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Abstract
Let N be a normal subgroup of a p-solvable group G. The purpose of this paper is to
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non-central p-regular G-conjugacy classes of N are coprime. Some known results are
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1 Introduction
All groups considered in this paper are finite. Let G be a group, and x an element ofG. We
denote by xG the conjugacy class of G containing x and by |xG| the size of xG.
The relationship between the p-regular conjugacy class sizes and the structure of a group

G has been studied by many authors, see, for example, [–]. Let N be a normal subgroup
of a group G. Clearly N is the union of some conjugacy classes of G. So, it is interesting
to decide the structure of N by some arithmetical properties of the G-conjugacy class
contained in N , for example, [, , ]. Particularly, in [], we decided the structure of N
whenN possesses twoG-conjugate class sizes. In this paper, the case considered is thatN
has more than two G-conjugate class sizes.
In a recent paper [], the authors studied the structure ofG under the condition that the

largest two p-regular conjugacy class sizes (say, m and n) of G are coprime, where m > n
and p � n. Notice that, when G =N , the condition n dividing |N/Z(N)| is of course true, so
our aim is, by eliminating the assumption p � n, to investigate the properties of N under
the corresponding condition. More precisely, we prove the following.

TheoremA Let N be a normal subgroup of a p-solvable group G. If m = |bG| > |aG| = n are
the two longest sizes of the non-central p-regular G-conjugacy classes of N with (m,n) = 
and n dividing |N/Z(N)|,where a,b ∈ N , then either a p-complement of N/Z(N) is a prime
power order group or

(i) |N |p′ = |aN |p′ |bN |p′ |Z(N)|p′ ;
(ii) |xG| =m for any non-central p-regular element x ∈ CN (b). Furthermore, CN (b)p′ is

abelian;
(iii) if d and t are two non-central p-regular elements of N such that |tG| �=m = |dG|,

then (CN (t)∩CN (d))p′ = Z(N)p′ ≤ Z(G) and np′ divides |tN |.

Based on this, in Section , we give our improvement and generalization of [] by con-
sidering the case that p does not divide n.
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Let π be a set of some primes; we use xπ and xπ ′ for the π-component and the
π ′-component of x, respectively.Moreover,Gπ denotes aHall π-subgroup ofG,Gπ ′ aHall
π ′-subgroup of G, nπ the π-part of n whenever n is a positive integer. Apart from these,
we call an element x non-central if x /∈ Z(G), where Z(G) is the center ofG. Following [] a
group G is said to be quasi-Frobenius if G/Z(G) is a Frobenius group and then the inverse
images of the kernel and a complement of G/Z(G) are called the kernel and complement
of G.

2 Preliminaries
We first list some lemmas which are useful in the proof of our main result.

Lemma . [, Lemma .] Let N be a normal subgroup of a group G and x an element
of G. Then:
(a) |xN | divides |xG|;
(b) |(Nx)G/N | divides |xG|.

Lemma . Let N be a p-solvable normal subgroup of a group G and B = bG, C = cG with
(|B|, |C|) = , where b, c are two p-regular elements of N . Then:
(a) G = CG(b)CG(c).
(b) BC = CB is a p-regular G-conjugacy class of N and |BC| divides |B||C|.

Proof Set G =N in Lemma  of [], the proof is finished. �

Lemma . Let N be a p-solvable normal subgroup of a group G and B be a non-central
p-regular G-conjugacy class of N with the largest size. Then the following properties hold:
(a) Let C be a p-regular G-conjugacy class of N with (|B|, |C|) = , then |〈C–C〉| divides

|B|.
(b) Let n,m = |B| be two largest p-regular G-conjugacy class sizes of N with (m,n) = 

and D be a p-regular G-conjugacy class of N with |D| > . If (|D|,n) = , then |D| =m.

