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1 Introduction
Well-posedness plays a crucial role in the theory and methodology of scalar optimiza-
tion problems. In , Tykhonov [] first introduced the concept of well-posedness for a
global minimizing problem, which has become known as Tykhonov well-posedness. Soon
after, Levitin-Polyak [] strengthened the concept of Tykhonov well-posedness, already
known as the Levitin-Polyak (for short, LP) well-posedness. Subsequently, some authors
studied the LP well-posedness for convex scalar optimization problems with functional
constraints [], vector optimization problems [], variational inequality problems [], gen-
eralized mixed variational inequality problems [], generalized quasi-variational inequal-
ity problems [], generalized vector variational inequality problems [], equilibrium prob-
lems [], vector equilibriumproblems [], generalized vector quasi-equilibriumproblems
[] and generalized quasi-variational inclusion and disclusion problems []. Another im-
portant notion of the well-posedness for a minimizing problem is the well-posedness by
perturbations or the extended well-posedness due to Zolezzi []. The notion of the well-
posedness by perturbations establishes a form of continuous dependence of the solutions
upon a parameter. Recently, Lemaire et al. [] introduced the well-posedness by pertur-
bations for variational inequalities and Fang et al. [] considered the well-posedness by
perturbations for mixed variational inequalities in Banach spaces. For more details about
thewell-posedness by perturbations, we refer readers to [, ] and the references therein.
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On the other hand, for optimization problems, there is another concept of well-
posedness, which has become known as the Hadamard well-posedness. The concept of
Hadamard well-posedness was inspired by the classical idea of Hadamard, which goes
back to the beginning of the last century. It requires the existence and uniqueness of the
optimal solution together with continuous dependence on the problem data. Some re-
sults about the Hadamard well-posedness can be found in [–]. Recently, the concept
of Hadamardwell-posedness has been extended to vector optimization problems and vec-
tor equilibrium problems. Li and Zhang [] investigated the Hadamard well-posedness
for vector optimization problems. Zeng et al. [] obtained a sufficient condition for the
Hadamard well-posedness of a set-valued optimization problem. Salamon [] investi-
gated the generalized Hadamard well-posedness for parametric vector equilibrium prob-
lems with trifunctions.
Very recently, Lin and Chuang [] studied the well-posedness in the generalized

sense for variational inclusion problems and variational disclusion problems, the well-
posedness for optimization problems with variational inclusion problems, variational
disclusion problems as constraints. Motivated by Lin, Wang et al. [] investigated the
well-posedness for generalized quasi-variational inclusion problems and for optimization
problems with generalized quasi-variational inclusion problems as constraints. A system
of generalized quasi-variational inclusion problems, which consists of a family of gener-
alized quasi-variational inclusion problems defined on a product set, was first introduced
by Lin []. It is well known that the system of generalized quasi-variational inclusion
problems contains the system of variational inequalities, the system of equilibrium prob-
lems, the system of vector equilibrium problems, the system of vector quasi-equilibrium
problems, the system of generalized vector quasi-equilibrium problems, the system of
variational inclusions problems and variational disclusions problems as special cases. For
more details, one can refer to [–] and the references therein. Nonetheless, to the
best of our knowledge, there is no paper dealing with the Levitin-Polyak and Hadamard
well-posedness for the system of generalized quasi-variational inclusion problems. There-
fore, it is very interesting to generalize the concept of Levitin-Polyak and Hadamard well-
posedness to the system of generalized quasi-variational inclusion problems.
Motivated and inspired by research work mentioned above, in this paper, we study the

LP and Hadamard well-posedness for the system of generalized quasi-variational inclu-
sion problems. This paper is organized as follows. In Section , we introduce the con-
cept of LP well-posedness for the system of generalized quasi-variational inclusion prob-
lems. Some characterizations of the LP well-posedness for the system of generalized
quasi-variational inclusion problems are shown in Section . Some results concernedwith
Hadamard well-posedness for the system of generalized quasi-variational inclusion prob-
lems are given in Section .

2 Preliminaries
Let I be an index set and (P,d) be ametric space. For each i ∈ I , letXi be ametric space, Yi

and Zi be Hausdorff topological vector spaces, Ki ⊂ Xi be a nonempty closed and convex
subset. SetX = �i∈IXi,K = �i∈IKi and Y = �i∈IYi. For each i ∈ I , letAi : K → Xi ,Ti : K →
Yi and Gi : K × Y × Ki → Zi be set-valued mappings. Let ei : K → Zi be a continuous
mapping. Throughout this paper, unless otherwise specified, we use these notations and
assumptions.
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Now, we consider the following system of generalized quasi-variational inclusion prob-
lems (for short, SQVIP).
Find x = (xi)i∈I ∈ K such that, for each i ∈ I , xi ∈ Ai(x) and there exists y = (yi)i∈I ∈ Ti(x)

satisfying

 ∈Gi(x, y, zi)

for all zi ∈ Ai(x). We denote by S the solution set of (SQVIP).
If the mapping Gi : K ×Y ×Ki → Zi is perturbed by a parameter p ∈ P, that is, Gi : P×

K×Y ×Ki → Zi such that, for some p∗ ∈ P,Gi(p∗,x, y, zi) =Gi(x, y, zi) for all (x, y, zi) ∈ K×
Y ×Ki, then, for any p ∈ P, we define a parametric system of generalized quasi-variational
inclusion problem (for short, PSQVIP): Find x = (xi)i∈I ∈ K such that, for each i ∈ I , xi ∈
Ai(x) and there exists y = (yi)i∈I ∈ Ti(x) satisfying

