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1 Introduction and preliminaries
K Menger introduced the notion of a probabilistic metric space in . Since then the
theory of probabilistic metric spaces has developed in many directions [, ]. The idea
of K Menger was to use distribution functions instead of non-negative real numbers as
values of the metric. The notion of a probabilistic metric space corresponds to situations
when we do not know exactly the distance between two points, but we know probabilities
of possible values of this distance. A probabilistic generalization of metric spaces appears
to be of interest in the investigation of physical quantities and physiological thresholds. It
is also of fundamental importance in probabilistic functional analysis.
The purpose of this paper is to prove some existence theorems of fixed points for non-

linear contractive type and nonlinear compatible typemapping in completeMenger prob-
abilistic metric spaces. In the sequel, we shall adopt the usual terminology, notation and
conventions of the theory of probabilistic metric, as in [–].
Throughout this paper, let R be the set of all real numbers and R

+ be the set of all non-
negative real numbers. A mapping F : R → R

+ is called a distribution function (briefly,
d.f.), if it is left-continuous and non-decreasing with

inf
R
F = , sup

R
F = .

In the sequel, we denote by �+ the set of all distribution functions on R. The space �+

is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if
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F (t)≤ G(t) for all t ∈R. The maximal element for �+ in this order is the d.f. given by

H(t) =

⎧⎨
⎩
, t ≤ ;

, t > .

Definition . [, ] A mapping T : [, ] × [, ] → [, ] is called a continuous t-norm,
if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a,b)≤ T(c,d) whenever a ≤ c, b ≤ d, and a,b, c,d ∈ [, ].
Two typical examples of continuous t-norm are T(a,b) = ab and T(a,b) =min{a,b}.

Now t-norms are recursively defined by T  = T and

Tn(x,x, . . . ,xn+) = T
(
Tn–(x,x, . . . ,xn),xn+

)

for all n ≥  and xi ∈ [, ], for all i = , , . . . ,n + .

Definition . AMenger ProbabilisticMetric space (briefly,Menger PM-space) is a triple
(X,F ,T), where X is a non-empty set, T is a continuous t-norm, andF is a mapping from
X × X into �+ satisfying the following conditions: for all x, y, z ∈ X (in the sequel, we use
Fx,y to denote F (x, y)):
(PM) Fx,y(t) =H(t), ∀t > , if and only if x = y;
(PM) Fx,y(t) = Fy,x(t);
(PM) Fx,z(t + s) ≥ T(Fx,y(t),Fy,z(s)), ∀x, y, z ∈ X and t, s≥ .

Definition . Let (X,F ,T) be a Menger PM-space.
() A sequence {xn} in X is said to be convergent to x ∈ X if, for every ε >  and λ > ,

there exists a positive integer N such that Fxn ,x(ε) >  – λ whenever n≥N .
() A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ > , there

exists a positive integer N such that Fxn ,xm (ε) >  – λ whenever n,m ≥N .
() A Menger PM-space (X,F ,T) is said to be complete if and only if every Cauchy

sequence in X is convergent to a point in X .

Definition . Let (X,F ,T) be a Menger PM space, p ∈ X be a given point.
() For any given ε >  and λ >  the set

Np(ε,λ) =
{
q ∈ X : Fp,q(ε) >  – λ

}

is called the strong (ε,λ)-neighborhood of p.
() The strong neighborhood system for X is the union

⋃
p∈X Mp, where

Mp = {Np(ε,λ), ε > ,λ > }.

Remark . It should be pointed out that the strong neighborhood system determines a
Hausdorff topology σ on X [, ].
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Definition . [] Let X be a non-empty set, {dα : α ∈ (, )} be a family of mappings from
X × X into R

+. The ordered pair (X,dα : α ∈ (, )) is called a generating space of quasi-
metrics family, and {dα : α ∈ (, )} is called the family of quasi-metrics on X if, it satisfies
the following conditions:
(QM-) dα(x, y) =  for all α ∈ (, ), if and only if x = y;
(QM-) dα(x, y) = dα(y,x) for all α ∈ (, ) and x, y ∈ X ;
(QM-) for any given α ∈ (, ), there exists μ ∈ (,α] such that

dα(x, y)≤ dμ(x, z) + dμ(z, y), ∀x, y, z ∈ X;

(QM-) for any give x, y ∈ X , the function α �→ dα(x, y) is nonincreasing and
left-continuous.