Proof (a) By Lemma .(b), CB is a p-regular G-conjugacy class of N . Clearly, |CB| ≥
|B|, so the hypotheses of the lemma imply that |CB| = |B|, from which it follows that
C–CB = B, and hence 〈C–C〉B = B, consequently |〈C–C〉| divides |B|.
(b) Suppose that A is a p-regular G-conjugacy class and |A| = n. Lemma .(b) implies

that DA is a p-regular G-conjugacy class. Also |DA| ≥ |A|, so |DA| = n orm. If |DA| = n,
then D–DA is a p-regular G-conjugacy class, and hence D–DA = A, which implies that
〈D–D〉A = A. It follows that |〈D–D〉| divides |A|. On the other hand, 〈D–D〉 ⊆ 〈A–A〉,
so |〈D–D〉| divides |〈A–A〉|. By (a), we find that |〈A–A〉| divides |B|, from which it fol-
lows that |〈D–D〉| divides |B|, a contradiction. Consequently |DA| =m, equivalently, |B|
divides |A||D|, it follows that |D| = |B| by the hypotheses of the lemma, as wanted. �

Lemma . Suppose that N is a p-solvable normal subgroup of a group G, Let B be a
non-central p-regular G-conjugacy class of N with the largest size.Write

M =
〈
D|D is a p-regular G-conjugacy class of N with

(|D|, |B|
)
= 

〉
.

ThenMp′ is abelian, furthermore, if (Z(G)∩N)p′ <Mp′ , then π (Mp′/(Z(G)∩N)p′ )⊆ π (B).
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Proof Write

K =
〈
D–D|D is a p-regular G-conjugacy class of N with

(|D|, |B|
)
= 

〉
.

By the definition of M and K , we have K = [M,G]. Let d ∈ D, where D is a p-regular
G-conjugacy class ofN with (|D|, |B|) = . Applying Lemma .(a), we have π (K ) ⊆ π (B),
which implies that (|K |, |D|) = , hence |dK | = . It shows that K = CK (d), so K ≤ Z(M).
Notice that M/K ≤ Z(G/K ), we find that M is nilpotent, hence M = P × Mp′ , where P ∈
Sylp(M). Obviously, (Z(G)∩N)p′ ≤Mp′ . If (Z(G)∩N)p′ <Mp′ , let r ∈ π (Mp′/(Z(G)∩N)p′ ),
R ∈ Sylr(M), then R� G. Also  �= [R,G] ≤ [M,G] = K , we have r ∈ π (K ) ⊆ π (B), which
implies that π (Mp′/(Z(G) ∩N)p′ ) ⊆ π (B). Suppose that D is a generating class of M and
d ∈ D, then |dR| divides |R|, and |dR| divides |D|. The fact that (|R|, |D|) =  implies that
R = CR(d), so R ≤ Z(M) by the nilpotence ofM, which shows thatMp′ is abelian. �

3 Proof of Theorem A
In this section we are equipped to prove the main result.

Proof of Theorem A Suppose that N/Z(N) is not a prime power order group. We will
complete the proof by the following steps:

Step  We may assume that Nr � Z(G) for every p′-prime factor r of |N |.

Otherwise, there exists a p′-prime factor r of |N | such that Nr ≤ Z(G), then N = Nr′ ×
Nr . Obviously, Nr′ satisfies the condition of the theorem. Application of the induction
hypothesis to |N | shows that the conclusion of the theorem holds, and hence we may
assume that Nr � Z(G) for every p′-prime factor r of |N |.

Step  If the p-regular element x ∈ Z(CG(b))∩N , then either x ∈ Z(G), or CG(x) = CG(b).

Obviously,CG(b) ≤ CG(x), which implies that |xG| divides |bG|, it follows that (|xG|,n) = .
If x /∈ Z(G), Lemma . shows that |xG| =m, so CG(x) = CG(b).

Step  We may assume that b is a prime power order q-element (q �= p).

Let q be a prime factor of o(b), bq be the q-component and CG(bq) �= G. Notice that
CG(b) = CG(bqbq′ ) = CG(bq) ∩ CG(bq′ ) ⊆ CG(bq), applying Step , we have CG(bq) = CG(b),
and this completes the proof by replacing b with bq.

