged operators and suppose that Fix(A) ∩ Fix(B) is
nonempty. Then Fix(A)∩ Fix(B) = Fix(AB) = Fix(BA).

2 Theminimum-norm solution of the problemP
In this section, we propose the concept of the minimal norm solution of P (.). Then,
using Tychonov regularization, we obtain the minimal norm solution by a net of solution
for some minimization problem.
We use � to denote the solution set of P , i.e.,

� = {x ∈H,Ax = –Bx,x ∈ C}

and assume consistency of P . Hence � is closed, convex, and nonempty.
Let H =H ×H,M = {(x,x),x ∈H} ⊆H , P be the linear operator from H ontoM, and

P has the matrix form

P =

[
I
I

]
,

that is to say, P(x) = (x,x), ∀x ∈H.
Define G : H → H by G((x, y)) = Ax + By, ∀(x, y) ∈ H. Then G has the matrix form

G = [A,B], and GP = A + B, PG∗GP = A∗A +A∗B + B∗A + B∗B.
The problem can now be reformulated as finding x ∈ C with GPx = , or solving the

following minimization problem:

min
x∈C f (x) =



‖GPx‖, (.)
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which is ill-posed. A classical way is the well-known Tychonov regularization, which ap-
proximates a solution of problem (.) by the unique minimizer of the regularized prob-
lem:

min
x∈C fα(x) =



‖GPx‖ + 


α‖x‖, (.)

where α >  is the regularization parameter. Denote by xα the unique solution of (.).

Proposition . For α > , the solution xα of (.) is uniquely defined. xα is characterized
by the inequality

〈
P∗G∗GPxα + αxα ,x – xα

〉 ≥ , ∀x ∈ C.

Proof Obviously, f (x) = 
‖GPx‖ is convex and differentiable with gradient ∇f (x) =

P∗G∗GPx. Recall that fα(x) = f (x) + 
α‖x‖, we see that fα is strictly convex and differ-

entiable with gradient

∇fα(x) = P∗G∗GPx + αx.

According Lemma ., xα is characterized by the inequality

〈
P∗G∗GPxα + αxα ,x – xα

〉 ≥ , ∀x ∈ C. (.)
�

Definition . An element x̃ ∈ � is said to be the minimal norm solution of SEP (.) if
‖x̃‖ = infx∈� ‖x‖.

The following proposition collects some useful properties of {xα} the unique solution of
(.).

Proposition . Let xα be given as the unique solution of (.). Then we have:
(i) ‖xα‖ is decreasing for α ∈ (,∞).
(ii) α �→ xα defines a continuous curve from (,∞) to H.

Proof Let α > β > , since xα and xβ are the unique minimizers of fα and fβ , respectively,
we get



‖GPxα‖ + 


α‖xα‖ ≤ 


‖GPxβ‖ + 


α‖xβ‖,



‖GPxβ‖ + 


β‖xβ‖ ≤ 


‖GPxα‖ + 


β‖xα‖.

It follows that ‖xα‖ ≤ ‖xβ‖. Thus ‖xα‖ is decreasing for α ∈ (,∞).
According to Proposition ., we get

〈
P∗G∗GPxα + αxα ,xβ – xα

〉 ≥ ,
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and

〈
P∗G∗GPxβ + βxβ ,xα – xβ

〉 ≥ .

It follows that

〈xα – xβ ,αxα – βxβ〉 ≤ 〈
xα – xβ ,P∗G∗GP(xβ – xα)

〉 ≤ .

Thus

α‖xα – xβ‖ ≤ (α – β)〈xα – xβ ,xβ〉.

It turns out that

‖xα – xβ‖ ≤ |α – β|
α

‖xβ‖.

Hence, α �→ xα is a continuous curve from (,∞) to H. �

Theorem . Let xα be the unique solution of (.). Then xα converges strongly to the
minimum-norm solution x̃ of P (.) with α → .

Proof For any  < α < ∞, xα is given as (.), we get



‖GPxα‖ + 


α‖xα‖ ≤ 


‖GPx̃‖ + 


α‖x̃‖.

Since x̃ ∈ � is a solution for P ,



‖GPxα‖ + 


α‖xα‖ ≤ 


α‖x̃‖.