Lemma . Let (X,F ,T) be a Menger PM-space with a t-norm T satisfying the following
conditions:

sup
t<

T(t, t) = . (.)

For any given λ ∈ (, ), define a mapping Eλ,F (x, y) : X ×X → R+ as follows:

Eλ,F (x, y) = inf
{
t >  : Fx,y(t) >  – λ

}
, (.)

then
() (Eλ,F : λ ∈ (, )) is a family of quasi-metrics on X and (X,Eλ,F : λ ∈ (, )) is a

generating space of the quasi-metrics family {Eλ,F : λ ∈ (, )};
() the topology induced by quasi-metric family {Eλ,F : λ ∈ (, )} on X coincides with the

(ε,λ)-topology on X .

Proof () From Definition ., it is easy to see that the family {Eλ,F : λ ∈ (, )} satisfies the
conditions (QM-) and (QM-).
Next we prove that Eλ,F is left-continuous in λ ∈ (, ). In fact, for any given λ ∈ (, )

and ε > , by the definition of Eλ,F , there exists t >  such that t < Eλ,F (x, y) + ε and
Fx,y(t) >  – λ. Letting δ = Fx,y(t) – ( – λ) >  and λ ∈ (λ – δ,λ), we have

 – λ <  – λ <  – (λ – δ) = Fx,y(t).

This implies that

t ∈ {
t >  : Fx,y(t) >  – λ

}
.

Hence we have

Eλ,F (x, y) ≤ Eλ,F (x, y)(t) = inf{t >  : Fx,y >  – λ} ≤ t < Eλ,F (x, y) + ε,

which shows λ �→ Eλ,F is left-continuous.
Now we prove that, for any given (x, y) ∈ X ×X, Eλ,F is nonincreasing in λ ∈ (, ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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In fact, for any λ,λ ∈ (, ) with λ < λ, we have

{
t >  : Fx,y(t) >  – λ

} ⊂ {
t >  : Fx,y(t) >  – λ

}
.

Hence

Eλ,F (x, y) = inf
{
t >  : Fx,y(t) >  – λ

}

≤ Eλ,F (x, y) = inf
{
t >  : Fx,y(t) >  – λ

}
.

Condition (QM-) is proved.
Finally, we prove that {Eλ,F : λ ∈ (, )} also satisfies condition (QM-).
In fact, for any given x, y ∈ X, and λ ∈ (, ), by condition (.), there exists μ ∈ (,λ]

such that

Tn( –μ,  –μ, . . . ,  –μ) >  – λ.

Letting Eμ,F (x,x) = δ,Eμ,F (x,x) = δ, . . . ,Eμ,F (xn, y) = δn+, from (.) for any ε > , we
have

Fx,x (δ + ε) >  –μ, Fx,x (δ + ε) >  –μ, . . . , Fxn ,y(δn+ + ε) >  –μ,

and so we have

Fx,y
(
δ + δ + · · · + δn+ + (n + )ε

) ≥ Tn(Fx,x (δ + ε),Fx,x (δ + ε), . . . ,Fxn ,y(δn+ + ε)
)

≥ Tn( –μ,  –μ, . . . ,  –μ) >  – λ.

This implies that

Eλ,F (x, y) = inf
{
t >  : Fx,y(t) >  – λ

} ≤ δ + δ + · · · + δn+ + (n + )ε.