Step  CN (b) = PbQb × L, where Pb is a Sylow p-subgroup of CN (b), Qb is a Sylow q-sub-
group of CN (b), L is a {p,q}′-Hall subgroup of CN (b) with L ≤ Z(CG(b)). Particularly, if
L� Z(G), then CN (b)p′ ≤ Z(CG(b)).

Let x ∈ CN (b) be a {p,q}′-element. Notice that CG(bx) = CG(b)∩CG(x)≤ CG(b), we find
that |bG| divides |(bx)G|, so the maximality of |bG| implies that |bG| = |(bx)G|, and hence
CG(bx) = CG(b) ≤ CG(x), from which it follows that x ∈ Z(CG(b)). Consequently, CN (b) =
PbQb × L, where Pb is a Sylow p-subgroup of CN (b), Qb is a Sylow q-subgroup of CN (b), L
is a {p,q}′-Hall subgroup of CN (b) with L ≤ Z(CG(b)).
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Particularly, if L� Z(G), let y ∈ L be a non-central prime power order r-element, then
Step  implies that |yG| = m, and hence CG(y) = CG(b). By the above argument, we have
CN (y) = PyRy × Ly, where Py is a Sylow p-subgroup of CN (b), Ry is a Sylow r-subgroup of
CN (b), Ly is a {p, r}′-Hall subgroup of CN (b) with Ly ≤ Z(CG(b)). Clearly, CN (b) = Pb ×LLy,
so CN (b)p′ = LLy ≤ Z(CG(b)).

Step  q �m.

If q|m, then q � n, and of course we have q � |aN | by Lemma .. Notice that |aN | = |N :
CN (a)| = |CN (b) : CN (a) ∩ CN (b)|, hence CN (a) ∩ CN (b) contains a Sylow q-subgroup of
CN (b), which implies that b ∈ CN (a) ∩ CN (b), therefore a ∈ CN (b). We distinguish two
cases according to the structure of CN (b).
() If L� Z(G), Step  implies that CN (b)p′ ≤ Z(CG(b)). By the above a ∈ CN (b), we have

CG(b) ≤ CG(a), which leads to |aG| dividing |bG|, a contradiction.
() If L ≤ Z(G), then we may assume that a is a q-element since a ∈ CN (b) = PbQb × L.

For every {p,q}′-element x ∈ CN (a), we have CG(ax) = CG(a) ∩ CG(x) ≤ CG(a), the hy-
pothesis of the theorem shows that CG(ax) = CG(a) ≤ CG(x), from which it follows that
x ∈ Z(CG(a)). Notice that b ∈ CN (a), so x ∈ CN (b), which implies that x ∈ L, consequently
a p-complement of N/Z(N) is a prime power order group, a contradiction.

Step  We may assume that a is a {p,q}′-element.

Let a = aqaq′ , where aq, aq′ are the q-component and q′-component of a, respectively.
Notice that CG(a) = CG(aq) ∩ CG(a′

q) ⊆ CG(aq); we have aq ∈ M, where M is ever defined
in Lemma .. If aq /∈ Z(G), then, by Lemma ., q ∈ π (Mp′/(Z(G) ∩ N)p′ ) ⊆ π (m), in
contradiction to Step .

Step  CN (a)q ≤ Z(G)q.

Suppose that there exists a non-central q-element y ∈ CN (a), then CG(ay) = CG(a) ∩
CG(y) ⊆ CG(a), so we haveCG(ay) = CG(a) by the hypothesis of the theorem. It follows that
ay ∈ M, which implies that y ∈ M because of a ∈ M. So q ∈ π (Mp′/(Z(G) ∩N)p′ ) ⊆ π (m),
in contradiction to Step . Hence, CN (a)q ≤ Z(G)q, as required.

Step 
(.) (CN (a)∩CN (b))p′ = Z(N)p′ ≤ Z(G).
(.) |N |p′ = |aN |p′ |bN |p′ |Z(N)|p′ .

