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Abstract

In this paper, by the nonlinear scalarization method, a global error bound of a weak
vector variational inequality is established via a regularized gap function. The result
extends some existing results in the literature.
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1 Introduction

Throughout this paper, let K be a closed convex subset of an Euclidean space R" and
F:R" — B(R",R™) be a continuously differentiable mapping. We consider a weak vector
variational inequality (WVVI) of finding x* € K such that

(F(x*),x—x*) ¢ —intC, VxeK,

where C C R™ is a closed convex and pointed cone with nonempty interior int C. (WVVI)
was firstly introduced by Giannessi [1]. It has been shown to have many applications in
vector optimization problems and traffic equilibrium problems (e.g., [2, 3]).

Error bounds are to depict the distance from a feasible solution to the solution set, and
have played an important role not only in sensitivity analysis but also in convergence anal-
ysis of iterative algorithms. Recently, kinds of error bounds have been presented for weak
vector variational inequalities in [4—7]. By using a scalarization approach of Konnov [8],
Li and Mastroeni [5] established the error bounds for two kinds of (WVVIs) with set-
valued mappings. By a regularized gap function and a D-gap function for a weak vector
variational inequality, Charitha and Dutta [4] obtained the error bounds of (WVVI), re-
spectively. Recently, in virtue of the regularized gap functions, Sun and Chai [6] studied
some error bounds for generalized (WVVIs). By using the image space analysis, Xu and
Li [7] got a gap function for (WVVI). Then, they established an error bound for (WVVI)
without the convexity of the constraint set. These papers have a common characteristic:
the solution set of (WVVI) is a singleton [6, 7]. Even though the solution set of (WVVI) is
not a singleton [4, 5], the solution set of the corresponding variational inequality (VI) is a
singleton, when their results reduce to (VI).

In this paper, by the nonlinear scalarization method, we study a global error bound of
(WVVI). This paper is organized as follows. In Section 2, we establish a global error bound
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of (VI) via the generalized gap functions. In Section 3, we discuss a global error bound of
(WVVI) by the nonlinear scalarization method.

2 A global error bound of (VI)
Let h: R" — R U {+00} be a proper lower semicontinuous function, and let S =
{x € R"|h(x) < 0}. & has a global error bound if there exists v > 0 such that

dx,S) <th(x),, VxeX,

where K(x), := max{h(x),0} and d(x,S) := inf{||x — s|||s € S} if S is nonempty and d(x,S) =
+o00 if S is empty. f : R” — R” is said to be coercive on K if

(fx),x—y) _

xeK,||x|—+00 [l%]|

+00, VyeKk.

f:R" — R" is said to be strongly monotone on R” with the modulus 2 > 0 if
(f@) —f(x)x—&) = A|x -« ||2, Vx,x' € R".
In this section, we establish a global error bound of (VI) of finding x € K such that
(fx),y-x)>0, Vyek,

where f': R” — R" is a continuously differentiable mapping.

To study the error bound of (VI), we need to construct a class of merit functions which
were made to reformulate (VI) as an optimization problem; see [9-16]. One of such func-
tions is a generalized regularized gap function [17] defined by

fr(x) = —yiglg{(f(x),y—x) +ypy}, VxeR',y >0, 1)
where ¢ : R” x R" — R is a real-valued function with the following properties:
(P1) ¢ is continuously differentiable on R" x R".
(P2) ¢(x,y) >0, Vx,y € R" and the equality holds if and only if x = y.
(P3) ¢(x,-) is uniformly strongly convex on R” with the modulus 8 > 0 in the sense that

o y1) — 0(x,72) = (Voo 32), 71 — 32) + Blyr = 321”, Vo, 31,02 € R,

where V,¢ denotes the partial derivative of ¢ with respect to the second variable.
(P4) Va¢(-,y) is uniformly Lipschitz continuous on R” with the modulus «; i.e., for all
xeR",

[ Voo, 1) = Vag(x,90) | <eliyn =21l V1,2 € R
Now we recall some properties of ¢ in (1).

Proposition 2.1 The following statements hold for each x,y € K:
(i) (Vag(x,y),u) < allx—yllllul, Yu € span(K - x).
(i) Bllx—yI* <o y) < (a-pB)llx-yl>
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(i) () = (Vap(x,9),5 —x) = ~( = B) |l — yl>.
(iv) Vool(x,y) =0 ifand only ifx = y.