By the arbitrariness of ε > , we have

Eλ,F (x, y)≤ Eμ,F (x,x) + Eμ,F (x,x) + · · · + Eμ,F (xn, y), (.)

for any x, y,x,x, . . . ,xn ∈ X. Especially, if n = , then condition (QM-) is proved. The
conclusion () is proved.
Now we prove the conclusion ().
For the purpose, it is sufficient to prove that, for any given ε >  and λ ∈ (, ),

Eλ,F (x, y) < ε ⇔ Fx,y(ε) >  – λ.

In fact, if Eλ,F (x, y) < ε, then from (.) we have Fx,y(ε) >  – λ. Conversely, if Fx,y(ε) >
 – λ, since Fx,y is a left-continuous distribution function, there exists a μ >  such that
Fx,y(ε –μ) >  – λ, and so Eλ,F (x, y) ≤ ε –μ < ε.
This completes the proof of Lemma .. �
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Remark . From Lemma ., it is easy to see that a sequence {xn} in aMenger PM-space
(X,F ,T) is convergent in the (ε,λ)-topology σ , if and only if Eλ,F (xn,x) → , ∀λ ∈ (, ).
Also a sequence {xn} in a Menger PM-space (X,F ,T) is a Cauchy sequence in the (ε,λ)-
topology, if and only if Eλ,F (xn,xm) →  ∀λ ∈ (, ) (as n,m → ∞).

Definition . A function φ : [,∞) → [,∞) is said to satisfy condition (	), if it is non-
decreasing and

∑∞
n= φ

n(t) < ∞ for all t > , where φn(t) denotes the nth iterate function
of φ(t).

Remark . [, ] If φ : [,∞) → [,∞) satisfies condition (	), then φ(t) < t, ∀t > . If
t ≤ φ(t), then t = .

Lemma . [] Let (X,F ,T) be a Menger PM-space. Suppose that the function φ :
[,∞)→ [,∞) is onto and strictly increasing. Then

inf
{
φn(t) > ,Fx,y(t) >  – λ

} ≤ φn(inf{t >  : Fx,y(t) >  – λ
})
,

for any x, y ∈ X, λ ∈ (, ) and n≥ .

Lemma . Let (X,F ,T) be a Menger PM-space with a t-norm T satisfying condition
(.) and {xn} be a sequence in X such that

Fxn ,xn+
(
φn(t)

) ≥ Fx,x (t), ∀t > ,n≥ , (.)

where φ : [,∞)→ [,∞) is onto, strictly increasing, and satisfies condition (	). If

EF (x,x) := sup
λ∈(,)

{
Eλ,F (x,x)

}
< ∞,

then {xn} is a Cauchy sequence in X.

Proof For any λ ∈ (, ), it follows from Lemma . and condition (.) that

Eλ,F (xn,xn+) = inf
{
t > ,Fxn ,xn+ (t) >  – λ

}

= inf
{
φn(φn)–(t) > ,Fxn ,xn+

(
φn(φn)–(t)) >  – λ

}

≤ inf
{
φn(φn)–(t) > ,Fx,x

(
φn)–(t) >  – λ

}

≤ φn(inf
{(

φn)–(t) > ,Fx,x
(
φn)–(t) >  – λ

}

= φn(inf{t > ,Fx,x (t) >  – λ
})

= φn(Eλ,F (x,x)
)

≤ φn(EF (x,x)
)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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For any given positive integers m, n, m > n, and for given λ ∈ (, ), it follows from (.)
and Lemma . that there exists a μ ∈ (,λ] such that

Eλ,F (xn,xm) ≤ Eμ,F (xn,xn+) + Eμ,F (xn+,xn+) + · · · + Eμ,F (xm–,xm)

≤
m–∑
j=n

φj(EF (x,x)
) →  (as n,m → ∞).