It follows that ‖xα‖ ≤ ‖x̃‖ for all α > . Thus {xα} is a bounded net in H.
All we need to prove is that for any sequence {αn} such that αn → , {xαn} contains a

subsequence converging strongly to x̃. For convenience, we set xn = xαn .
In fact {xn} is bounded, by passing to a subsequence if necessary, we may assume that

{xn} converges weakly to a point x̂ ∈ S. Due to Proposition ., we get

〈
P∗G∗GPxn + αnxn, x̃ – xn

〉 ≥ .

It turns out that

〈GPxn,GPx̃ –GPxn〉 ≥ αn〈xn,xn – x̃〉.

Since x̃ ∈ �, it follows that

〈GPxn, –GPxn〉 ≥ αn〈xn,xn – x̃〉.

Noting that ‖xn‖ ≤ ‖x̃‖, we have

‖GPxn‖ ≤ αn‖x̃‖ → .

http://www.journalofinequalitiesandapplications.com/content/2014/1/349
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Moreover, note that {xn} converges weakly to a point x̂ ∈ C, thus {GPxn} converges
weakly to GPx̂. It follows that GPx̂ = , i.e. x̂ ∈ �.
Finally, we prove that x̂ = x̃ and this finishes the proof.
Recall that {xn} converges weakly to x̂ and ‖xn‖ ≤ ‖x̃‖, one can deduce that

‖x̂‖ ≤ lim inf
n

‖xn‖ ≤ ‖x̃‖ =min
{‖x‖ : x ∈ �

}
.

This shows that x̂ is also a point in � with minimum-norm. By the uniqueness of
minimum-norm element, we get x̂ = x̃. �

Finally, we will introduce another method to get the minimum-norm solution of the
problem P .

Lemma . Let T = I – γP∗G∗GP, where  < γ < /ρ(P∗G∗GP) with ρ(P∗G∗GP) being the
spectral radius of the self-adjoint operator P∗G∗GP on H. Then we have the following:
() ‖T‖ ≤  (i.e. T is nonexpansive) and averaged;
() Fix(T) = {x ∈H,Ax = –Bx}, Fix(PCT) = Fix(PC)∩ Fix(T) = �;
() x ∈ Fix(PCT) if and only if x is a solution of the variational inequality

〈P∗G∗GPx, v – x〉 ≥ , ∀v ∈ C.

Proof () It is easily proved that ‖T‖ ≤ , we only need to prove that T = I – γP∗G∗GP
is averaged. Indeed, choose  < β < , such that γ /( – β) < /ρ(P∗G∗GP), then T = I –
γP∗G∗GP = βI + ( – β)V , where V = I – γ /( – β)P∗G∗GP is a nonexpansive mapping.
That is to say T is averaged.
() If x ∈ {x ∈H,Ax = –Bx}, it is obviously that x ∈ Fix(T). Conversely, assume that x ∈

Fix(T), we have x = x–γP∗G∗GPx, hence γP∗G∗GPx =  then ‖GPx‖ = 〈P∗G∗GPx,x〉 = ,
we get x ∈ {x ∈H,Ax = –Bx}. We have Fix(T) = {x ∈H,Ax = –Bx}.
Now we prove Fix(PCT) = Fix(PC) ∩ Fix(T) = �. By Fix(T) = {x ∈ H,Ax = –Bx},

Fix(PC)∩ Fix(T) = � is obviously. On the other hand, since Fix(PC)∩ Fix(T) = � 
= ∅, and
both PC and T are averaged, from Lemma ., we have Fix(PCT) = Fix(PC)∩ Fix(T).
()

〈
P∗G∗GPx, v – x

〉 ≥ , ∀v ∈ C ⇔ 〈
x –

(
x – γP∗G∗GPx

)
, v – x

〉 ≥ , ∀v ∈ S

⇔ w = PC
(
w – γP∗G∗GPx

)
⇔ w ∈ Fix(PCT). �

Remark . Choose a constant γ satisfying that  < γ < /ρ(P∗G∗GP). For α ∈ (,
–γ ‖P∗G∗GP‖

γ ), we define a mapping

Wα(x) := PC
[
( – αγ )I – γP∗G∗GP

]
x.

It is clear thatWα is a contractive. Hence,Wα has a unique fixed point xα , we have

xα = PC
[
( – αγ )I – γP∗G∗GP

]
xα . (.)

