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Abstract
In this work, we present a notion of an (H, F)-closed set and prove the existence of a
coupled coincidence point theorem for a pair {F,H} of mappings F,H : X × X → X
with ϕ-contraction mappings in partially ordered metric spaces without H-increasing
property of F and mixed monotone property of H. We give some examples of a
nonlinear contraction mapping, which is not applied to the existence of coupled
coincidence point by H using the mixed monotone property and H-increasing
property of F. We also show the uniqueness of a coupled coincidence point of the
given mappings. Further, we apply our results to the existence and uniqueness of a
coupled coincidence point of the given mappings in partially ordered G-metric
spaces with H-increasing property of F and mixed monotone property of H. These
results generalize some recent results in the literature.

Keywords: coupled fixed point; coupled coincidence point; generalized compatible;
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1 Introduction
The existence of a fixed point for the contraction type of mappings in partially ordered
metric spaces has been first studied by Ran and Reurings []. Moreover, they established
some new results and presented some applications to matrix equations. In , Guo and
Lakshmikantham [] introduced the concept of a coupled fixed point. Later, Bhaskar and
Lakshmikantham [] introduced the concept of themixedmonotone property for contrac-
tive operators. They also showed some applications on the existence and uniqueness of the
coupled fixed point theorems for mappings which satisfy the mixed monotone property
in partially ordered metric spaces. Lakshimikantham and Ćirić [] extended the results
in [] by defining the mixed g-monotonicity and studied the existence and uniqueness of
coupled coincidence point for such a mappings which satisfy the mixed monotone prop-
erty in partially ordered metric spaces. As a continuation of this work, many authors con-
ducted research on the coupled fixed point theory and coupled coincidence point theory
in partially ordered metric spaces and different spaces. We refer the reader for example to
[–].
In , Mustafa and Sims [] introduced the notion of a G-metric spaces as a gener-

alization of the concept of a metric spaces and proved the analog of the Banach contrac-
tion mapping principle in the context of G-metric spaces. For examples of extensions and
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applications of these works see [–]. In , Choudhury and Maity [] proved the
existence of a coupled fixed point theorem of nonlinear contractionmappings with mixed
monotone property in partially ordered G-metric spaces. Aydi et al. [] established cou-
pled coincidence and coupled common fixed point results for a mixed g-monotone map-
ping satisfying nonlinear contractions in partially ordered G-metric spaces. They gener-
alized the results obtained by Choudhury and Maily []. Later, Karapınar et al. [] ex-
tended the results of coupled coincidence and coupled common fixed point theorem for a
mixed g-monotone mapping obtained by Aydi et al. []. Many authors have studied cou-
pled coincidence point and coupled common fixed point results for a mixed g-monotone
mapping satisfying nonlinear contractions in partially ordered G-metric spaces (see, for
example, [–]).
One of the interesting ways to developed coupled fixed point theory is to consider the

mapping F : X ×X → X without the mixed monotone property. Recently, Sintunavarat et
al. [, ] proved some coupled fixed point theorems for nonlinear contractions without
mixed monotone property which extended the results of Bhaskar and Lakshmikantham
[] by using the concept of an F-invariant set due to Samet and Vetro []. Later, Batra and
Vashistha [] introduced an (F , g)-invariant set which is a generalization of an F-invariant
set. Recently, Kutbi et al. [] introduced the concept of an F-closed set which is weaker
than the concept of an F-invariant set and proved some coupled fixed point theorems
without the condition of F-invariant set and mixed monotone property. Very recently,
Charoensawan and Thangthong [] generalized and extended the coupled coincidence
point theorem of nonlinear contraction mappings in partially ordered G-metric spaces
without the mixed g-monotone property by using the concept of (F∗, g)-invariant set in
partially ordered G-metric spaces which are generalizations of the results of Aydi et al.
[]. In , Hussain et al. [] presented the new concept of generalized compatibility
of a pair {F ,G} of mappings F ,G : X × X → X and proved some coupled coincidence
point results of such a mapping without the mixed G-monotone property of F in partially
orderedmetric spaces which generalized some recent comparable results in the literature.
In this work, we introduce the concept of (H ,F)-closed set and the notion of gener-

alized compatibility of a pair {F ,H} of mapping F ,H : X × X → X in the setting of G-
metric spaces. We also obtain a coupled coincidence point theorem for a pair {F ,H} with
ϕ-contractionmappings in partially orderedmetric spaces withoutH-increasing property
of F and mixed monotone property of H . Our theorem generalizes and extends the very
recent results obtained by Hussain et al. [] and Karapınar et al. [].

2 Preliminaries
In this section, we give some definitions, propositions, examples and remarks which are
useful for main results in our paper. Throughout this paper, (X,�) denotes a partially or-
dered set with the partial order �. By x � y, we mean y � x. Let (x,�) be a partially or-
dered set, the partial order � for the product set X ×X defined in the following way, for
all (x, y), (u, v) ∈ X ×X:

(x, y) � (u, v) ⇒ H(x, y)�H(u, v) and H(v,u)�H(y,x),

where H : X ×X → X is one-one.
We say that (x, y) is comparable to (u, v) if either (x, y)� (u, v) or (u, v) � (x, y).
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Definition . [] Let X be a nonempty set and G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z.
(G)  <G(x,x, y) for all x, y ∈ X with x �= y.
(G) G(x,x, y)≤G(x, y, z) for all x, y, z ∈ X with y �= z.
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables).
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Example . Let (X,d) be ametric space. The functionG : X×X×X → [, +∞), defined
by G(x, y, z) = d(x, y) + d(y, z) + d(z,x), for all x, y, z ∈ X, is a G-metric on X.