By Lemma ., {xn} is a Cauchy sequence in X.
This completes the proof of Lemma .. �

2 Fixed point theorems of nonlinear contraction typemappings in Menger
PM-spaces

Theorem . Let (X,F ,T) be a complete Menger PM-space, {Ai, i = , , . . .} be a sequence
of mappings from X into itself such that, for any two mappings Ai, Aj, i �= j and for any
x, y ∈ X and t > ,

FAix,Ajy
(
φ(t)

) ≥min
{
Fx,y(t),Fx,Aix(t),Fy,Ajy(t)

}
, (.)

where φ : [,∞) → [,∞) is onto, strictly increasing, and satisfies condition (	). If there
exists x ∈ X such that

EF (x,Ax) := sup
λ∈(,)

Eλ,F (x,Ax) <∞. (.)

Then {Ai} has a unique common fixed point x∗ in X, and the sequence {xn} defined by

xn = Anxn–, ∀n≥ , (.)

converges to x∗ in the (ε,λ)-topology of X.

Proof It follows from (.) and (.) that

Fx,x
(
φ(t)

)
= FAx,Ax

(
φ(t)

)

≥min
{
Fx,x (t),Fx,x (t),Fx,x (t)

}

=min
{
Fx,x (t),Fx,x (t)

}
, t > . (.)

If Fx,x (t) < Fx,x (t), then from (.)

Fx,x
(
φ(t)

) ≥ Fx,x (t), t > .

By induction, we can prove that, for any positive integer n,

Fx,x
(
φn(t)

) ≥ Fx,x (t), t > .

Let n→ ∞, we have Fx,x (t) =  for all t > . This contradicts that Fx,x (t) is a distribution
function. Hence we have

Fx,x
(
φ(t)

) ≥ Fx,x (t), t > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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Similarly, we have

Fx,x
(
φ(t)

)
= FAx,Ax

(
φ(t)

)

≥min
{
Fx,x

(
φ(t)

)
,Fx,x

(
φ(t)

)
,Fx,x

(
φ(t)

)}

= Fx,x
(
φ(t)

)

≥ Fx,x (t), t > .

By induction, we can prove that

Fxn ,xn+
(
φn(t)

) ≥ Fx,x (t), ∀n≥ , t > . (.)

It follows from condition (.) and Lemma . that {xn} is a Cauchy sequence in X. Since
X is complete, there exists a point x∗ ∈ X such that xn → x∗.
Next we prove that x∗ is the unique common fixed point of {Ai}. In fact, for any given

positive integers i, n, n > i and for any λ ∈ (, ), by Lemma ., we have

Eλ,F
(
xn,Aix∗) = inf

{
t > ,FAnxn–,Aix∗ (t) >  – λ

}

≤ inf
{
t > ,min

{
Fxn–,x∗

(
φ–(t)

)
,Fxn–,xn

(
φ–(t)

)
,

Fx∗ ,Ai(x∗)
(
φ–(t)

)}
>  – λ

}

= inf
{
φ
(
φ–)(t) > ,min

{
Fxn–,x∗

(
φ–(t)

)
,Fxn–,xn

(
φ–(t)

)
,

Fx∗ ,Ai(x∗)
(
φ–(t)

)}
>  – λ

}

≤ φ
(
inf

{
t > ,min

{
Fxn–,x∗ (t),Fxn–,xn (t),Fx∗ ,Ai(x∗)(t)

}
>  – λ

})

≤ φ
(
max

{
Eλ,F

(
xn–,x∗),Eλ,F (xn–,xn),Eλ,F

(
x∗,Aix∗)}).

By virtue of the continuity of φ, we have

Eλ,F
(
x∗,Aix∗) = lim

n→∞Eλ,F
(
xn,Aix∗)

≤ lim
n→∞φ

(
max

{
Eλ,F

(
xn–,x∗),Eλ,F (xn–,xn),Eλ,F

(
x∗,Aix∗)})

= φ
(
Eλ,F

(
x∗,Aix∗)).