Theorem . Let xα be given as (.). Then xα converges strongly to the minimum-norm
solution x̃ of the problem P (.) when α → .

http://www.journalofinequalitiesandapplications.com/content/2014/1/349
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Proof Choose x̌ ∈ �, noting that α ∈ (, –γ ‖P∗G∗GP‖
γ ), I – γ

(–αγ )P
∗G∗GP is nonexpansive,

it turns out that

‖xα – x̌‖ =
∥∥PC

[
( – αγ )I – γP∗G∗GP

]
xα – PC

[
x̌ – γP∗G∗GPx̌

]∥∥
≤ ∥∥[

( – αγ )I – γP∗G∗GP
]
xα –

[
x̌ – γP∗G∗GPx̌

]∥∥
=

∥∥∥∥( – αγ )
[
xα –

γ

 – αγ
P∗G∗GPxα

]

– ( – αγ )
[
x̌ –

γ

 – αγ
P∗G∗GPx̌

]
– αγ x̌

∥∥∥∥
≤ ( – αγ )

∥∥∥∥
(
xα –

γ

 – αγ
P∗G∗GPxα

)
–

(
x̌ –

γ

 – αγ
P∗G∗GPx̌

)∥∥∥∥ + αγ ‖x̌‖

≤ ( – αγ )‖xα – x̌‖ + αγ ‖x̌‖.

That is,

‖xα – x̌‖ ≤ ‖x̌‖.

Hence {xα} is bounded.
Taking into account of (.), we have

∥∥xα – PC
[
I – γP∗G∗GP

]
xα

∥∥ ≤ α‖γ xα‖ → .

We assert that {xα} is relatively norm compact as α → +. In fact, assume that {αn} ⊆
(, –γ ‖P∗G∗GP‖

γ ) and αn → + as n→ ∞. For convenience, we put xn := xαn , we get

∥∥xn – PC
[
I – γP∗G∗GP

]
xn

∥∥ ≤ αn‖γ xn‖ → .

Since PC is nonexpansive, one concludes that

‖xα – x̌‖ =
∥∥PC

[
( – αγ )I – γP∗G∗GP

]
xα – PC

[
x̌ – γP∗G∗GPx̌

]∥∥

≤ 〈[
( – αγ )I – γP∗G∗GP

]
xα –

[
x̌ – γP∗G∗GPx̌

]
,xα – x̌

〉
=

〈
( – αγ )

[
xα –

γ

 – αγ
P∗G∗GPxα

]

– ( – αγ )
[
x̌ –

γ

 – αγ
P∗G∗GPx̌

]
,xα – x̌

〉
– αγ 〈x̌,xα – x̌〉

≤ ( – αγ )‖xα – x̌‖ – αγ 〈x̌,xα – x̌〉.

That is ,

‖xα – x̌‖ ≤ 〈–x̌,xα – x̌〉.

Thus,

‖xn – x̌‖ ≤ 〈–x̌,xn – x̌〉, ∀x̌ ∈ �.

http://www.journalofinequalitiesandapplications.com/content/2014/1/349
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Due to {xn} is bounded, there exists a subsequence of {xn} which converges weakly to a
point x̃. Without loss of generality, wemay assume that {xn} converges weakly to x̃. Noting
that

∥∥xn – PC
[
I – γP∗G∗GP

]
xn

∥∥ ≤ αn‖γ xn‖ → ,

and applying Lemma ., we obtain x̃ ∈ Fix(PC[I – γP∗G∗GP]) = �.
Since

‖xn – x̌‖ ≤ 〈–x̌,xn – x̌〉, ∀x̌ ∈ �,

it concludes that

‖xn – x̃‖ ≤ 〈–x̃,xn – x̃〉.

Hence, if {xn} converges weakly to x̃, then {xn} converges strongly to x̃. That is to say {xα}
is relatively norm compact as α → +.
Moreover, again using

‖xn – x̌‖ ≤ 〈–x̌,xn – x̌〉, ∀x̌ ∈ �,

let n→ ∞, we have

‖x̃ – x̌‖ ≤ 〈–x̌, x̃ – x̌〉, ∀x̌ ∈ �.

This implies that

〈–x̌, x̌ – x̃〉 ≤ , ∀x̌ ∈ �.

This is equivalent to

〈–x̃, x̌ – x̃〉 ≤ , ∀x̌ ∈ �.