Definition . [] Let (X,G) be a G-metric space, and let (xn) be a sequence of points
of X. We say that (xn) is G-convergent to x ∈ X if limn,m→∞ G(x,xn,xm) = , that is, for any
ε > , there exists N ∈ N such that G(x,xn,xm) < ε, for all n,m ≥ N . We call x the limit of
the sequence (xn) and write xn → x or limn→∞ xn = x.

Proposition . [] Let (X,G) be a G-metric space, the following are equivalent:
() (xn) is G-convergent to x.
() G(xn,xn,x)→  as n → +∞.
() G(xn,x,x)→  as n→ +∞.
() G(xn,xm,x)→  as n,m → +∞.

Definition . [] Let (X,G) be a G-metric space. A sequence (xn) is called a G-Cauchy
sequence if, for any ε > , there exists N ∈ N such that G(xn,xm,xl) < ε, for all n,m, l ≥ N .
That is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . [] Let (X,G) be a G-metric space, the following are equivalent:
() the sequence (xn) is G-Cauchy;
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all n,m ≥N .

Proposition . [] Let (X,G) be a G-metric space. A mapping f : X → X is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever
(xn) is G-convergent to x, (f (xn)) is G-convergent to f (x).

Definition . [] A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence is G-convergent in (X,G).

Definition . [] Let (X,G) be a G-metric space. A mapping F : X × X → X is said to
be continuous if for any two G-convergent sequences (xn) and (yn) converging to x and y,
respectively, (F(xn, yn)) is G-convergent to F(x, y).

In , Lakshmikantham and Ćirić [] introduced the concept of a mixed g-monotone
mapping and a coupled coincidence point as follows.
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Definition . [] Let (X,�) be a partially ordered set and F : X×X → X and g : X → X.
We say F has the mixed g-monotone property if for any x, y ∈ X

x,x ∈ X, g(x) � g(x) implies F(x, y) � F(x, y),

and

y, y ∈ X, g(y) � g(y) implies F(x, y) � F(x, y).

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of
mappings F : X ×X → X, and g : X → X if F(x, y) = g(x) and F(y,x) = g(y).

Definition . [] Let X be a nonempty set and F : X × X → X and g : X → X. We say
F and g are commutative if g(F(x, y)) = F(g(x), g(y)) for all x, y ∈ X.

Let � denote the set of functions ϕ : [,∞) → [,∞) satisfying
. ϕ(t) < t for all t > ,
. limr→t+ ϕ(r) < t for all t > .
In , Karapınar et al. [] proved the following theorems.

Theorem . [] Let (X,�) be a partially ordered set and G be a G-metric on X such
that (X,G) is a complete G-metric space. Suppose that there exist ϕ ∈ �, F : X × X → X,
and g : X → X such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ ϕ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all x, y,u, v, z,w ∈ X for which g(x) � g(y) � g(z) and g(u) � g(v) � g(w). Suppose also
that F is continuous and has the mixed g-monotone property, F(X × X) ⊆ g(X), and g is
continuous and commutes with F . If there exists (x, y) ∈ X ×X such that

g(x)� F(x, y) and g(y)� F(y,x),

then there exists (x, y) ∈ X × X such that g(x) = F(x, y) and g(y) = F(y,x), that is, F and g
have a coupled coincidence point.

Hussain et al. [] introduced the concept of H-increasing and {F ,H} generalized com-
patible as follows.

Definition . [] Suppose that F ,H : X × X → X are two mappings. F is said to be
H-increasing with respect to � if for all x, y,u, v ∈ X, with H(x, y) � H(u, v), we have
F(x, y)� F(u, v).

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of
mappings F ,H : X ×X → X if F(x, y) =H(x, y) and F(y,x) =H(y,x).
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Definition . [] Let (X,d) be a metric space and F ,H : X × X → X. We say that the
pair {F ,H} is generalized compatible if

{
d(F(H(xn, yn),H(yn,xn)),H(F(xn, yn),F(yn,xn))) →  as n → +∞,
d(F(H(yn,xn),H(xn, yn)),H(F(yn,xn),F(xn, yn))) →  as n → +∞,

whenever (xn) and (yn) are sequences in X such that

{
limn→∞ F(xn, yn) = limn→∞ H(xn, yn) = t,
limn→∞ F(yn,xn) = limn→∞ H(yn,xn) = t.

Definition . [] Let F ,H : X × X → X be two maps. We say that the pair {F ,H} is
commuting if

F
(
H(x, y),H(y,x)

)
=H

(
F(x, y),F(y,x)

)
for all x, y ∈ X.

It is easy to see that a commuting pair is generalized compatible but the converse is not
true in general.
Let ϒ denote the set of all functions φ : [,∞) → [,∞) such that:
(i) φ is continuous and increasing,
(ii) φ(t) =  if and only if t = ,
(iii) φ(t + s) ≤ φ(t) + φ(s), for all t, s ∈ [,∞).
Let� be the set of all functions φ : [,∞) → [,∞) such that limt→r ψ(t) >  for all r > 

and limt→+ ψ(t) = .
Recently, Hussain et al. [] proved the coupled coincidence point for such mappings

involving (ψ ,φ)-contractive condition as follows.

