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Abstract
The aim of this paper is to establish certain new fixed point results for multi-valued as
well as single-valued maps satisfying an α-ψ -contractive conditions in complete
metric space. As an application, we derive some new fixed point theorems for
ψ -graphic contractions defined on a metric space endowed with a graph as well as
an ordered metric space. The presented results complement and extend some very
recent results proved by Asl et al. (Fixed Point Theory Appl. 2012:212, 2012) and Samet
et al. (Nonlinear Anal. 75:2154-2165, 2012) as well as other theorems given by Hussain
et al. (Fixed Point Theory Appl. 2013:212, 2013). Some comparative examples are
constructed which illustrate the superiority of our results to the existing ones in the
literature.
MSC: 46S40; 47H10; 54H25
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1 Introduction
Inmetric fixed point theory the contractive conditions onunderlying functions play an im-
portant role for finding solutions of fixed point problems. The Banach contraction princi-
ple [] is a fundamental result in metric fixed point theory. Over the years, it has been gen-
eralized in different directions by several mathematicians (see [–]). In particular, there
has been a number of studies involving altering distance functions which alter the distance
between two points in ametric space. In , Samet et al. [] introduced the concepts of
α-ψ-contractive and α-admissiblemappings and established various fixed point theorems
for such mappings in complete metric spaces.
Denote with � the family of nondecreasing functions ψ : [, +∞) → [, +∞) such that∑∞
n= ψ

n(t) < +∞ for all t > , where ψn is the nth iterate of ψ .
The following lemma is well known.

Lemma  If ψ ∈ � , then the following hold:
(i) (ψn(t))n∈N converges to  as n→ ∞ for all t ∈ (, +∞);
(ii) ψ(t) < t for all t > ;
(iii) ψ(t) =  iff t = .

Samet et al. [] defined the notion of α-admissible mappings as follows.
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Definition  Let T be a self-mapping on X and α : X × X → [, +∞) be a function. We
say that T is a α-admissible mapping if

x, y ∈ X, α(x, y)≥  �⇒ α(Tx,Ty)≥ .

Theorem  [] Let (X,d) be a complete metric space and T be α-admissible mapping.
Assume that

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ X, where ψ ∈ � . Also, suppose that
(i) there exists x ∈ X such that α(x,Tx) ≥ ;
(ii) either T is continuous or for any sequence {xn} in X with α(xn,xn+) ≥  for all n ∈N

and xn → x as n→ +∞, we have α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Afterwards, Asl et al. [] generalized these notions by introducing the concepts of α∗-
ψ-contractivemultifunctions, and of α∗-admissibility, and they obtained some fixed point
results for these multifunctions.

Definition  [] Let (X,d) be a metric space, T : X → X be a given closed-valued mul-
tifunction. We say that T is called α∗-ψ-contractive multifunction if there exist two func-
tions α : X ×X → [, +∞) and ψ ∈ � such that

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X, where H is the Hausdorff generalized metric, α∗(A,B) = inf{α(a,b) : a ∈
A,b ∈ B} and X denotes the family of all nonempty subsets of X.

Definition  [] Let (X,d) be a metric space, T : X → X be a given closed-valued mul-
tifunction and α : X × X → [, +∞). We say that T is called α∗-admissible whenever
α(x, y)≥  implies that α∗(Tx,Ty)≥ .

Very recently Hussain et al. [] modified the notions of α∗-admissible and α∗-ψ-
contractive mappings as follows:

Definition  Let T : X → X be a multifunction, α,η : X × X → R+ be two functions
where η is bounded. We say that T is α∗-admissible mapping with respect to η if

α(x, y)≥ η(x, y) implies α∗(Tx,Ty) ≥ η∗(Tx,Ty), x, y ∈ X,

where

α∗(A,B) = inf
x∈A,y∈B

α(x, y) and η∗(A,B) = sup
x∈A,y∈B

η(x, y).

If η(x, y) =  for all x, y ∈ X, then this definition reduces to Definition . In the case
α(x, y) =  for all x, y ∈ X, T is called η∗-subadmissible mapping.
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Hussain et al. [] proved following generalization of the above mentioned results of
[].