(.) Our immediate object is to show that (CN (a) ∩ CN (b))p′ ≤ Z(G). Otherwise, then
there exists a non-central p-regular element y ∈ CN (a) ∩ CN (b). In view of Step , if
L ≤ Z(G), then we may assume that y is a q-element. So the q-element y lies in CN (a),
in contradiction to Step . So another possibility L � Z(G) must prevail, which implies
that y ∈ CN (b)p′ . Keeping in mind that CN (b)p′ ≤ Z(CG(b)), we have CG(y) = CG(b) by the
hypotheses, from which it follows that a ∈ CN (y) = CN (b). Applying CN (b)p′ ≤ Z(CG(b))
once again, we have CG(b) ≤ CG(a), a contradiction, as wanted. Consequently, (CN (a) ∩
CN (b))p′ ≤ (Z(G)∩N)p′ . Notice that (Z(G)∩N)p′ ≤ Z(N)p′ andZ(N)p′ ≤ (CN (a)∩CN (b))p′ ,
so (CN (a)∩CN (b))p′ = Z(N)p′ , as required.
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(.) Next, the conclusion |N |p′ = |aN |p′ |bN |p′ |Z(N)|p′ is to be dealt with. Obviously,
(|aN |, |bN |) =  by Lemma . in terms of (|aG|, |bG|) = , which implies that N = CN (a)×
CN (b). This leads to |N | = |CN (a)||CN (b)|/|CN (a) ∩ CN (b)|, and hence |N | = |aN ||bN | ×
|CN (a)∩CN (b)|. Notice that (CN (a)∩CN (b))p′ = Z(N)p′ , andwe have |N |p′ = |aN |p′ |bN |p′ ×
|Z(N)|p′ , as wanted.

Step  It followed that n = |aN |pα , where α ≥ . And hence, if L ≤ Z(G), |aG| is at most a
{p,q}-number.

Notice that |N | = |aN ||bN ||CN (a) ∩ CN (b)| and (CN (a) ∩ CN (b))p′ = Z(N)p′ , and by the
hypothesis that n divides |N/Z(N)|, we have n = |aN |pα , where α ≥ . On the other hand,
|aN | = |CN (b)|/|CN (a)∩CN (b)|. By what has already been proved, we find that, if L ≤ Z(G),
then |aN | is at most a {p,q}-number, and so is |aG|.

Step  |xG| =m for any non-central p-regular element x ∈ CN (b), and therefore CN (b)p′

is abelian.

By the structure of CN (b), we distinguish two cases:
() If L � Z(G), then CN (b)p′ ≤ Z(CG(b)) by Step . Obviously, CN (b)p′ is abelian. In

addition, for any non-central p-regular element x ∈ CN (b), we find that |xG| divides |bG|,
application of Lemma . yields |xG| =m.
() If L ≤ Z(G), by Step , we know |aG| is at most a {p,q}-number. Also, x ∈ CN (b) =

PbQb×L is a non-central p-regular element; wemay assume that x ∈Qb \Z(G) if necessary
by a suitable conjugate.
On the other hand, we know Mp′ is abelian and Z(G)q ∩ N ≤ Mp′ ≤ CN (a), by Step ,

we can write Mp′ = S × (Z(G)q ∩ N) where q � |S|. Notice that 〈x〉 acts coprimely on the
abelian subgroup S, and by coprime action properties, we have

S =
[
S, 〈x〉] ×CS(x).

Denote by U = [S, 〈x〉]. As a ∈ S, we can write a = uw with u ∈ U , w ∈ CS(x). Consider the
element g = wx; we have

CG(g) = CG(w)∩CG(x)≤ CG(x).