It turns out that x̃ ∈ PC(). Consequently, each cluster point of xα is equals x̃. Thus xα →
x̃(α → ) the minimum-norm solution of the problem P . �

3 Iterative algorithm for theminimum-norm solution of the problemP
In this section, we introduce the following algorithm and prove the strong convergence
of the algorithm, more importantly, its limit is the minimum-norm solution of the prob-
lem P .

Algorithm . For an arbitrary point x ∈ H the sequence {xn} is generated by the iter-
ative algorithm

xn+ = PC
{
( – αn)

[
I – γP∗G∗GP

]
xn

}
, (.)

where αn >  is a sequence in (, ) such that

http://www.journalofinequalitiesandapplications.com/content/2014/1/349
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(i) limn αn = ;
(ii)

∑∞
n= αn =∞;

(iii)
∑∞

n= |αn+ – αn| < ∞ or limn |αn+ – αn|/αn = .

Now, we prove the strong convergence of the iterative algorithm.

Theorem . The sequence {xn} generated by algorithm (.) converges strongly to the
minimum-norm solution x̃ of the problem P (.).

Proof Let Rn and R be defined by

Rnx := PC
{
( – αn)

[
I – γP∗G∗GP

]}
x = PC

[
( – αn)Tx

]
,

Rx := PC
(
I – γP∗G∗GP

)
x = PC(Tx),

where T = I – γP∗G∗GP, by Lemma . , it is easy to see that Rn is a contraction with
contractive constant  – αn. Algorithm (.) can be written as xn+ = Rnxn.
For any x̂ ∈ �, we have

‖Rnx̂ – x̂‖ =
∥∥PC

[
( – αn)Tx̂

]
– x̂

∥∥
=

∥∥PC
[
( – αn)Tx̂

]
– PS(Tx̂)

∥∥
≤ ∥∥( – αn)Tx̂ – Tx̂

∥∥
= αn‖Tx̂‖ ≤ αn‖x̂‖.

Hence,

‖xn+ – x̂‖ = ‖Rnxn – x̂‖ ≤ ‖Rnxn – Rnx̂‖ + ‖Rnx̂ – x̂‖
≤ ∥∥PC

[
( – αn)Tx̂

]
– PS(Tx̂)

∥∥
≤ ( – αn)‖xn – x̂‖ + αn‖x̂‖
≤ max

{‖xn – x̂‖,‖x̂‖}.
It follows that ‖xn – x̂‖ ≤max{‖x – x̂‖,‖x̂‖}. So {xn} is bounded.
Next we prove that limn ‖xn+ – xn‖ = .
Indeed,

‖xn+ – xn‖ = ‖Rnxn – Rn–xn–‖
≤ ‖Rnxn – Rnxn–‖ + ‖Rnxn– – Rn–xn–‖
≤ ( – αn)‖xn – xn–‖ + ‖Rnxn– – Rn–xn–‖.

Notice that

‖Rnxn– – Rn–xn–‖ =
∥∥PC

[
( – αn)Txn–

]
– PC

[
( – αn–)Txn–

]∥∥
≤ ∥∥( – αn)Txn– – ( – αn–)Txn–

∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/349
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= |αn – αn–|‖Txn–‖
≤ |αn – αn–|‖xn–‖.

Hence

‖xn+ – xn‖ ≤ ( – αn)‖xn – xn–‖ + |αn – αn–|‖xn–‖.

By virtue of the assumptions ()-() and Lemma ., we have

lim
n

‖xn+ – xn‖ = .

Therefore,

‖xn – Rxn‖ ≤ ‖xn+ – xn‖ + ‖Rnxn – Rxn‖
≤ ‖xn+ – xn‖ +

∥∥( – αn)Txn – Txn
∥∥

≤ ‖xn+ – xn‖ + αn‖xn‖ → .

By the demiclosedness principle ensures that each weak limit point of {xn} is a fixed
point of the nonexpansive mapping R = PCT , that is, a point of the solution set � of SEP
(.).
Finally, we will prove that limn ‖xn+ – x̃‖ = .
Choose  < β < , such that γ /( – β) < /ρ(P∗G∗GP), then T = I – γP∗G∗GP = βI + ( –

β)V , where V = I –γ /(–β)P∗G∗GP is a nonexpansive mapping. Taking z ∈ �, we deduce
that

‖xn+ – z‖ =
∥∥PC

[
( – αn)Txn

]
– z

∥∥

≤ ∥∥( – αn)Txn – z
∥∥

≤ ( – αn)‖Txn – z‖ + αn‖z‖

≤ ∥∥β(xn – z) + ( – β)(Vxn – z)
∥∥ + αn‖z‖

≤ β
∥∥(xn – z)

∥∥ + ( – β)
∥∥(Vxn – z)

∥∥ – β( – β)‖xn –Vxn‖ + αn‖z‖

≤ ∥∥(xn – z)
∥∥ – β( – β)‖xn –Vxn‖ + αn‖z‖.