Theorem  Let (X,d) be a complete metric space and T : X → X be a α∗-admissible with
respect to η and the closed-valued multifunction on X. Assume that for ψ ∈ � ,

∀x, y ∈ X, α∗(Tx,Ty) ≥ η∗(Tx,Ty) �⇒ H(Tx,Ty) ≤ ψ
(
d(x, y)

)
. (.)

Also suppose that the following assertions hold:
(i) there exist x ∈ X and x ∈ Tx such that α(x,x)≥ η(x,x);
(ii) for a sequence {xn} ⊂ X converging to x ∈ X and α(xn,xn+) ≥ η(xn,xn+) for all

n ∈N, we have α(xn,x)≥ η(xn,x) for all n ∈N.
Then T has a fixed point.

For more details on α-ψ-contractions and fixed point theory, we refer the reader to [,
, , , , , , –].
The aim of this paper is to unify the concepts of α-ψ-contractive type mappings and

establish some new fixed point theorems in complete metric spaces for such mappings.
Let (X,d) be a complete metric space, x ∈ X and r > . We denote by B(x, r) = {x ∈ X :

d(x,x) < r} the open ball with center x and radius r and by B(x, r) = {x ∈ X : d(x,x)≤ r}
the closed ball with center x and radius r.
The following lemmas of Nadler will be needed in the sequel.

Lemma  [] Let A and B be nonempty, closed and bounded subsets of a metric space
(X,d) and  < h ∈R.Then, for every b ∈ B, there exists a ∈ A such that d(a,b)≤H(A,B)+h.

Lemma [] Let (X,d) be ametric space and B be nonempty, closed subsets of X and q > .
Then, for each x ∈ X with d(x,B) >  and q > , there exists b ∈ B such that d(x,b) < qd(x,B).

2 Main result
The following result, regarding the existence of the fixed point of the mapping satisfying
an α-ψ-contractive condition on the closed ball, is very useful in the sense that it requires
the contractiveness of the mapping only on the closed ball instead of the whole space.

Theorem  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � ,

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ
(
d(x, y)

)
(.)

for all x, y ∈ B(x, r) and for x ∈ X, there exists x ∈ Tx such that

n∑
i=

ψ i(d(x,x)) < r (.)

for all n ∈N and r > . Also suppose that the following assertions hold:
(i) α(x,x) ≥  for x ∈ X and x ∈ Tx;
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(ii) for a sequence {xn} in B(x, r) converging to x ∈ B(x, r) and α(xn,xn+)≥  for all
n ∈N, we have α(xn,x)≥  for all n ∈ N.

Then T has a fixed point.

Proof Since α(x,x) ≥  and T is α∗-admissible, so α∗(Tx,Tx)≥ . From (.), we get

d(x,x) <
n∑
i=

ψ i(d(x,x)) < r.

It follows that

x ∈ B(x, r).

If x = x, then

α∗(Tx,Tx)H(Tx,Tx) ≤ ψ
(
d(x,x)

)
= 

implies that

Tx = Tx,

and we have finished. Assume that x �= x. By Lemmas  and , we take x ∈ Tx and h > 
as h =ψ(d(x,x)). Then

 < d(x,x) ≤H(Tx,Tx) + h

≤ ψ
(
d(x,x)

)
+ψ(d(x,x))

=
∑
i=

ψ i(d(x,x)).
Note that x ∈ B(x, r), since

d(x,x) ≤ d(x,x) + d(x,x)

≤ d(x,x) +ψ
(
d(x,x)

)
+ψ(d(x,x))

=
∑
i=

ψ i(d(x,x)) < r.

By repeating this process, we can construct a sequence xn of points in B(x, r) such that
xn+ ∈ Txn, xn �= xn–, α(xn,xn+) ≥  with

d(xn,xn+) ≤
n+∑
i=

ψ i(d(x,x)). (.)