From Remark ., it follows that Eλ,F (x∗,Aix∗) = , i.e., x∗ = Aix∗, ∀i≥ .
Next we prove that x∗ is the unique common fixed point of {Ai} in X. In fact, if y ∈ X is

also a common fixed point of {Ai}, then, for any λ ∈ (, ) and any i, j, i �= j,

Eλ,F
(
x∗, y

)
= Eλ,F

(
Aix∗,Ajy

)

= inf
{
t > ,FAix∗ ,Ajy(t) >  – λ

}

≤ inf
{
t > ,min

{
Fx∗ ,y

(
φ–(t)

)
,Fx∗ ,x∗

(
φ–(t)

)
,Fy,y

(
φ–(t)

)}
>  – λ

}

= inf
{
φ
(
φ–)(t) > ,Fx∗ ,y

(
φ–(t)

)
>  – λ

}

≤ φ
(
inf

{
(φ)–(t) > ,Fx∗ ,y

(
φ–(t)

)
>  – λ

})

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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= φ
(
inf

{
t > ,Fx∗ ,y(t) >  – λ

})

= φ
(
Eλ,F

(
x∗, y

))
,

i.e., Eλ,F (x∗, y) =  by Remark .. And so x∗ = y.
This completes the proof of Theorem .. �

3 Fixed point theorems for nonlinear compatible typemappings in PM-spaces
Definition . Let (X,F ,T) be a Menger PM-space, and let f and S be two mappings
from X into itself. f and S are called compatible if FSfxn ,fSxn (t) → H(t), ∀t > , whenever
{xn} is a sequence in X such that {fxn} and {Sxn} converge in the (ε,λ)-topology to some
x ∈ X as n→ ∞.

Remark . It should be point out that the concept of compatible mappings was intro-
duced by Jungck [] in metric space. The concept of compatible mappings introduced
here is a generalization of Jungck [] and Singh et al. [].

Theorem . Let (X,F ,T) be a complete Menger PM-space, f , g,S,G : X → X be map-
pings satisfying the following conditions:

(i) S(X)⊂ g(X), G(X) ⊂ f (X);
(ii) FSx,Ty(φ(t))≥min{Ff (x),g(y)(t),Ff (x),S(x)(t),Fg(y),G(y)(t)}

for all x, y ∈ X, t > , where the function φ : [,∞) → [,∞) is onto strictly increasing and
satisfies condition (	). If either f or g is continuous and the pairs S, f and G, g both are
compatible, and if there exists an x ∈ X such that

EF (z, z) := sup
λ∈(,)

(
Eλ,F (z), z

)
<∞, (.)

where z = S(x), z = G(x) and g(x) = S(x), then S, G, f , g have a unique common fixed
point z in X.

Proof By condition (i), there exists x ∈ X such that Sx = g(x) = z. For x, there exists
x ∈ X such that G(x) = f (x) = z. Inductively, we can construct sequences {xn} and {zn}
as follows:

⎧⎨
⎩
g(xn+) = S(xn) = zn,

f (xn+) =G(xn+) = zn+,
∀n≥ . (.)

It follows from condition (ii) that, for any t > ,

Fzn ,zn+
(
φ(t)

)
= FS(xn),G(xn+)

(
φ(t)

)

≥min
{
Ff (xn),g(xn+)(t),Ff (xn),Sxn (t),Fg(xn+),G(xn+)(t)

}

=min
{
Fzn–,zn (t),Fzn ,zn+ (t)

}
.

(.)

If Fzn–,zn (t) ≥ Fzn ,zn+ (t), then from (.), Fzn ,zn+ (φ(t)) ≥ Fzn ,zn+ (t), ∀t > , and so

Fzn ,zn+
(
φm(t)

) ≥ Fzn ,zn+ (t), ∀t >  andm ≥ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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Since φ satisfies condition (	), we have

 = lim
m→∞Fzn ,zn+

(
φm(t)

) ≥ Fzn ,zn+ (t), ∀t > .

This contradicts that Fzn ,zn+ (t) is a distribution function. Therefore

Fzn ,zn+
(
φ(t)

) ≥ Fzn–,zn (t), ∀t > .

Similarly we can prove that

Fzn+,zn+
(
φ(t)

) ≥ Fzn ,zn+ (t), ∀t > .