Theorem . [] Let (X,�) be a partially ordered set and M be a nonempty subset of
X and let there exists d, a metric on X such that (X,d) is a complete metric space. Assume
that F ,H : X×X → X are two generalized compatiblemappings such that F isH-increasing
with respect to �, H is continuous and has the mixed monotone property. Suppose that for
any x, y ∈ X, there exist u, v ∈ X such that F(x, y) = H(u, v) and F(y,x) = H(v,u). Suppose
that there exist φ ∈ ϒ and ψ ∈ � such that the following holds:

φ
(
d
(
F(x, y),F(u, v)

)) ≤ 

φ
(
d
(
H(x, y),H(u, v)

)
+ d

(
H(y,x),H(v,u)

))
–ψ

(
d(H(x, y),H(u, v)) + d(H(y,x),H(v,u))



)

for all x, y,u, v ∈ X with H(x, y)�H(u, v) and H(y,x)�H(v,u).
Also suppose that either
(a) F is continuous or
(b) X has the following properties: for any two sequences {xn} and {yn} with

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y� yn for all n.

If there exists (x, y) ∈ X ×X with

H(x, y)� F(x, y) and H(y,x) � F(y,x),
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then there exists (x, y) ∈ X × X such that H(x, y) = F(x, y) and H(y,x) = F(y,x), that is, F
and H have a coupled coincidence point.

In order to remove the mixed monotone property, Batra and Vashistha [] introduced
the following property.

Definition . [] Let (X,d) be a metric space and F : X × X → X, g : X → X be given
mappings. Let M be a nonempty subset of X. We say thatM is an (F , g)-invariant subset
of X if and only if, for all x, y, z,w ∈ X,

(i) (x, y, z,w) ∈M ⇔ (w, z, y,x) ∈M.
(ii) (g(x), g(y), g(z), g(w)) ∈M ⇒ (F(x, y),F(y,x),F(z,w),F(w, z)) ∈M.

Kutbi et al. [] introduced the notion of F-closed set which extended the notion of
F-invariant set as follows.

Definition . [] Let F : X × X → X be a mapping, and let M be a subset of X. We
say thatM is an F-closed subset of X if, for all x, y,u, v ∈ X,

(x, y,u, v) ∈ M ⇒ (
F(x, y),F(y,x),F(u, v),F(v,u)

) ∈M.

Inspired by above definitions, we give the notion of a (H ,F)-closed set which is useful
for our main results.

Definition . Let F ,H : X × X → X be two mappings and let M be a subset of X. We
say thatM is an (H ,F)-closed subset of X if, for all x, y, z,u, v,w ∈ X,

(
H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)

) ∈M

⇒ (
F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)

) ∈ M.

Definition . Let H : X × X → X be a mapping and M be a subset of X. We say that
M satisfies the transitive property if and only if for all x, y, z,u, v,w,a,b, c,d ∈ X,

(
H(x,u),H(u,x),H(y, v),H(v, y),H(a,b),H(b,a)

) ∈M and(
H(a,b),H(b,a),H(c,d),H(d, c),H(z,w),H(w, z)

) ∈M

⇒ (
H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)

) ∈M.

Definition . Let F ,H : X × X → X be two mappings. We say that the pair {F ,H} is
generalized compatible if (xn) and (yn) are sequences in X such that for some x, y ∈ X

lim
n→∞H(xn, yn) = lim

n→∞F(xn, yn) = x and

lim
n→∞H(yn,xn) = lim

n→∞F(yn,xn) = y

imply

lim
n→∞F

(
H(xn, yn),H(yn,xn)

)
= lim

n→∞H
(
F(xn, yn),F(yn,xn)

)
and

lim
n→∞F

(
H(yn,xn),H(xn, yn)

)
= lim

n→∞H
(
F(yn,xn),F(xn, yn)

)
.
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Remark The set M = X is trivially (H ,F)-closed set, which satisfies the transitive prop-
erty.

Example . Let (X,G) be a G-metric space endowed with a partial order �. Let F ,H :
X × X → X are two generalized compatible mappings such that F is H-increasing with
respect to �, H is continuous and has the mixed monotone property. Define a subset
M ⊆ X by

M =
{
(x,u, y, v, z,w) ∈ X : x� y � z, and u� v � w

}
.

Let (H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)) ∈ M. It is easy to see that, since F is
H-increasing with respect to �, we have F(x,u) � F(y, v) � F(z,w) and F(u,x) � F(v, y) �
F(w, z), this implies that

(
F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)

) ∈M.

ThenM is (H ,F)-closed subset of X, which satisfies the transitive property.

3 Main results
Now, we state our first result which successively guarantees a coupled coincidence point.

Theorem . Let (X,≤) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and M be a nonempty subset of X. Assume that F ,H :
X × X → X are two generalized compatible mappings such that H is continuous and for
any x, y ∈ X, there exists u, v ∈ X such that F(x, y) = H(u, v) and F(y,x) = H(v,u). Suppose
that there exists ϕ ∈ � such that the following holds:

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ ϕ

(
G

(
H(x,u),H(y, v),H(z,w)

)
+G

(
H(u,x),H(v, y),H(w, z)

))
()

for all x, y, z,u, v,w ∈ X with (H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)) ∈ M.
Suppose also that either
(a) F is continuous;
(b) for any two sequences {xn} and {yn} with for all n≥ 

(xn+, yn+,xn+, yn+,xn, yn) ∈M and

H(xn, yn) →H(x, y), H(yn,xn) →H(y,x)

implies(
H(xn, yn),H(yn,xn),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M,

If there exists (x, y) ∈ X ×X such that

(
F(x, y),F(y,x),F(x, y),F(y,x),H(x, y),H(y,x)

) ∈ M

and M is an (H ,F)-closed, then there exists (x, y) ∈ X × X such that H(x, y) = F(x, y) and
H(y,x) = F(y,x), that is, F and H have a coupled coincidence point.
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Proof Let x, y ∈ X be such that

(
F(x, y),F(y,x),F(x, y),F(y,x),H(x, y),H(y,x)

) ∈ M.