Now, for each n,m ∈N withm > n using the triangular inequality, we obtain

d(xn,xm)≤
m–∑
k=n

d(xk ,xk+) ≤
m∑
k=n

ψk(d(x,x)). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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Thus we proved that {xn} is a Cauchy sequence. Since B(x, r) is closed. So there exists
x∗ ∈ B(x, r) such that xn → x∗ as n→ ∞. Now we prove that x∗ ∈ Tx∗. Since α(xn,x∗) ≥ 
for all n and T is α∗-admissible with respect to η, so α∗(Txn,Tx∗) ≥  for all n. Then

d
(
x∗,Tx∗) ≤ α∗

(
Txn,Tx∗)H(

Txn,Tx∗) + d
(
xn,x∗)

≤ ψ
(
d
(
xn,x∗)) + d

(
xn,x∗)

≤ ψ
(
d
(
xn,x∗)) + d

(
xn,x∗). (.)

Taking the limit as n→ ∞ in (.), we get d(x∗,Tx∗) = . Thus x∗ ∈ Tx∗. �

Example  Let X = [,∞) and d(x, y) = |x–y|. Define themulti-valuedmapping T : X →
X by

Tx =

{
[, x ] if x ∈ [, ],
[ x ,

x
 ] if x ∈ (,∞).

Considering, x = 
 and x = 

 , r =

 , then B(x, r) = [, ] and

α(x, y) =

{
 if x, y ∈ [, ],

 otherwise.

Clearly T is an α-ψ-contractive mapping with ψ(t) = t
 . Now

d(x,x) =


,

n∑
i=

ψn(d(x,x)) = 


n∑
i=


n

< 
(



)
=


= r.

We prove that all the conditions of our Theorem  are satisfied only for x, y ∈ B(x, r).
Without loss of generality, we suppose that x ≤ y. The contractive condition of theorem is
trivial for the case when x = y. So we suppose that x < y. Then

α∗(Tx,Ty)H(Tx,Ty) =


|y – x| =ψ

(
d(x, y)

)
.

Put x = 
 and x = 

 . Then α(x,x) ≥ . Then T has a fixed point .
Now we prove that the contractive condition is not satisfied for x, y /∈ B(x, r). We sup-

pose x = 
 and y = , then

α∗(Tx,Ty)H(Tx,Ty) =



≥ 

=ψ

(
d(x, y)

)
.

Similarly we can deduce the following corollaries.

Corollary  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � , we have

(
α∗(Tx,Ty) + 

)H(Tx,Ty) ≤ ψ(d(x,y)) (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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for all x, y ∈ B(x, r) and for x ∈ X, there exists x ∈ Tx such that

n∑
i=

ψ i(d(x,x)) < r

for all n ∈N and r > . Also suppose that the following assertions hold:
(i) α(x,x) ≥  for x ∈ X and x ∈ Tx;
(ii) for a sequence {xn} in B(x, r) converging to x ∈ B(x, r) and α(xn,xn+)≥  for all

n ∈N, we have α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Corollary  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � , we have

(
H(Tx,Ty) + l

)α∗(Tx,Ty) ≤ ψ
(
d(x, y)

)
+ l

for all x, y ∈ B(x, r) and l >  and for x ∈ X, there exists x ∈ Tx such that

n∑
i=

ψ i(d(x,x)) < r

for all n ∈N and r > . Also suppose that the following assertions hold:
(i) α(x,x) ≥  for x ∈ X and x ∈ Tx;
(ii) for a sequence {xn} in B(x, r) converging to x ∈ B(x, r) and α(xn,xn+)≥  for all

n ∈N, we have α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Theorem  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � , we have

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

})
(.)

for all x, y ∈ X. Also suppose that the following assertions hold:
(i) there exist x ∈ X and x ∈ Tx with α(x,x) ≥ ;
(ii) for a sequence {xn} in X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Proof Since α(x,x) ≥  and T is α∗-admissible, so α∗(Tx,Tx) ≥ . If x = x, then we
have nothing to prove. Let x �= x. If x ∈ Tx, then x is a fixed point of T . Assume that
x /∈ Tx, then from (.), we get

 < d(x,Tx)

≤ H(Tx,Tx)

≤ ψ

(
max

{
d(x,x),d(x,Tx),d(x,Tx),

d(x,Tx)d(x,Tx)
 + d(x,x)

})

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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≤ ψ

(
max

{
d(x,x),d(x,x),d(x,Tx),

d(x,x)d(x,Tx)
 + d(x,x)

})

= ψ
(
max

{
d(x,x),d(x,Tx)

})
.