Then

β( – β)‖xn –Vxn‖ ≤ ‖xn – z‖ – ‖xn+ – z‖ + αn‖z‖

≤ (‖xn – z‖ + ‖xn+ – z‖)(‖xn – z‖ – ‖xn+ – z‖)αn‖z‖

≤ (‖xn – z‖ + ‖xn+ – z‖)(‖xn – xn+‖
)
αn‖z‖ → .

Note that T = I – γP∗G∗GP = βI + ( – β)V , it follows that limn ‖Txn – xn‖ = .
Take a subsequence {xnk } of {xn} such that lim supn〈xn – x̃, –x̃〉 = limk〈xnk – x̃, –x̃〉.
By virtue of the boundedness of xn, we may further assume with no loss of generality

that xnk converges weakly to a point x̌. Since ‖Rxn – xn‖ → , using the demiclosedness
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principle, x̌ ∈ Fix(R) = Fix(PCT) = �. Noticing that x̃ is the projection of the origin onto �,
we get

lim sup
n

〈xn – x̃, –x̃〉 = lim
k

〈xnk – x̃, –x̃〉 = 〈x̌ – x̃, –x̃〉 ≤ .

Finally, we compute

‖xn+ – x̃‖ =
∥∥PC

[
( – αn)Txn

]
– x̃

∥∥

=
∥∥PC

[
( – αn)Txn

]
– PCTx̃

∥∥

≤ ∥∥( – αn)Txn – Tx̃
∥∥

=
∥∥( – αn)Txn – x̃

∥∥

=
∥∥( – αn)(Txn – x̃) + αn(–x̃)

∥∥

= ( – αn)
∥∥(Txn – x̃)

∥∥ + α
n‖x̃‖ + αn( – αn)〈Txn – x̃, –x̃〉

≤ ( – αn)
∥∥(Txn – x̃)

∥∥ + αn
[
αn‖x̃‖ + ( – αn)〈Txn – x̃, –x̃〉].

Since, lim supn〈xn – x̃, –x̃〉 ≤ , ‖xn – Txn‖ → , we know that lim supn(αn‖x̃‖ + ( –
αn)〈Txn – x̃, –x̃〉)≤ , by Lemma ., we conclude that limn ‖xn+ – x̃‖ = . This completes
the proof. �

4 KM-CQ-like iterative algorithm for the problemP
In this section, we establish a KM-CQ-like algorithm converges strongly to a solution of
the problem P .

Algorithm. For an arbitrary initial point x, sequence {xn} is generated by the iteration:

xn+ = ( – βn)xn + βnPC
[
( – αn)

(
I – γP∗G∗GP

)]
xn, (.)

where αn >  is a sequence in (, ) such that
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii) limn→∞ |αn+ – αn| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Lemma . If z ∈ Fix(T) = Fix(I – γP∗G∗GP), then for any x we have ‖Tx – z‖ ≤ ‖x –
z‖ – β( – β)‖Vx – x‖, where β and V are the same in Lemma .().

Proof By Lemma .(), we know that T = βI + ( – β)V , where  < β <  and V is a non-
expansive. It is clear that z ∈ Fix(T) = Fix(V ), and

‖Tx – z‖ =
∥∥βx + ( – β)Vx – z

∥∥

≤ β‖x – z‖ + ( – β)‖Vx – z‖ – β( – β)‖Vx – x‖

≤ β‖x – z‖ + ( – β)‖x – z‖ – β( – β)‖Vx – x‖

= ‖x – z‖ – β( – β)‖Vx – x‖. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/349


Shi et al. Journal of Inequalities and Applications 2014, 2014:349 Page 12 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/349

Theorem . The sequence {xn} generated by algorithm (.) converges strongly to a solu-
tion of the problem P .