If |gG| =m, then |xG| =m by Lemma . since |xG| divides |gG|.
If |gG| = n, notice that |xG| divides |gG|, then x ∈ Mq. However, Mq ≤ CN (a)q ≤ Z(G)q,

a contradiction.
So we are left with only one alternative: |gG| < n. Keeping in mind that G is a p-solvable

group, let T be a Hall {p,q}-subgroup of G, ST is a subgroup of G since S is a normal
subgroup of G. Notice that

∣∣ST : CST (g)
∣∣ ≤ ∣∣gG

∣∣ < n =
∣∣aG

∣∣

=
∣∣G : CG(a)

∣∣

=
∣∣G : CG(a)

∣∣{p,q}

= |T | : ∣∣CG(a)
∣∣{p,q}. (.)
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Moreover, since S�G, S is abelian, S ∩ T = , and S ≤ CG(w) we have

CST (g) = CST (w)∩CST (x)

= SCT (w)∩CS(x)CT (x)

= CS(x)
[
SCT (w)∩CT (x)

]

= CS(x)
[
CT (w)∩CT (x)

]
. (.)

We denote D = CT (w)∩CT (x). Combining (.) and (.), we have

|T |
|CG(a)|{p,q} >

|S||T |
|CS(x)||D| .

This implies that |D| : |CG(a)|{p,q} > |S : CS(x)| = |U|.
On the other hand, as D≤ CG(x) and U = [S, 〈x〉], then D normalizes U . Also,

CD(u) = CG(u)∩D = CT (u)∩CT (w)∩CT (x)≤ CT (a)∩CT (x),

so

∣∣CD(u)
∣∣ ≤ ∣∣CT (a)∩CT (x)

∣∣ ≤ ∣∣CG(a)
∣∣{p,q}.

Therefore

∣∣uD
∣∣ =

∣∣D : CD(u)
∣∣ = |D| : ∣∣CD(u)

∣∣ ≥ |D| : ∣∣CG(a)
∣∣{p,q} > |U|,

a contradiction.
So the argument on the above three cases forces |xG| =m.
Next, we show that (CN (b))p′ is abelian when L ≤ Z(G). Notice that CN (b) = PbQb × L,

it is enough to show that Qb is abelian. For any non-central element x ∈ Qb, we have
CS(x) ≤ Z(G)p′ . Otherwise, by the above, we have |xG| =m. Replacing b with x, we have
(CN (a) ∩ CN (b))p′ � Z(G), which contradicts Step . Therefore Qb/Qb ∩ Z(G) acts on the
group S/S ∩ Z(G) fixed-point-freely, which implies that Qb/Qb ∩ Z(G) is cyclic or a gen-
eralized quaternion. So, if Qb is not abelian, then q =  and Qb/Qb ∩ Z(G) is a generalized
quaternion group. Now b ∈ Z(Qb) but b /∈ Z(G), so there exists an element y ∈ Qb and
y /∈ Z(Qb) such that b = yc where c ∈ Z(G) ∩ Qb. So CG(y) ≤ CG(b), which indicates that
y ∈ Z(CG(b)), and of course we have y ∈ Z(Qb), a contradiction. ThereforeQb is abelian, as
required.

Step  If d and t are two non-central p-regular elements of N such that |tG| �=m = |dG|,
then:
(.) (CN (t)∩CN (d))p′ = Z(N)p′ ≤ Z(G).
(.) |aN |p′ divides |tN |, and hence np′ divides |tN |.

(.) Firstly, it will be established that (CN (t)∩CN (d))p′ ≤ Z(G). Otherwise, there exists
a non-central p-regular element y ∈ CN (t) ∩ CN (d), and we will distinguish two cases as
for the structure of CN (d).

http://www.journalofinequalitiesandapplications.com/content/2014/1/34
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() If L � Z(G), then CN (d)p′ ≤ Z(CG(d)) by Step , which implies that y ∈ Z(CG(d)).
However, y is non-central, the hypotheses of the theorem shows that CG(y) = CG(d), from
which it follows that t ∈ CN (d)p′ . Notice thatCN (d)p′ ≤ Z(CG(d)), we haveCG(t) = CG(d) by
the hypotheses of the theorem, but this contradicts the fact that |tG| �=m = |dG|. Therefore
(CN (t)∩CN (d))p′ ≤ Z(G).
() Suppose that L ≤ Z(G). Our immediate object is to show that t can be assumed to