Ifmax{d(x,Tx),d(x,x)} = d(x,Tx), then d(x,Tx) ≤ ψ(d(x,Tx)). Sinceψ(t) < t for all
t > . Then we get a contradiction. Hence, we obtain max{d(x,Tx),d(x,x)} = d(x,x).
So

d(x,Tx)≤ ψ
(
d(x,x)

)
.

Let q > , then from Lemma  we take x ∈ Tx such that

d(x,x) < qd(x,Tx) ≤ qψ
(
d(x,x)

)
. (.)

It is clear that x �= x. Put q = ψ(qψ(d(x,x)))
ψ(d(x,x))

. Then q >  and α(x,x) ≥ . Since T is
α∗-admissible, so α∗(Tx,Tx) ≥ . If x ∈ Tx, then x is fixed point of T . Assume that
x /∈ Tx. Then from (.), we get

 < d(x,Tx) ≤ α∗(Tx,Tx)H(Tx,Tx)

≤ ψ

(
max

{
d(x,x),d(x,Tx),d(x,Tx),

d(x,Tx)d(x,Tx)
 + d(x,x)

})

≤ ψ

(
max

{
d(x,x),d(x,x),d(x,Tx),

d(x,x)d(x,Tx)
 + d(x,x)

})

= ψ
(
max

{
d(x,x),d(x,Tx)

})
.

If max{d(x,Tx),d(x,x)} = d(x,Tx), we get contradiction to the fact d(x,Tx) <
d(x,Tx). Hence we obtain

max
{
d(x,Tx),d(x,x)

}
= d(x,x).

So d(x,Tx) ≤ ψ(d(x,x)). Since q > , so by Lemma  we can find x ∈ Tx such that

d(x,x) < qd(x,Tx)≤ qψ
(
d(x,x)

)
,

d(x,x) < qψ
(
d(x,x)

) ≤ qψ
(
d(x,x)

)
=ψ

(
qψ

(
d(x,x)

))
. (.)

It is clear that x �= x. Put q = ψ(qψ(d(x,x)))
ψ(d(x,x))

. Then q >  and α(x,x) ≥ . Since T is
α∗-admissible, so α∗(Tx,Tx) ≥ . If x ∈ Tx, then x is fixed point of T . Assume that
x /∈ Tx. From (.), we have

 < d(x,Tx) ≤ α∗(Tx,Tx)H(Tx,Tx)

≤ ψ

(
max

{
d(x,x),d(x,Tx),d(x,Tx)

d(x,Tx)d(x,Tx)
 + d(x,x)

})

≤ ψ

(
max

{
d(x,x),d(x,x),d(x,Tx)

d(x,x)d(x,Tx)
 + d(x,x)

})

= ψ
(
max

{
d(x,x),d(x,Tx)

})
.
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If max{d(x,Tx),d(x,x)} = d(x,Tx). Then we get a contradiction. So max{d(x,Tx),
d(x,x)} = d(x,x). Thus

d(x,Tx)≤ ψ
(
d(x,x)

)
.

Since q > , so by Lemma  we can find x ∈ Tx such that

d(x,x) < qd(x,Tx) ≤ qψ
(
d(x,x)

)
=ψ(qψ(

d(x,x)
))
. (.)

Continuing in this way, we can generate a sequence {xn} in X such that xn ∈ Txn– and
xn �= xn–, and

d(xn,xn+) ≤ ψn–(qψ(
d(x,x)

))
(.)

for all n. Now, for eachm > n, we have

d(xn,xm)≤
m–∑
i=n

d(xi,xi+) ≤
m–∑
i=n

ψ i–(qψ(
d(x,x)

))
.