From the assumption, there exists (x, y) ∈ X ×X such that

F(x, y) =H(x, y) and F(y,x) =H(y,x).

Again from the assumption, we can choose x, y ∈ X such that

F(x, y) =H(x, y) and F(y,x) =H(y,x).

By repeating this argument, we can construct two sequences {xn}∞n= and {yn}∞n= in X such
that

F(xn, yn) =H(xn+, yn+) and F(yn,xn) =H(yn+,xn+) for all n≥ . ()

Since

(
F(x, y),F(y,x),F(x, y),F(y,x),H(x, y),H(y,x)

) ∈ M,

andM is an (H ,F∗)-closed, we get

(
F(x, y),F(y,x),F(x, y),F(y,x),H(x, y),H(y,x)

)
=

(
H(x, y),H(y,x),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M

⇒ (
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
H(x, y),H(y,x),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M.

Again, using the fact thatM is a (H ,F)-closed, we have

(
H(x, y),H(y,x),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M

⇒ (
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
H(x, y),H(y,x),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M.

Continuing this process, for all n≥  we obtain

(
H(xn+, yn+),H(yn+,xn+),H(xn+, yn+),

H(yn+,xn+),H(xn, yn),H(yn,xn)
) ∈M. ()

Let

δn =G
(
H(xn+, yn+),H(xn+, yn+),H(xn, yn)

)
+G

(
H(yn+,xn+),H(yn+,xn+),H(yn,xn)

)
. ()
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We can suppose that δn >  for all n≥ . If not, (xn, yn) will be a coupled coincidence point
and the proof is finished. From (), (), and (), we have

δn =G
(
F(xn, yn),F(xn, yn),F(xn–, yn–)

)
+G

(
F(yn,xn),F(yn,xn),F(yn–,xn–)

)
≤ ϕ

(
G

(
H(xn, yn),H(xn, yn),H(xn–, yn–)

)
+G

(
H(yn,xn),H(yn,xn),H(yn–,xn–)

))
= ϕ(δn–). ()

This implies that

δn ≤ ϕ(δn–). ()

Since φ(t) < t for all t > , it follows that {δn} is decreasing sequence. Therefore, there is
some δ ≥  such that limn→∞ δn = δ.
We shall prove that δ = . Assume, to the contrary, that δ > . Then by letting n→ ∞ in

() and using the properties of the map ϕ, we get

δ = lim
n→∞ δn ≤ lim

n→∞ϕ(δn–) = lim
δn–→δ+

ϕ(δn–) < δ.

A contradiction, thus δ = , and hence

lim
n→∞ δn = lim

n→∞
[
G

(
H(xn+, yn+),H(xn+, yn+),H(xn, yn)

)
+G

(
H(yn+,xn+),H(yn+,xn+),H(yn,xn)

)]
= . ()

Next, we prove that {H(xn, yn)}∞n= and {H(yn,xn)}∞n= are Cauchy sequences in theG-metric
space (X,G). Suppose, to the contrary, that at least of {H(xn, yn)}∞n= and {H(yn,xn)}∞n= is not
Cauchy sequence in (X,G). Then there exists an ε >  for which we can find subsequences
{H(xm(k), ym(k))}, {H(xn(k), yn(k))} of {H(xn, yn)}∞n= and {H(ym(k),xm(k))}, {H(yn(k),xn(k))} of
{H(yn,xn)}∞n=, respectively, with n(k) >m(k)≥ k such that

rk :=G
(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xn(k), yn(k))

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(yn(k),xn(k))

) ≥ ε. ()

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest
integer with m(k) > n(k) ≥ K and satisfying (). Then

G
(
H(xm(k)–, ym(k)–),H(xm(k)–, ym(k)–),H(xn(k), yn(k))

)
+G

(
H(ym(k)–,xm(k)–),H(ym(k)–,xm(k)–),H(yn(k),xn(k))

)
< ε. ()
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Using the rectangle inequality and (), we have

ε ≤ rk

≤G
(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xm(k)–, ym(k)–)

)
+G

(
H(xm(k)–, ym(k)–),H(xm(k)–, ym(k)–),H(xn(k), yn(k))

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(ym(k)–,xm(k)–)

)
+G

(
H(ym(k)–,xm(k)–),H(ym(k)–,xm(k)–),H(yn(k),xn(k))

)
< δm(k)– + ε. ()

Letting k → +∞ and using (), we obtain

lim
k→∞

rk = lim
k→+∞

[
G

(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xn(k), yn(k))

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(yn(k),xn(k))

)]
= ε. ()

Again, by the rectangle inequality, we have

rk ≤G
(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xm(k)+, ym(k)+)

)
+G

(
H(xm(k)+, ym(k)+),H(xm(k)+, ym(k)+),H(xn(k)+, yn(k)+)

)
+G

(
H(xn(k)+, yn(k)+),H(xn(k)+, yn(k)+),H(xn(k), yn(k))

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(ym(k)+,xm(k)+)

)
+G

(
H(ym(k)+,xm(k)+),H(ym(k)+,xm(k)+),H(yn(k)+,xn(k)+)

)
+G

(
H(yn(k)+,xn(k)+),H(yn(k)+,xn(k)+),H(yn(k),xn(k))

)
= δn(k) +G

(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xm(k)+, ym(k)+)

)
+G

(
H(xm(k)+, ym(k)+),H(xm(k)+, ym(k)+),H(xn(k)+, yn(k)+)

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(ym(k)+,xm(k)+)

)
+G

(
H(ym(k)+,xm(k)+),H(ym(k)+,xm(k)+),H(yn(k)+,xn(k)+)

)
.