be a q′-element. In fact, let tq be the q-component of t. If tq /∈ Z(G), Step  implies that
|tqG| =m. Notice that CG(t) ≤ CG(tq), we have |tG| =m by Lemma ., against the fact that
|tG| �=m = |dG|. It follows that tq ∈ Z(G), so CG(t) = CG(tq′ ), where tq′ is the q′-component
of t. Thus, without loss of generality, we may assume that t is a q′-element.
Also, in this case, we may assume that y is a q-element. Keeping in mind that q � m,

application of Step  once again, we have |yG| =m. Moreover,

CG(ty) = CG(t)∩CG(y) ⊆ CG(y),

which implies that |(ty)G| =m by the maximality of m. So CG(ty) = CG(y) ≤ CG(t), which
shows that |tG| =m by Lemma .(b), a contradiction. Thus, (CN (d)∩CN (t))p′ ≤ Z(G).
Next, in a similar manner as in Step (.), the equality in (.) follows.
(.) Consider the quotient group (CN (b)/Z(N))p′ and the set {tN }. For any x̄ ∈

(CN (b)/Z(N))p′ and y ∈ {tN }, without loss of generality, we may assume that x̄ = xZ(N)
where x ∈ CN (b), and we set

yx̄ = yx.

Clearly, (CN (b)/Z(N))p′ acts as a group on the set {tN } through the above action.Obviously,
tN ∩ CN (b) = ∅ and (CN (t) ∩ CN (b))p′ = Z(N)p′ , this shows that the group (CN (b)/Z(N))p′

acts on the set {tN } fixed-point-freely. Therefore |CN (b)/Z(N)|p′ divides |tN |. Notice that
|CN (b)/Z(N)|p′ = |aN |p′ , so we find that |aN |p′ divides |tN |. By Step , np′ divides |tN |, which
is fairly straightforward. �

Corollary  Suppose that G is a group. Let |bG| =m > n = |aG| be the two longest sizes of
the non-central conjugacy classes of G. If (m,n) = , then G is solvable and the conjugacy
class size of the element in G is exactly , n or m.

Proof Let p be a prime and p be not a prime factor of |G|, then G is p-solvable. Obviously,
n divides |G/Z(G)|. So, in Theorem A, by taking N = G, we have |xG| = np′ = n if |xG| �=
m, from which it follows that x ∈ Mp′ . On the other hand, |yG| = n for any non-central
element y ∈ CG(a). In fact, if |yG| =m, we have y ∈ CG(a) ∩ CG(y), in contradiction to (iii)
in Theorem A. It follows that CG(a) =Mp′ is abelian. By Theorem A, CG(b) is abelian, and
the solvability of G is obtained. �

4 Application of Theorem A
Based on Theorem A, we consider the case that p does not divide n.

TheoremB Let N be a normal subgroup of a p-solvable group G. If m = |bG| > |aG| = n are
the two longest sizes of the non-central p-regular G-conjugacy classes of N with (m,n) = 
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and n dividing |N/Z(N)|, where a,b ∈N and p � n, then either a p-complement of N/Z(N)
is a prime power order group or

(i) the p-regular G-conjugacy class sizes of N are exactly , n andm.
(ii) Let x be a non-central p-regular element of N . If x ∈ CN (a), then |xG| = n; if

x ∈ CN (b), then |xG| =m.
(iii) A p-complement of N is a solvable quasi-Frobenius group with abelian kernel and

complement.
(iv) The conjugacy class sizes of a p-complement of N are exactly , |aN |, and |bN |p′ .

Proof Suppose that a p-complement ofN/Z(N) is not a prime power order subgroup, and
t, d are two non-central p-regular elements of N with |tG| �=m = |dG|.
(i) Now, we show the G-conjugacy class size of the p-regular element of N is , n or m.