Proof For any solution x̂ of the problem P , according to Lemma ., x̂ ∈ Fix(PCT) =
Fix(PC)∩ Fix(T), where T = I – γP∗G∗GP, and

‖xn+ – x̂‖ =
∥∥( – βn)xn + βnPC

[
( – αn)T

]
xn – x̂

∥∥
=

∥∥( – βn)(xn – x̂) + βn
(
PC

[
( – αn)T

]
xn – x̂

)∥∥
≤ ( – βn)‖xn – x̂‖ + βn

∥∥PC
[
( – αn)T

]
xn – x̂

∥∥
≤ ( – βn)‖xn – x̂‖
+βn

∥∥PC
[
( – αn)T

]
xn – PC

[
( – αn)T

]
x̂
∥∥

+βn
∥∥PC

[
( – αn)T

]
x̂ – x̂

∥∥
≤ ( – βn)‖xn – x̂‖ + βn( – αn)‖xn – x̂‖ + βnαn‖x̂‖
= ( – βnαn)‖xn – x̂‖ + βnαn‖x̂‖
≤ max

{‖xn – x̂‖,‖x̂‖}.
One can deduce that

‖xn – x̂‖ ≤max
{‖x – x̂‖,‖x̂‖}.

Hence, {xn} is bounded and so is {Txn}. Moreover,

∥∥PC
[
( – αn)T

]
xn – x̂

∥∥ ≤ ∥∥( – αn)Txn – x̂
∥∥

=
∥∥( – αn)[Txn – x̂] – αnx̂

∥∥
≤ ( – αn)‖xn – x̂‖ + αn‖x̂‖
≤ max

{‖xn – x̂‖,‖x̂‖}.
Since {xn} is bounded, we see that {Txn}, ( – αn)Txn, and {PC[( – αn)T]xn} are also
bounded.
Let zn = PC[( – αn)T]xn, andM >  such thatM = supn≥{Txn}. Noting that

∥∥PC
[
( – αn+)T

]
xn – PC

[
( – αn)T

]
xn

∥∥ ≤ ∥∥( – αn+)Txn – ( – αn)Txn
∥∥

=
∥∥(αn – αn+)Txn

∥∥
≤ M|αn – αn+|.

One concludes that

‖zn+ – zn‖ =
∥∥PC

[
( – αn+)T

]
xn+ – PC

[
( – αn)T

]
xn

∥∥
≤ ∥∥PC

[
( – αn+)T

]
xn+ – PC

[
( – αn+)T

]
xn

∥∥
+

∥∥PC
[
( – αn+)T

]
xn – PC

[
( – αn)T

]
xn

∥∥
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≤ ( – αn+)‖xn+ – xn‖ +
∥∥PC

[
( – αn+)T

]
xn – PC

[
( – αn)T

]
xn

∥∥
≤ ( – αn+)‖xn+ – xn‖ +M|αn – αn+|.

Since  < αn <  and limn→∞ |αn+ – αn| = , we have

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤M|αn – αn+|,

and

lim sup
n→∞

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤ .

Applying Lemma ., we get

lim
n→∞

∥∥PC
[
( – αn)T

]
xn – xn

∥∥ = lim
n→∞‖zn – xn‖ = .

Hence,

‖xn+ – xn‖ =
∥∥( – βn)xn + βnPC

[
( – αn)T

]
xn – xn

∥∥
= βn

∥∥PC
[
( – αn)T

]
xn – xn

∥∥ → .

Let Rn and R be defined by

Rnx := PC
{
( – αn)

[
I – γP∗G∗GP

]}
x = PC

[
( – αn)Tx

]
,

Rx := PC
(
I – γP∗G∗GP

)
x = PC(Tx).

Noting that

‖xn – Rxn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Rxn‖
= ‖xn – xn+‖ +

∥∥( – βn)xn + βnRnxn – Rxn
∥∥

≤ ‖xn – xn+‖ + ( – βn)‖xn – Rxn‖ + βn‖Rnxn – Rxn‖.

So, we have

‖xn – Rxn‖ ≤ ‖xn – xn+‖/βn + ‖Rnxn – Rxn‖
= ‖xn – xn+‖/βn +

∥∥PC
[
( – αn)T

]
xn – PCTxn

∥∥
≤ ‖xn – xn+‖/βn +

∥∥( – αn)Txn – Txn
∥∥

≤ ‖xn – xn+‖/βn +Mαn.