Using the fact that G(x,x, y)≤ G(x, y, y) for any x, y ∈ X, we obtain

rk ≤ δn(k) + δm(k)

+G
(
H(xm(k)+, ym(k)+),H(xm(k)+, ym(k)+),H(xn(k)+, yn(k)+)

)
+G

(
H(ym(k)+,xm(k)+),H(ym(k)+,xm(k)+),H(yn(k)+,xn(k)+)

)
. ()

Sincem(k) > n(k) and using (), we have

(
H(xm(k), ym(k)),H(ym(k),xm(k)),H(xm(k), ym(k)),

H(ym(k),xm(k)),H(xm(k)–, ym(k)–),H(ym(k)–,xm(k)–)
) ∈M

http://www.journalofinequalitiesandapplications.com/content/2014/1/342
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and

(
H(xm(k)–, ym(k)–),H(ym(k)–,xm(k)–),H(xm(k)–, ym(k)–),

H(ym(k)–,xm(k)–),H(xm(k)–, ym(k)–),H(ym(k)–,xm(k)–)
) ∈M.

From the fact thatM is an (H ,F)-closed set which satisfies the transitive property, we have

(
H(xm(k), ym(k)),H(ym(k),xm(k)),H(xm(k), ym(k)),

H(ym(k),xm(k)),H(xm(k)–, ym(k)–),H(ym(k)–,xm(k)–)
) ∈M.

By this process, we can get

(
H(xm(k), ym(k)),H(ym(k),xm(k)),H(xm(k), ym(k)),

H(ym(k),xm(k)),H(xn(k), yn(k)),H(yn(k),xn(k))
) ∈M.

Now, using (), we have

G
(
H(xm(k)+, ym(k)+),H(xm(k)+, ym(k)+),H(xn(k)+, yn(k)+)

)
+G

(
H(ym(k)+,xm(k)+),H(ym(k)+,xm(k)+),H(yn(k)+,xn(k)+)

)
=G

(
F(xm(k), ym(k)),F(xm(k), ym(k)),F(xn(k), yn(k))

)
+G

(
F(ym(k),xm(k)),F(ym(k),xm(k)),F(yn(k),xn(k))

)
≤ φ

(
G

(
H(xm(k), ym(k)),H(xm(k), ym(k)),H(xn(k), yn(k))

)
+G

(
H(ym(k),xm(k)),H(ym(k),xm(k)),H(yn(k),xn(k))

))
≤ φ(rk). ()

From () and (), it follows that

rk ≤ δn(k) + δm(k) + φ(rk). ()

Letting k → +∞ in () and using () and () and limr→t+ φ(r) < t for all t > , we have

ε = lim
k→∞

rk ≤ lim
n→∞φ(rk) = lim

rk→ε+
φ(rk) < ε,

which is a contradiction. This shows that {H(xn, yn)}∞n= and {H(yn,xn)}∞n= are Cauchy se-
quences in theG-metric space (X,G). Since (X,G) is complete and from (), {H(xn, yn)}∞n=
and {H(yn,xn)}∞n= are G-convergent, there exist x, y ∈ X such that

lim
n→∞H(xn, yn) = lim

n→∞F(xn, yn) = x and

lim
n→∞H(yn,xn) = lim

n→∞F(yn,xn) = y.
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/342
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Since the pair {F ,G} satisfies the generalized compatibility, from (), we have

lim
n→∞F

(
H(xn, yn),H(yn,xn)

)
= lim

n→∞H
(
F(xn, yn),F(yn,xn)

)
and

lim
n→∞F

(
H(yn,xn),H(xn, yn)

)
= lim

n→∞H
(
F(yn,xn),F(xn, yn)

)
.

()

Suppose that assumption (a) holds. For all n≥ , from (), we have

H(x, y) =H
(
lim
n→∞F(xn, yn), limn→∞F(yn,xn)

)
= lim

n→∞H
(
F(xn, yn),F(yn,xn)

)
= lim

n→∞F
(
H(xn, yn),H(yn,xn)

)
= F

(
lim
n→∞H(xn, yn), limn→∞H(yn,xn)

)
= F(x, y)

and

H(y,x) =H
(
lim
n→∞F(yn,xn), limn→∞F(xn, yn)

)
= lim

n→∞H
(
F(yn,xn),F(xn, yn)

)
= lim

n→∞F
(
H(yn,xn),H(xn, yn)

)
= F

(
lim
n→∞H(yn,xn), limn→∞H(xn, yn)

)
= F(y,x).

We have

H(x, y) = F(x, y) and H(y,x) = F(y,x).