This implies that {xn} is a Cauchy sequence in X. Since X is complete, there exists x∗ ∈ X
such that xn −→ x∗ as n −→ ∞. We now show that x∗ ∈ Tx∗. Since α(xn,x∗) ≥  for all n
and T is α∗-admissible, so α∗(Txn,Tx∗) ≥  for all n. Then

d
(
x∗,Tx∗) ≤ α∗

(
Txn,Tx∗)H(

Tx∗,Txn
)
+ d

(
xn,x∗)

≤ ψ

(
max

{
d
(
xn,x∗),d(xn,Txn),d(

x∗,Tx∗), d(xn,Txn)d(x∗,Tx∗)
 + d(xn,x∗)

})

+ d
(
xn,x∗)

≤ ψ

(
max

{
d
(
xn,x∗),d(xn,xn+),d(

x∗,Tx∗), d(xn,xn+)d(x∗,Tx∗)
 + d(xn,x∗)

})

+ d
(
xn,x∗),

and taking the limit as n → ∞, we get d(x∗,Tx∗) = . Thus x∗ ∈ Tx∗. �

Example  Let X = [, ] and d(x, y) = |x – y|. Define T : X → X by Tx = [, x
 ] for all

x ∈ X and

α(x, y) =

{


|x–y| if x �= y,
 if x = y.

Then α(x, y) ≥  �⇒ α∗(Tx,Ty) = inf{α(a,b) : a ∈ Tx,b ∈ Ty} ≥ . Then clearly T is α∗-
admissible. Now, for x, y and x≤ y, it is easy to check that

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

})
,

where ψ(t) = t
 , for all t ≥ . Put x =  and x = 

 . Then α(x,x) =  > . Then T has fixed
point .

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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Corollary  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � , we have

(
α∗(Tx,Ty) + 

)H(Tx,Ty) ≤ ψ(R(x,y)),

where

R(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

}

for all x, y ∈ X. Also suppose that the following assertions hold:
(i) α(x,x) ≥  for x ∈ X and x ∈ Tx;
(ii) for a sequence {xn} in X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Corollary  Let (X,d) be a complete metric space and T : X → X be an α∗-admissible
and closed-valued multifunction on X. Assume that for ψ ∈ � , we have

(
H(Tx,Ty) + l

)α∗(Tx,Ty) ≤ ψ
(
R(x, y)

)
+ l,

where

R(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

}

for all x, y ∈ X and l > . Also suppose that the following assertions hold:
(i) α(x,x) ≥  for x ∈ X and x ∈ Tx;
(ii) for a sequence {xn} in X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

If T is single-valued in Theorem , we obtain the following fixed point results.

Theorem  Let (X,d) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that for ψ ∈ � , we have

α(Tx,Ty)d(Tx,Ty)≤ ψ

(
max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

})
(.)

for all x, y ∈ X. Also suppose that the following assertions hold:
(i) there exists x ∈ X with α(x,Tx) ≥ ;
(ii) for a sequence {xn} in X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Corollary  Let (X,d) be a complete metric space and T : X → X be an α-admissible
mapping. Assume that for ψ ∈ � , we have

(
α(Tx,Ty) + 

)d(Tx,Ty) ≤ ψ(R(x,y)),

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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where

R(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

}

for all x, y ∈ X. Also suppose that the following assertions hold:
(i) α(x,Tx) ≥  for some x ∈ X ;
(ii) for a sequence {xn} in X converging to x ∈ X and α(xn,xn+) ≥  for all n ∈N, we have

α(xn,x)≥  for all n ∈ N.
Then T has a fixed point.

Now, we give the following result about a fixed point of self-maps on complete metric
spaces.

Theorem  Let (X,d) be a complete metric space, α : X × X → [, +∞) be a mapping,
ψ ∈ � and T be a self-mapping on X such that

α(x, y)d(Tx,Ty)≤
{

ψ(max{ d(x,Tx)d(y,Ty)d(x,y) ,d(x, y)}) for x �= y,
 for x = y,

(.)

for all x, y ∈ X. Suppose that T is α-admissible and there exist x ∈ X and x ∈ Tx with
α(x,Tx) ≥ . If T is continuous. Then T has a unique fixed point.

Proof Take x ∈ X such that α(x,Tx) ≥ , and define the sequence {xn} inX by xn+ = Txn
for all n≥ . If xn = xn+ for some n, then x∗ = xn is a fixed point ofT . Assume that xn �= xn+
for all n. Since T is α-admissible, so it is easy to check that α(xn,xn+) ≥  for all natural
numbers n. Thus for each natural number n, we have

d(xn+,xn) = d(Txn,Txn–)

≤ α(xn,xn–)d(Txn,Txn–)

≤ ψ

(
max

{
d(xn,Txn)d(xn–,Txn–)

d(xn,xn–)
,d(xn,xn–)

})

≤ ψ

(
max

{
d(xn,xn+)d(xn–,xn)

d(xn,xn–)
,d(xn,xn–)

})

≤ ψ
(
max

{
d(xn,xn+),d(xn,xn–)

})
.