By assumption, we have

lim
n→∞‖xn – Rxn‖ = .

Furthermore, {xn} is bounded, there exists a subsequence of {xn}which convergesweakly
to a point x̌. Without loss of generality, we may assume that {xn} converges weakly to x̌.
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Since ‖Rxn – xn‖ → , using the demiclosedness principle we know that x̌ ∈ Fix(R) =
Fix(PCT) = Fix(PC)∩ Fix(T) = �.
Finally, we will prove that limn ‖xn+ – x̌‖ = . In fact,

‖xn+ – x̌‖ =
∥∥( – βn)xn + βnPC

[
( – αn)T

]
xn – PCTx̌

∥∥

≤ ( – βn)‖xn – x̌‖ + βn
∥∥PC

[
( – αn)T

]
xn – PCTx̌

∥∥

≤ ( – βn)‖xn – x̌‖ + βn
∥∥( – αn)Txn – x̌

∥∥

= ( – βn)‖xn – x̌‖ + βn
∥∥( – αn)(Txn – x̌) + αnx̌

∥∥

= ( – βn)‖xn – x̌‖ + βn
[
( – αn)‖Txn – x̌‖ + α

n‖x̌‖

+ αn( – αn)〈Txn – x̌, –x̌〉]
≤ ( – βn)‖xn – x̌‖ + βn

[
( – αn)‖xn – x̌‖ + α

n‖x̌‖

+ αn( – αn)〈Txn – x̌, –x̌〉]
= ( – αnβn)‖xn – x̌‖ + αnβn

[
( – αn)〈Txn – x̌, –x̌〉 + αn‖x̌‖

]
.

Using Lemma ., we only need to prove that

lim sup
n→∞

〈Txn – x̌, –x̌〉 ≤ .

Applying Lemma ., T is averaged, that is T = βI + ( – β)V , where  < β <  and V is
nonexpansive. Hence, for z ∈ Fix(PCT), we have

‖xn+ – z‖ =
∥∥( – βn)xn + βnPC

[
( – αn)T

]
xn – z

∥∥

≤ ( – βn)‖xn – z‖ + βn
∥∥( – αn)Txn – z

∥∥

= ( – βn)‖xn – z‖ + βn
∥∥( – αn)(Txn – z) – αnz

∥∥

≤ ( – βn)‖xn – z‖ + βn
[
( – αn)‖Txn – z‖ + αn‖z‖

]
≤ ( – βn)‖xn – z‖ + βn

[‖Txn – z‖ + αn‖z‖
]
.

By Lemma ., we have

‖xn+ – z‖ ≤ ( – βn)‖xn – z‖

+ βn
[‖xn – z‖ – β( – β)‖Vxn – xn‖ + αn‖z‖

]
≤ ‖xn – z‖ – βnβ( – β)‖Vxn – xn‖ + βnαn‖z‖.

Let N >  such that ‖xn – z‖ ≤N for all n, then it concludes that

βnβ( – β)‖Vxn – xn‖ ≤ ‖xn – z‖ – ‖xn+ – z‖ + βnαn‖z‖

≤ N
∣∣‖xn – z‖ – ‖xn+ – z‖∣∣ + βnαn‖z‖

≤ N‖xn – xn+‖ + βnαn‖z‖.
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Hence,

β( – β)‖Vxn – xn‖ ≤ N‖xn – xn+‖
βn

+ αn‖z‖.

Since ‖xn – xn+‖ → , we get

‖Vxn – xn‖ → .

Therefore,

‖Txn – xn‖ → .

It follows that

lim sup
n→∞

〈Txn – x̌, –x̌〉 = lim sup
n→∞

〈xn – x̌, –x̌〉.

Since {xn} converges weakly to x̌, it follows that

lim sup
n→∞

〈Txn – x̌, –x̌〉 ≤ . �

Similar to the proof of Theorem ., we can get the result that the following iterative
algorithm converges strongly to a solution of the problemP also. Since the proof is similar
to Theorem ., we omit it.

Algorithm . For an arbitrary initial point x, sequence {xn} is generated by the itera-
tion:

xn+ = ( – βn)( – αn)
(
I – γP∗G∗GP

)
xn + βnPC

[
( – αn)

(
I – γP∗G∗GP

)]
xn, (.)

where αn >  is a sequence in (, ) such that
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii) limn→∞ |αn+ – αn| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
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