These show that, for any positive integer m ≥ , we have

Fzm ,zm+

(
φ(t)

) ≥ Fzm–,zm (t), ∀t > ,

i.e.,

Fzm ,zm+ (t)≥ Fzm–,zm
(
φ–(t)

)
, ∀t > . (.)

On the other hand, it follows from Lemma . that, for any λ ∈ (, ),

Eλ,F (zm, zm+) = inf
{
t > ,Fzm ,zm+ (t) >  – λ

}

≤ inf
{
φ(φ)–(t) > ,Fzm–,zm

(
φ–(t)

)
>  – λ

}

≤ φ
(
inf

{
φ–(t) > ,Fzm–,zm

(
φ–(t)

)
>  – λ

})

= φ
(
inf

{
t > ,Fzm–,zm (t) >  – λ

})

= φ
(
Eλ,F (zm–, zm)

)
.

By induction, we can prove that

Eλ,F (zm, zm+) ≤ φ
(
Eλ,F (zm–, zm)

) ≤ · · · ≤ φm(
Eλ,F (z, z)

)
. (.)

By Lemma ., for any given λ ∈ (, ) and for any positive integersm, n,m > n, there exists
μ ∈ (,μ] such that

Eλ,F (zm, zn)≤ Eμ,F (zm, zm–) + Eμ,F (zm–, zm–) + · · · + Eμ,F (zn–, zn)

≤
m–∑
j=n

φj(Eμ,F (z, z)
)

≤
m–∑
j=n

φj(EF (z, z)
) →  (as n,m → ∞).

http://www.journalofinequalitiesandapplications.com/content/2014/1/347
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This implies that {zn} is a Cauchy sequence inX.Without loss of generality, we can assume
that zn → z∗ ∈ X. Therefore

f (xn) = zn– → z∗; g(xn+) = zn → z∗;

S(xn) = zn → z∗; G(xn+) = zn+ → z∗.
(.)

By the assumption, without loss of generality, we can assume that f is continuous, then
f (xn)→ f (z∗) and fS(xn) → f (z∗). Since S and f are compatible, we have

FSf (xn),fS(xn)(t)→H(t), ∀t > , (.)

and so we have

FSf (xn),fz∗ (t) ≥ T
(
FSf (xn),fS(xn)

(
t – φ(t)

))
, FfS(xn),fz∗

(
φ(t)

) →H(t), ∀t > .

This shows that

Sfxn → f
(
z∗) (as n→ ∞). (.)

Again for any positive integer n≥  and λ ∈ (, ), from Lemma ., we have

Eλ,F
(
Sf (xn),G(xn+)

)
= inf

{
t > ,FSf (xn),Gxn+ (t) >  – λ

}

≤ inf
{
φ(φ)–(t) > ,min

{
Ff (xn),g(xn+)

(
φ–(t)

)
,

Ff (xn),Sf (xn)
(
φ–(t)

)
,Fg(xn+),G(xn+)

(
φ–(t)

)}}

≤ φ
(
max

{
Eλ,F

(
f (xn), g(xn+)

)
,Eλ,F

(
f (xn),Sf (xn)

)
,

Eλ,F
(
g(xn+),G(xn+)

)})
.

Therefore we have

lim
n→∞Eλ,F

(
Sf (xn),Gxn+

)
= Eλ,F

(
fz∗, z∗) ≤ φ(Eλ,F

(
f
(
z∗), z∗).

By Remark ., Eλ,F (fz∗, z∗) = , i.e., z∗ = fz∗.
Similarly, we can prove that

Eλ,F
(
Sz∗,G(xn+)

) ≤ φ
(
max

{
Eλ,F

((
fz∗), g(xn+)

)
,Eλ,F

(
fz∗,Sz∗),

Eλ,F
(
g(xn+),G(xn+)

)})
.