Therefore, (x, y) is a coupled coincidence point of F and H .
Suppose now assumption (b) holds. Since {H(xn, yn)}∞n= converges to x, {H(yn,xn)}∞n=

converges to y, the pair {F ,G} satisfies the generalized compatibility, H is continuous and
by (), we have

lim
n→∞H

(
H(xn, yn),H(yn,xn)

)
=H(x, y)

= lim
n→∞H

(
F(xn, yn),F(yn,xn)

)
= lim

n→∞F
(
H(xn, yn),H(yn,xn)

)
()

and

lim
n→∞H

(
H(yn,xn),H(xn, yn)

)
=H(y,x)

= lim
n→∞H

(
F(yn,xn),F(xn, yn)

)
= lim

n→∞F
(
H(yn,xn),H(xn, yn)

)
. ()

From (), (), (), and assumption (b), for all n≥ , we have

(
H(xn, yn),H(yn,xn),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M. ()
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Then, by (), (), (), and the triangle inequality, we have

G
(
H(x, y),F(x, y),F(x, y)

)
+G

(
H(y,x),F(y,x),F(y,x)

)
≤G

(
H(x, y),F

(
H(xn, yn),H(yn,xn)

)
,F

(
H(xn, yn),H(yn,xn)

))
+G

(
F
(
H(xn, yn),H(yn,xn)

)
,F(x, y),F(x, y)

)
+G

(
H(y,x),F

(
H(yn,xn),H(xn, yn)

)
,F

(
H(yn,xn),H(xn, yn)

))
+G

(
F
(
H(yn,xn),H(xn, yn)

)
yn

)
),F(y,x),F(y,x))

≤ ϕ
(
G

(
H

(
H(xn, yn),H(yn,xn)

)
,H(x, y),H(x, y)

)
+G

(
H

(
H(yn,xn),H(xn, yn)

)
,H(y,x),H(y,x)

))
+G

(
H(x, y),F

(
H(xn, yn),H(yn,xn)

)
,F

(
H(xn, yn),H(yn,xn)

))
+G

(
H(y,x),F

(
H(yn,xn),H(xn, yn)

)
,F

(
H(yn,xn),H(xn, yn)

))
.

Letting now n → ∞ in the above inequality and using property of ϕ such that
limr→+ ϕ(r) = , we have

G
(
H(x, y),F(x, y),F(x, y)

)
+G

(
H(y,x),F(y,x),F(y,x)

)
= ,

which implies that H(x, y) = F(x, y) and H(y,x) = F(y,x). �

Next, we give an example to validate Theorem ..

Example . Let X = [, ], G(x, y, z) = |x – y| + |x – z| + |y – z|, and F ,H : X × X → X be
defined by

F(x, y) =

{
x–y

 if x ≥ y,
 if x < y

and

H(x, y) =

{
x + y if x≥ y,
 if x < y.

Clearly, H does not satisfy the mixed monotone property and if x > y, u = v �= , consider

H(x, y) ≤H(u, v) ⇒ x + y ≤ u + v

but F(x, y) = x – y = (x – y)(x + y) >  = F(u, v).

Then F is not H-increasing.
Now, we prove that for any x, y ∈ X, there exist u, v ∈ X such that F(x, y) = H(u, v) and

F(y,x) =H(v,u). It is easy to see that we have the following cases.
Case : If x = y, then we have F(y,x) = F(x, y) =  =H(, ).
Case : If x > y, then (x – y)x > (x – y)y and we have

F(x, y) =
x – y


=
(x – y)x + (x – y)y


=H

(
(x – y)x


,
(x – y)y



)
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and

F(y,x) =  =H
(
(x – y)y


,
(x – y)x



)
.

Case : If y > x, then (y – x)y > (y – x)x and we have

F(y,x) =
y – x


=
(y – x)y + (y – x)x


=H

(
(y – x)y


,
(y – x)x



)

and

F(x, y) =  =H
(
(y – x)x


,
(y – x)y



)
.

Now, we prove that the pair {F ,G} satisfies the generalized compatibility hypothesis. Let
{xn}∞n= and {yn}∞n= be two sequences in X such that

t = lim
n→∞F(xn, yn) = lim

n→∞H(xn, yn) and

t = lim
n→∞F(yn,xn) = lim

n→∞H(yn,xn).

Then we must have t =  = t and it is easy to prove that

lim
n→∞F

(
H(xn, yn),H(yn,xn)

)
= lim

n→∞H
(
F(xn, yn),F(yn,xn)

)
and

lim
n→∞F

(
H(yn,xn),H(xn, yn)

)
= lim

n→∞H
(
F(yn,xn),F(xn, yn)

)
.

Now, for all x, y, z,u, v,w ∈ X with (H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)) ∈ M =
X and let ϕ : [, +∞)→ [, +∞) be a function defined by ϕ(t) = t

 , we have[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
=

∣∣∣∣x – u


–
y – v



∣∣∣∣ +
∣∣∣∣x – u


–
z –w



∣∣∣∣ +
∣∣∣∣y – v


–
z –w



∣∣∣∣
+

∣∣∣∣u – x


–
v – y



∣∣∣∣ +
∣∣∣∣u – x


–
w – z



∣∣∣∣ +
∣∣∣∣v – y


–
w – z



∣∣∣∣
= 

(∣∣∣∣x – u


–
y – v



∣∣∣∣ +
∣∣∣∣x – u


–
z –w



∣∣∣∣ +
∣∣∣∣y – v


–
z –w



∣∣∣∣
)

= 
(∣∣∣∣ (x – u)(x + u)


–
(y – v)(y + v))



∣∣∣∣ +
∣∣∣∣ (x – u)(x + u)


–
(z –w)(z +w)