Obviously, |tG| = n is to be dealt with. Since n is a p′-number, by Theorem A, we find that
n divides |tG|, forcing |tG| = n, as wanted.
(ii) Let x ∈ CN (a) be a non-central p-regular element. If |xG| = m, then x ∈ (CN (a) ∩

CN (x))p′ , in contradiction to (iii) in Theorem A. So |xG| = n. By Theorem A once again,
the conclusion (ii) is obtained.
(iii) Let CN (a)p′CN (b)p′ =H , thenH =Mp′CN (b)p′ is a p-complement ofN . Now, CN (a)p′

(=Mp′ ) and CN (b)p′ are abelian, we find that H is solvable. Taking into account (CN (a) ∩
CN (b))p′ = Z(N)p′ by TheoremA, we find that Z(H) = Z(N)p′ . For convenience, we employ
‘ ’ to work in the factor groupmodulo Z(H). Notice that |Mp′ | = |CN (a)p′ | divides |bN | and
|CN (b)p′ | divides |aN |, so we have (|CN (b)p′ |, |Mp′ |) = .
Now, Mp′ is an abelian normal subgroup of H . To prove that H is a Frobenius group,

we are left to show CMp′ (x̄) =  for any non-central element x ∈ CN (b)p′ . Otherwise, there
exists a non-central element y ∈ Mp′ such that  �= ȳ ∈ CMp′ (x̄), then (xy)o(x̄) = (x̄ȳ)o(x̄) =
ȳo(x̄) �=  since (o(x̄),o(ȳ)) = . Hence

xyo(x̄) = ȳo(x̄) ∈ CN (x)∩CN (xy) = CN (x)∩CN (xy) = CN (x)∩CN (y),

so CN (x)∩CN (y) contains a non-central p-regular element.
Notice that |xG| = m and |yG| = n; by Theorem A, we have (CN (x) ∩ CN (y))p′ ≤ Z(G),

in contradiction to the previous paragraph. So a p-complement of N is a solvable quasi-
Frobenius group with the abelian kernelMp′ and complement CN (b)p′ .
(iv) Let x ∈H be a non-central element. We have |xG| = n orm by (i). If |xG| = n, then

∣∣xH
∣∣ =

∣∣H : CH (x)
∣∣ =

∣∣CN (b)p′/Z(N)p′
∣∣ =

∣∣CN (b)/CN (a)∩CN (b)
∣∣ =

∣∣aN
∣∣.

If |xG| =m, then CN (x)p′Mp′ is also a p-complement ofN . In view of the p-solvability ofN ,
replacing H if necessary by a suitable conjugate, we may assume that CN (x)p′ ≤H . Notice
that CN (x)p′ ∩Mp′ ≤ (CN (x)∩CN (a))p′ = Z(N)p′ , we have |CN (x)p′ | = |CN (b)p′ |. Also,

CN (b)p′/Z(N)p′ = CN (b)p′/Z(H) = CN (b)p′ ,

keeping in mind that (|CN (b)p′ |, |Mp′ |) = , by the solvability ofH , we find that CN (x)p′ and
CN (b)p′ are conjugate in H . Consequently, we may assume that there exists an element
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g ∈ N such that xg ∈ CN (b), so

∣∣xH
∣∣ =

∣∣xgH
∣∣ =

∣∣H : CH
(
xg

)∣∣ =
∣∣CN (a)p′/Z(N)p′

∣∣

=
∣∣CN (a)/CN (a)∩CN (b)

∣∣
p′

=
∣∣bN

∣∣
p′ .

So the conjugacy class sizes of H are , |aN |, and |bN |p′ . �

Corollary  [, Theorem A] Suppose that G is a p-solvable group. Let m > n >  be the two
longest sizes of the non-central p-regular conjugacy classes of G. Suppose that (m,n) = 
and p is not a prime divisor of n. Then G is solvable and
(a) the p-regular conjugacy class sizes of G are exactly , n, andm;
(b) a p-complement of G is a quasi-Frobenius group with abelian kernel and

complement. Furthermore, its conjugacy class sizes are exactly , n, and mp′ .

Proof Obviously, n divides |G/Z(G)|. So, in Theorem B, by taking N =G, the proof of this
corollary is finished. �
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