Proof Parts (i)-(iii) are taken from [14, Lemma 2.1] and part (iv) is from [17, Lemma 2.1].
O

Remark 2.1 In light of (ii) in Proposition 2.1, it holds true that o > 2.
Then we list some basic properties of the generalized regularized gap function f, .

Proposition 2.2 The following conclusions are valid for (VI).
(i) Foreveryx € R", there exists a unique vector y% (x) € K at which the infimum in (1)
is attained, i.e.,

Sy &) = ={f (%), (%) — %) — y 9 (x, 5% (%))
(ii) f, is a gap function of (VI).

(iii) x =¥ (x) if and only if x is a solution of (VI).
(iv) f, is continuously differentiable on R" with

Vf, (&) = =V (@) (75 (x) - x) + (%) - ¥ Vig(x,5% (x)).

(v) y% and f, are both locally Lipschitz on R".
(vi) Iff is coercive on K, then (VI) has a nonempty compact solution set.
(vii) £y (x) = By Ily§ (x) - xl|?, Vx € K.

Proof Parts (i)-(iv) are from [16], part (v) from [18, Lemma 3.1] and part (vi) from [11,
Proposition 2.2.7].

It follows from (ii) and (iii) that we only need to prove (vii) for x € K'\ S. Since y¥ (x) is
the minimizer of the function

G():= (f(x), . —x) +yex,-) onk,
the first-order optimality condition implies that
(VG ),y -y x)=0, VyeKk.
Letting y = x, we get

(VGO ), %) +#) = 0,

(f (@) + ¥ Vag (%, 5% (%)), % (x) — ) < 0.

It follows from (P3) that the mapping G is strongly convex on R” with the modulus 8 > 0,
i.e., Vx,91,y, € R"

G(x,1) — Gx,p2) = (%) + ¥ Va@(x,92), 01 = 32) + BY lly1 = y2 1%
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Letting y1 = x and y, = 5% (x), by f, (x) = —G(x, % (x)), we obtain

£, = (@) + Vo (,95(x)), % = ¥ (0)) + By |7 (6) — x| .
Thus, one has f, (x) > By |y (x) - x[|>. O

Theorem 2.1 Let f be coercive on K and y(a — 28) < jr. Assume that ¢ satisfies
(P5) (Vip(x, y5 () + V2o (x, 55 (%)), ¥ (%) — x) = 0, Vx € K.
Suppose further that the following condition holds:

(2)

s inf{(d, Vf(x)d)‘x ck\sg= P } 50,

llyy (x) — x|

where S is the solution set of (VI). Then \/E has a global error bound with the modulus

{ 2By 2By }
max , .
u+2yB-ya By

Proof It follows from (vi) of Proposition 2.2 that S is a nonempty compact set of K. If x € S,
then the assertion obviously holds. Let x € K \ S. Then f, (x) > 0. For brevity, we denote

w_

w:=yY(x) —xand d := Tl

. It follows from [19, Theorem 2.5] that we only need to prove

. 2yB -
V\/E(x)df—mm{u+2;ﬁ_yya,\/§_y}. 3)

It follows from (iv) of Proposition 2.2 that

Vi, )w = (-Vfx)w + f(x) — y Vig(x,5% (%)), w)
= (-Vf@w, w) + [f(x), w) + y o (%, 5% (x))
~v[(V1g (%95 (®)), w) + ¢ (%55 () ]
= (=Vf @w, w) =1, @) - v [(Vi (.55 (), W) + 0 (%, () ]

By (P5) and (2), we have

Vy 0w < —ullwl? - £, ) — ¥ [~(Vao (x,54 %)), w) + 0 (%, (%)) ].
It follows from (iii) of Proposition 2.1 that

Vy )w < —plwll* - £, (x) + (@ = B)Iwll*.
Thus,

v - O lno vl plivl /)

< . (4)
2/f, () 2/f, () 2wl

In light of (4) and (vii) of Proposition 2.2, we have

[n=yl-plliwl By
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If u < y (o — B), then it follows from y (@ — 28) < u that

[yl@-p8)-nl By ya-pn-2yB
N e e A

If u > y(x — B), then

V¢E@M§-X§z. (6)

0. (5)

Hence, (3) follows from (5) and (6). The proof is complete. O

Now we use two examples to show that (2) cannot be dropped and that Theorem 2.1 is

applicable, respectively.