∣∣∣∣
+

∣∣∣∣ (y – v)(y + v)


–
(z –w)(z +w)



∣∣∣∣
)

≤ 


(∣∣(x + u) – (y + v)
∣∣ + ∣∣(x + u) – (z +w)

∣∣ + ∣∣(y + v) – (z +w)
∣∣)

= ϕ
(

(∣∣(x + u) – (y + v)

∣∣ + ∣∣(x + u) – (z +w)
∣∣ + ∣∣(y + v) – (z +w)

∣∣))
= ϕ

(∣∣(x + u) – (y + v)
∣∣ + ∣∣(x + u) – (z +w)

∣∣ + ∣∣(y + v) – (z +w)
∣∣

+
∣∣(x + u) – (y + v)

∣∣ + ∣∣(x + u) – (z +w)
∣∣ + ∣∣(y + v) – (z +w)

∣∣)
= ϕ

(
G

(
H(x,u),H(y, v),H(z,w)

)
+G

(
H(u,x),H(v, y),H(w, z)

))
.
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Therefore, condition () is satisfied. Thus, all the requirements of Theorem . are satisfied
and (, ) is a coupled coincidence point of F and G.

Next, we show the uniqueness of the coupled coincidence point and coupled fixed point
of F and G.

Theorem . In addition to the hypotheses of Theorem ., suppose that for every
(x, y), (z, t) ∈ X ×X, there exists (u, v) ∈ X ×X such that

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M and(
H(u, v),H(v,u),H(z, t),H(t, z),H(z, t),H(t, z)

) ∈M.

Then F and H have a unique coupled coincidence point. Moreover, if the pair {F ,H} is
commuting, then F and H have a unique coupled fixed point, that is, there exists a unique
(a,b) ∈ X such that

a =H(a,b) = F(a,b) and b =H(b,a) = F(b,a).

Proof From Theorem ., we know that F and H have a coupled coincidence point. Sup-
pose that (x, y), (z, t) are coupled coincidence points of F and H , that is,

F(x, y) =H(x, y), F(y,x) =H(y,x) and

F(z, t) =H(z, t), F(t, z) =H(t, z).
()

Now, we show that H(x, y) = H(z, t) and H(y,x) = H(t, z). By the hypothesis there exists
(u, v) ∈ X ×X such that

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M and(
H(u, v),H(v,u),H(z, t),H(t, z),H(z, t),H(t, z)

) ∈M.

We put u = u and v = v and define two sequences {H(un, vn)}∞n= and {H(vn,un)}∞n= as
follows:

F(un, vn) =H(un+, vn+) and F(vn,un) =H(vn+,un+) for all n≥ .

SinceM is (H ,F)-closed and

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M,

we have

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M

=
(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M

⇒ (
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈ M.
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From (H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)) ∈M, if we use again the property
of (H ,F)-closedness, then

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈ M

⇒ (
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M.

By repeating this process, we get

(
H(un, vn),H(vn,un),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M for all n≥ . ()

Using (), (), and (), for all n ≥ , we have

G
(
H(un+, vn+),H(x, y),H(x, y)

)
+G

(
H(vn+,un+),H(y,x),H(y,x)

)
=G

(
F(un, vn),F(x, y),F(x, y)

)
+G

(
F(vn,un),F(y,x),F(y,x)

)
≤ ϕ

(
G

(
H(un, vn),H(x, y),H(x, y)

)
+G

(
H(vn,un),H(y,x),H(y,x)

))
. ()

Using property that ϕ(t) < t and repeating this process, for all n ≥ , we get

G
(
H(un+, vn+),H(x, y),H(x, y)

)
+G

(
H(vn+,un+),H(y,x),H(y,x)

)
≤ ϕn(G(

H(u, v),H(x, y),H(x, y)
)
+G

(
H(v,u),H(y,x),H(y,x)

))
. ()

From ϕ(t) < t and limr→t+ ϕ(r) < t, it follows that limn→∞ ϕn(t) =  for each t > . There-
fore, from (), we have

lim
n→∞

(
G

(
H(un+, vn+),H(x, y),H(x, y)

)
+G

(
H(vn+,un+),H(y,x),H(y,x)

))
= . ()

This implies that

lim
n→∞G

(
H(un+, vn+),H(x, y),H(x, y)

)
=  and

lim
n→∞G

(
H(vn+,un+),H(y,x),H(y,x)

)
= .

()

Similarly, we show that

lim
n→∞G

(
H(un+, vn+),H(z, t),H(z, t)

)
=  and

lim
n→∞G

(
H(vn+,un+),H(t, z),H(t, z)

)
= .

()

From () and (), we have

H(x, y) =H(z, t) and H(y,x) =H(t, z). ()
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Now let the pair {F ,H} be commuting, we shall prove that F andH have a unique coupled
fixed point. Since

F(x, y) =H(x, y) and F(y,x) =H(y,x), ()

and F and H commutes, we have

H
(
H(x, y),H(y,x)

)
=H

(
F(x, y),F(y,x)

)
= F

(
H(x, y),H(y,x)

)
and

H
(
H(y,x),H(x, y)

)
=H

(
F(y,x),F(x, y)

)
= F

(
H(y,x),H(x, y)

)
.