If max{d(xn,xn+),d(xn,xn–)} = d(xn,xn+), then d(xn+,xn) ≤ ψ(d(xn+,xn)) a contradic-
tion. So we get d(xn+,xn) ≤ ψ(d(xn,xn–)). Since ψ is nondecreasing, so we have

d(xn+,xn) ≤ ψ
(
d(xn,xn–)

) ≤ ψ(d(xn–,xn–)) ≤ · · · ≤ ψn(d(x,x)) (.)

for all n. It is easy to check that {xn} is a Cauchy sequence. Since X is complete, so there
exists x∗ ∈ X such that xn → x∗. Further the continuity of T implies that

Tx∗ = T
(
lim
n→∞xn

)
= lim

n→∞T(xn) = x∗. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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Therefore x∗ is a fixed point of T in X. Now, if there exists another point u �= x∗ in X such
that Tu = u, then

d
(
x∗,u

)
= d

(
Tx∗,Tu

) ≤ α
(
x∗,u

)
d
(
Tx∗,Tu

)
≤ ψ

(
max

{
d(x∗,Tx∗)d(u,Tu)

d(x∗,u)
,d

(
x∗,u

)})

≤ ψ
(
max

{
,d

(
x∗,u

)})
=ψ

(
d
(
x∗,u

))
,

a contradiction. Hence x∗ is a unique fixed point of T in X. �

Example  Let X = [,∞) and d(x, y) = |x– y|. Define T : X → X by Tx = x+  whenever
x, y ∈ [, ], Tx = 

 whenever x, y ∈ (, ) and Tx = x + x +  whenever x ∈ [,∞). Also
define the mappings ψ : [,∞)→ [,∞) by ψ(t) = t

 and

α(x, y) =

{
 if x, y ∈ (, ),
 otherwise.

By a routine calculation one can easily show that

α(x, y)d(Tx,Ty)≤ ψ

(
max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

})

for all x, y ∈ X and 
 is unique fixed point of the mapping T .

3 Fixed point results for graphic contractions
Consistent with Jachymski [], let (X,d) be a metric space and � denote the diagonal of
the Cartesian product X × X. Consider a directed graph G such that the set V (G) of its
vertices coincides with X, and the set E(G) of its edges contains all loops, i.e., E(G)⊇ �.
We assumeG has no parallel edges, so we can identifyGwith the pair (V (G),E(G)). More-
over, we may treat G as a weighted graph (see []) by assigning to each edge the distance
between its vertices. If x and y are vertices in a graph G, then a path in G from x to y
of length N (N ∈ N) is a sequence {xi}Ni= of N +  vertices such that x = x, xN = y and
(xn–,xn) ∈ E(G) for i = , . . . ,N . A graph G is connected if there is a path between any two
vertices. G is weakly connected if G̃ is connected (see for details [, , , ]).

Definition  [] We say that a mapping T : X → X is a BanachG-contraction or simply
G-contraction if T preserves edges of G, i.e.,

∀x, y ∈ X
(
(x, y) ∈ E(G) ⇒ (

T(x),T(y)
) ∈ E(G)

)
and T decreases weights of edges of G in the following way:

∃k ∈ [, ),∀x, y ∈ X
(
(x, y) ∈ E(G) ⇒ d

(
T(x),T(y)

) ≤ kd(x, y)
)

Definition  [] A mapping T : X → X is called G-continuous, if given x ∈ X and the
sequence {xn}

xn → x as n→ ∞ and (xn,xn+) ∈ E(G) for all n ∈ N imply Txn → Tx.

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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Theorem  Let (X,d) be a complete metric space endowed with a graph G and T be a
self-mapping on X. Suppose the following assertions hold:

(i) ∀x, y ∈ X , (x, y) ∈ E(G)⇒ (T(x),T(y)) ∈ E(G);
(ii) there exists x ∈ X such that (x,Tx) ∈ E(G);
(iii) there exists ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
R(x, y)

)

for all (x, y) ∈ E(G) where

R(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

}
;

(iv) if {xn} is a sequence in X such that (xn,xn+) ∈ E(G) for all n ∈N and xn → x as
n→ +∞, then (xn,x) ∈ E(G) for all n ∈N.