Hence we have

Eλ,F
(
Sz∗, z∗) = lim

n→∞Eλ,F
(
Sz∗,G(xn+)

)

≤ lim
n→∞φ

(
max

{
Eλ,F

(
fz∗, g(xn+)

)
,Eλ,F

(
fz∗,Sz∗),Eλ,F

(
g(xn+),G(xn+)

)})

= φ
(
max

{
,Eλ,F

(
Sz∗, z∗), })

= φ
(
Eλ,F

(
Sz∗, z∗))

and so Eλ,F (Sz∗, z∗) = , i.e., Sz∗ = z∗.
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Select z ∈ X such that g(z) = z∗ = S(z∗). Then G(g(z)) =G(z∗) and for any λ ∈ (, )

Eλ,F
(
z∗,G(z)

)
= Eλ,F

(
Sz∗,G(z)

)

= inf
{
t > ,FSz∗ ,G(z)(t) >  – λ

}

≤ inf
{
φ(φ)–(t) > ,min

{
Ff (z∗),g(z)

(
φ–(t)

)
,Ff (z∗),S(z∗)

(
φ–(t)

)
,

Fg(z),G(z)
(
φ–(t)

)}
>  – λ

}

≤ φ
(
max

{
Eλ,F

(
f
(
z∗), g(z)),Eλ,F

(
f
(
z∗),S(z∗)),Eλ,F

(
g(z),G(z)

)})

= φ
(
max

{
Eλ,F

(
z∗, z∗),Eλ,F

(
z∗,S

(
z∗)),Eλ,F

(
z∗,G(z)

)})

= φ
(
max

{
,,Eλ,F

(
z∗,G(z)

)})
.

This implies that z∗ = G(z), and so g(G(z)) = g(z∗). Since G, g are compatible and
Eλ,F (G(z), g(z)) = Eλ,F (z∗, z∗) = , we get

Eλ,F
(
Gz∗, g

(
z∗)) = Eλ,F

(
G

(
g(z)

)
, g

(
G(z)

))
= .

This shows that Gz∗ = g(z∗). Again for any λ ∈ (, )

Eλ,F
(
z∗,G

(
z∗)) = Eλ,F

(
S
(
z∗),G(

z∗))

= inf
{
t > ,FS(z∗),G(z∗)(t) >  – λ

}

≤ inf
{
φ(φ)–(t) > ,min

{
Ff (z∗),g(z∗)

(
φ–(t)

)
,Ff (z∗),S(z∗)

(
φ–(t)

)
,

Fg(z∗),G(z∗)
(
φ–(t)

)}
>  – λ

}

≤ φ
(
inf

{
φ–(t) > ,min

{
Fz∗ ,G(z∗)

(
φ–(t)

)
,Fz∗ ,z∗

(
φ–(t)

)
,

FG(z∗),G(z∗)
(
φ–(t)

)}
>  – λ

})

= φ
(
max

{
Eλ,F

(
z∗,G

(
z∗)), , })

= φ(Eλ,F
(
z∗,G

(
z∗)).

This implies that Eλ,F (z∗,G(z∗)) = , i.e., z∗ = G(z∗), and so z∗ is a common fixed point of
f , S, g , G in X.
If y ∈ X is also a common fixed point of f , S, g , G, then we have

Eλ,F
(
y, z∗) = Eλ,F

(
S(y),G

(
z∗))

= inf
{
t > ,FS(y),G(z∗)(t) >  – λ

}

≤ inf
{
t > ,min

{
Fy,z∗

(
φ–(t)

)
,Ff (y),S(y)

(
φ–(t)

)
,

Fg(z∗),G(z∗)
(
φ–(t)

)}
>  – λ

}

≤ φ
(
max

{
Eλ,F

(
y, z∗), , })

= φ
(
Eλ,F

(
y, z∗)),

i.e., y = z∗. This completes the proof of Theorem .. �
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Remark . If the mappings S,G : X → X given in Theorem . are multi-valued, we can
also prove that the conclusion of Theorem . still holds, i.e., y = z∗. This completes the
proof of Theorem ..
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