()

Denote H(x, y) = a and H(y,x) = b. Then, by () and (), one gets

H(a,b) = F(a,b) and H(b,a) = F(b,a). ()

Therefore, (a,b) is a coupled coincidence point of F and H . Then, by () with z = a and
t = b, it follows that

a =H(x, y) =H(a,b) and b =H(y,x) =H(b,a). ()

Thus, (a,b) is a coupled fixed point of H , by (), (a,b) is also a coupled fixed point of F .
To prove the uniqueness, assume (p,q) is another coupled fixed point of F and H . Then,
by () and (), we have

p =H(p,q) =H(a,b) = a and q =H(q,p) =H(b,a) = b. �

Next, we give some applications of our results to coupled coincidence point theorems.

Corollary . Let (X,�) be a partially ordered set and M be a nonempty subset of X and
let there exists G be a G-metric on X such that (X,G) is a complete G-metric space.Assume
that F ,H : X×X → X are two generalized compatiblemappings such that F isH-increasing
with respect to �, H is continuous and has the mixed monotone property. Suppose that for
any x, y ∈ X, there exist u, v ∈ X such that F(x, y) = H(u, v) and F(y,x) = H(v,u). Suppose
that there exists ϕ ∈ � such that the following holds:

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ ϕ

(
G

(
H(x,u),H(y, v),H(z,w)

)
+G

(
H(u,x),H(v, y),H(w, z)

))
for all x, y, z,u, v,w ∈ X with F(x,u) � F(y, v)� F(z,w) and F(u,x)� F(v, y) � F(w, z).
Also suppose that either
(a) F is continuous or
(b) X has the following properties: for any two sequences {xn} and {yn} with

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y� yn for all n.

If there exists (x, y) ∈ X ×X with

H(x, y)� F(x, y) and H(y,x) � F(y,x).
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Then there exists (x, y) ∈ X × X such that H(x, y) = F(x, y) and H(y,x) = F(y,x), that is, F
and H have a coupled coincidence point.

Proof We define the subsetM ⊆ X by

M =
{
(x,u, y, v, z,w) ∈ X : x� y � z, and u� v � w

}
.

From Example .,M is a (H ,F)-closed set which satisfies the transitive property. For all
x, y, z,u, v,w ∈ X with H(x,u) � H(y, v) � H(z,w) and H(u,x) � H(v, y) � H(w, z), we have
(H(x,u),H(u,x),H(y, v),H(v, y),H(z,w),H(w, z)) ∈M. By (), we get

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ ϕ

(
G

(
H(x,u),H(y, v),H(z,w)

)
+G

(
H(u,x),H(v, y),H(w, z)

))
.

Since (x, y) ∈ X ×X with

H(x, y)� F(x, y) and H(y,x) � F(y,x). ()

We have

(
F(x, y),F(y,x),F(x, y),F(y,x),H(x, y),H(y,x)

) ∈ M.

Assumption (a) holds, and F is continuous. By assumption (a) of Theorem ., we have
H(x, y) = F(x, y) and H(y,x) = F(y,x).
Next, assumption (b) holds; since F is H-increasing with respect to �, using () and

(), we have

H(xn, yn) �H(xn+, yn+) and H(yn,xn) �H(yn+,xn+) for all n.

Therefore

(
H(xn+, yn+),H(yn+,xn+),H(xn+, yn+),

H(yn+,xn+),H(xn, yn),H(yn,xn)
) ∈M.

From H is continuous and by (), we have

lim
n→∞H

(
H(xn, yn),H(yn,xn)

)
=H(x, y) and

lim
n→∞H

(
H(yn,xn),H(xn, yn)

)
=H(y,x).

For any two sequences {H(xn, yn)}∞n= and {H(yn,xn)}∞n= such that {H(xn, yn)}∞n= is a non-
decreasing sequence in X with H(xn, yn) → x and {H(yn,xn)}∞n= is a non-increasing se-
quence in X with H(yn,xn) → y. Using assumption (b), we have

H(xn, yn) � x and H(yn,xn) � y for all n.
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Since H has the mixed monotone property, we have

H
(
H(xn, yn),H(yn,xn)

) �H(x, y),

H
(
H(yn,xn),H(xn, yn)

) �H(y,x).

Therefore, we have

(
H(xn, yn),H(yn,xn),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M,

and so assumption (b) of Theorem . holds. Now, since all the hypotheses of Theorem .
hold, then F and H have a coupled coincidence point. The proof is completed. �

Corollary . In addition to the hypotheses of Corollary ., suppose that for every
(x, y), (z, t) ∈ X ×X, there exists (u, v) ∈ X ×X which is comparable to (x, y) and (z, t). Then
F and H have a unique coupled coincidence point.

Proof We define the subsetM ⊆ X by

M =
{
(x,u, y, v, z,w) ∈ X : x� y � z, and u� v � w

}
.

From Example .,M is an (H ,F)-closed set which satisfies the transitive property. Thus,
the proof of the existence of a coupled coincidence point is straightforward by following
the same lines as in the proof of Corollary ..
Next, we show the uniqueness of a coupled coincidence point of F and H .
Since for all (x, y), (z, t) ∈ X ×X, there exists (u, v) ∈ X ×X such that

H(x, y) �H(u, v), H(y,x) �H(v,u)

and

H(z, t) �H(u, v), H(t, z) �H(v,u),

we can conclude that

(
H(u, v),H(v,u),H(x, y),H(y,x),H(x, y),H(y,x)

) ∈M and(
H(u, v),H(v,u),H(z, t),H(t, z),H(z, t),H(t, z)

) ∈M.

Therefore, since all the hypotheses of Theorem . hold, F and H have a unique coupled
coincidence point. The proof is completed. �
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