Then T has a fixed point.

Proof Define, α : X → [, +∞) by α(x, y) =
{, if (x, y) ∈ E(G),
, otherwise. First we prove that T is an α-

admissible mapping. Let, α(x, y) ≥ , then (x, y) ∈ E(G). From (i), we have (Tx,Ty) ∈ E(G).
That is, α(Tx,Ty) ≥ . Thus T is an α-admissible mapping. From (ii) there exists x ∈ X
such that (x,Tx) ∈ E(G). That is, α(x,Tx) ≥ . If (x, y) ∈ E(G), then (Tx,Ty) ∈ E(G) and
hence α(Tx,Ty) = . Thus, from (iii) we have α(Tx,Ty)d(Tx,Ty) = d(Tx,Ty) ≤ ψ(M(x, y)).
Condition (iv) implies condition (ii) of Theorem . Hence, all conditions of Theorem 
are satisfied and T has a fixed point. �

Corollary  Let (X,d) be a complete metric space endowed with a graph G and T be a
self-mapping on X. Suppose the following assertions hold:

(i) T is a Banach G-contraction;
(ii) there exists x ∈ X such that (x,Tx) ∈ E(G);
(iii) if {xn} is a sequence in X such that (xn,xn+) ∈ E(G) for all n ∈N and xn → x as

n→ +∞, then (xn,x) ∈ E(G) for all n ∈N.
Then T has a fixed point.

As an application of Theorem , we obtain;

Theorem  Let (X,d) be a complete metric space endowed with a graph G and T be a
self-mapping on X. Suppose the following assertions hold:

(i) ∀x, y ∈ X , (x, y) ∈ E(G)⇒ (T(x),T(y)) ∈ E(G);
(ii) there exists x ∈ X such that (x,Tx) ∈ E(G);
(iii) there exists ψ ∈ � such that

d(Tx,Ty) ≤
{

ψ(max{ d(x,Tx)d(y,Ty)d(x,y) ,d(x, y)}) for all (x, y) ∈ E(G) with x �= y,
 for x = y;

(iv) T is G-continuous.
Then T has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/348
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Let (X,d,�) be a partially ordered metric space. Define the graph G by

E(G) =
{
(x, y) ∈ X ×X : x� y

}
.

For this graph, condition (i) in Theorem means T is nondecreasing with respect to this
order []. From Theorems - we derive the following important results in partially
ordered metric spaces.

Theorem  Let (X,d,�) be a complete partially ordered metric space and T be a self-
mapping on X. Suppose the following assertions hold:

(i) T is nondecreasing map;
(ii) there exists x ∈ X such that x � Tx;
(iii) there exists ψ ∈ � such that

d(Tx,Ty) ≤ ψ
(
R(x, y)

)
for all x � y where

R(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Tx)d(y,Ty)
 + d(x, y)

}
;

(iv) if {xn} is a sequence in X such that xn � xn+ for all n ∈N and xn → x as n→ +∞,
then xn � x for all n ∈N.

Then T has a fixed point.

Corollary  [] Let (X,d,�) be a complete partially ordered metric space and T : X →
X be nondecreasing mapping such that

d(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X with x� y where ≤ r < . Suppose that the following assertions hold:
(i) there exists x ∈ X such that x � Tx;
(ii) if {xn} is a sequence in X such that xn � xn+ for all n ∈N and xn → x as n→ +∞,

then xn � x for all n ∈ N.
Then T has a fixed point.

Theorem  Let (X,d,�) be a complete partially ordered metric space and T be a self-
mapping on X. Suppose the following assertions hold:

(i) T is nondecreasing map;
(ii) there exists x ∈ X such that x � Tx;
(iii) there exists ψ ∈ � such that

d(Tx,Ty) ≤
{

ψ(max{ d(x,Tx)d(y,Ty)d(x,y) ,d(x, y)}) for all x � y with x �= y,
 for x = y;

(iv) T is continuous.
Then T has a fixed point.
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