Example 2.1 Consider K = R, ¢(x,y) = %lx -9y = % and f(x) = x>. Then we can easily
get that o =28 =1, y¥(x) = x - 2f (x), f, (x) = x% and S = {0}. It is clear that f is coercive
on K and p = 0. Thus, (2) does not hold. Moreover, it is obvious that \/E does not have a

global error bound.

Example 2.2 Consider K = [0, +00), ¢(x,y) = %|x —9/%, ¥y =1 and f(x) = x. Then we can
easily get that @ =28 =1, Vf(x) =1, ¥ (x)=0,f, (%) = %xz and S = {0}. It is clear that f is
coercive on K and (2) holds. Thus, it follows from Theorem 2.1 that \/fy has a global error
bound.

By [21, Proposition 2.3(ii)] Huang and Ng [14, Theorem 2.1] have obtained the following
conclusion. Now we give a slightly different proof by Theorem 2.1.

Corollary 2.1 Letf be strongly monotone on R" with the modulus A > 0 and y (¢ —28) < A.
Assume that ¢ satisfies (P5). Then \/E has a global error bound with the modulus

{ 2J/By 2V5V}
max N .
A+2yB-ya By

Proof Letx € K'\ S and w = y¥(x) — x. Since f is continuously differentiable, then
Sl +tw) =f(x) + {{Vf (%), w) + o(t),

where @ — 0 as ¢ — 0. Since f is strongly monotone with the modulus 1, one has
(f(x + tw) — f(x), tw) > Al 2w,

which implies that
(w, VFx)w) = Al

Thus, (2) holds. Moreover, the strong monotonicity of f implies the coerciveness of f (cf.
(22, Remark 2.1]). Thus, by Theorem 2.1, we get that ,/f, has a global error bound. O
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3 A global error bound of (WVVI)

In this section, by the nonlinear scalarization method and by Theorem 2.1, we discuss
a global error bound of (WVVI). The dual cone of C is defined by C* := {§ € R" :
(€,2) > 0,Vz € C}. For each & € R, ||&|| := sup{|(&,2)|: ||z]| <1}, where (§,z) denotes the
value of £ at z. Let e € intC and B} := {£ € C*: (§,e) = 1}. It is well known that B} is a

compact convex base of C*.

Lemma 3.1 [20]

S D) SE = U SS:
§eC*\{0} £eB}

where Sg := {x € K: ()1, &F;(x*),x — x*) > 0,Vy € K} and S is the solution set of (WVVI).

Recall the generalized regularized gap function for (WVVI) which is defined by

¢]/ (x) = minf)/ (xr ‘i:)r

geB;

where f,, (x,&) = max,ex {(} 1" &Fi(%), % — y) — y9(%,9)}. When ¢ (x,y) = 5 ||lx — y||%, the gen-
eralized regularized gap function reduces to the regularized gap function which was de-
fined in [4].

Theorem 3.1 Let y(a — 2f) < mingeps ue. Assume that ¢ satisfies (P5). For each & € B},
suppose that & o F is coercive on K, and that the following condition holds:

7)

We = inf{(d, (o VF)(x)d))x eK\S,d= M}

Iy (x) —

Then /¢, has a global error bound with the modulus

max )
geBf Ue +2YyB—-ya By

S

Proof 1t follows from (vi) of Proposition 2.2 that S¢ is a nonempty compact set of K for
each & € B!. If x € §, then the assertion obviously holds. Let x € K'\ S. Then ¢, (x) > 0 and
there exists & € B} such that f, (x,&) = ¢, (x). It follows from Theorem 2.1 that

d(x, SE() ) = Tt Vf}’ (x’ 50)7

2JBy 2JBy
ug+2yp-ya’ By

d(x,S) <d(x,Sey) < Tey - \/fy (%, &0) < rsrgx Te -/ &y (%)

Hence, /¢, has a global error bound with the modulus maxgcps 7:. O

where 7; = max{ }. Thus, by Lemma 3.1, one has
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Remark 3.1 If F; is strongly monotone with the modulus A; fori=1,2,...,m and C = R7’,

it follows from [21, Proposition 2.3] that

Moreover, the strong monotonicity of F; implies the coerciveness of F; (cf. [22, Remark 2.1])
and that (VI) has a unique solution (cf’ [11, Theorem 2.3.3]). Thus, by Theorem 3.1, we get

(d, (£ o VE)w)d) = Alld|*>, VdeR'&eB.

that ,/¢, has a global error bound. Hence, our results extend those of [4, Theorem 2.9].
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