 ∈Gi(p,x, y, zi)

for all zi ∈ Ai(x).
Some special cases of (SQVIP) are as follows:
(I) If, for each i ∈ I , Fi : K × Y ×Ki → Zi is a mapping, Ci : K → Zi is a pointed,

closed and convex cone with intCi(x) �= ∅ for every x ∈ K , Gi(x, y, zi) reduces to a
single-valued mapping and Gi(x, y, zi) = Fi(x, y, zi) + Zi\ intCi(x) for all
(x, y, zi) ∈ K × Y ×Ki, then (SQVIP) reduces to the system of vector equilibrium
problems: Find x ∈ (xi)i∈I ∈ K such that, for each i ∈ I , xi ∈ Ai(x) and there exists
yi ∈ Ti(x) satisfying

Fi(x, y, zi) /∈ – intCi(x)

for all zi ∈ Ai(x), which has been studied by Peng and Wu [] and the references
therein.

(II) If, for each i ∈ I , Fi : K × Y ×Ki → Zi and �i : K ×Ki → Zi are set-valued
mappings, Ci : K → Zi is a pointed, closed and convex cone with intCi(x) �= ∅ for
all x ∈ K , Gi(x, y, zi) = Fi(x, y, zi) +�i(x, zi) + Zi\ intCi(x) for all
(x, y, zi) ∈ K × Y ×Ki, then (SQVIP) reduces to the system of set-valued vector
quasi-equilibrium problems of Chen et al. []: Find x = (xi)i∈I ∈ K such that, for
each i ∈ I , xi ∈ Ai(x) and there exists yi ∈ Ti(x) satisfying

Fi(x, y, zi) +�i(x, zi)� – intCi(x)

for all zi ∈ Ai(x).
(III) If the index set I is a single set, then (SQVIP) reduces to the generalized

quasi-variational inclusion problem studied in Wang et al. [, ] and the
references therein.

Definition . Let p∗ ∈ P and {pn} ⊂ P be a sequence such that pn → p∗. A sequence
{xn} ⊂ K is called a LP approximating solution sequence for (SQVIP) corresponding to
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{pn} if, for each i ∈ I and n ∈ N, there exists a sequence of nonnegative real numbers {εn}
with εn →  and yni ∈ Ti(xn) such that

di
(
xni ,Ai

(
xn

)) ≤ εn

and

 ∈Gi
(
pn,xn, yn, zi

)
+ B+(, εn)ei(xn)

for all zi ∈ Ai(xn), where B+(, εn) denote the closed interval [, εn].

Definition . () (SQVIP) is said to be LP well-posed by perturbations if it has a unique
solution and, for all {pn} ⊂ P with pn → p∗, every LP approximating solution sequence for
(SQVIP) corresponding to {pn} converges strongly to the unique solution.
() (SQVIP) is said to be generalized LP well-posed by perturbations if the solution set

S for (SQVIP) is nonempty and, for all sequences {pn} ⊂ P with pn → p∗, every LP ap-
proximating solution sequence for (SQVIP) corresponding to {pn} has some subsequence
which converges strongly to some point of S.

Definition . [] Let E, E be two topological spaces. A set-valued mapping F : E →
E is said to be:
() upper semicontinuous (for short, u.s.c.) at x ∈ E if, for any neighborhood V of F(x),

there exists a neighborhood U of x such that F(x)⊂ V for all x ∈U ;
() lower semicontinuous (for short, l.s.c.) at x ∈ E if, for each open set V in E with

F(x)∩V �= ∅, there exists an open neighborhood U(x) of x such that F(x′)∩V �= ∅
for all x′ ∈U(x);

() u.s.c. (resp., l.s.c.) on E if it is u.s.c. (resp., l.s.c.) on every point x ∈ E;
() continuous on E if it is both u.s.c. and l.s.c. on E;
() closed if the graph of F is closed, i.e., the set gph(F) = {(x, y) ∈ E × E : y ∈ F(x)} is

closed in E × E.

Definition . [] Let Z and Z be two metric spaces. A set-valued mapping F : Z →
Z is said to be (s, s)-subcontinuous if, for any sequence {xn} converging strongly in Z, the
sequence {yn} with yn ∈ F(xn) has a strongly convergent subsequence.

Definition . [] Let A be a nonempty subset of X, the measure of noncompactness μ

of the set A is defined by

μ(A) = inf

{
ε > ,A ⊂

n⋃
i=

Ai,diamAi < ε, i = , , . . . ,n

}
.

Definition . [] Let A and B be two nonempty subsets of a Banach space X. The
Hausdorff metricH(·, ·) between A and B is defined by

H(A,B) =max
{
e(A,B), e(B,A)

}
,

where e(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ‖a – b‖.
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3 The Levitin-Polyak well-posedness for (SQVIP)
In this section, we discuss some metric characterizations of the LP well-posedness for
(SQVIP). First, we introduce the following LP approximating solution set for (SQVIP):

�(δ, ε) =
⋃

p∈B(p∗ ,δ)

{
x ∈ K : ∀i ∈ I,di

(
xi,Ai(x)

) ≤ ε and ∃yi ∈ Ti(x) such that

 ∈Gi(p,x, y, zi) + B+(, ε)ei(x),∀zi ∈ Ai(x)
}

for all δ, ε > , where B(p∗, δ) denotes the closed ball centered at p∗ with radius δ.
Clearly, we have the following:
() S ⊆ �(δ, ε) for all δ, ε > ;
() if  < δ < δ and  < ε < ε, then �(δ, ε) ⊆ �(δ, ε).
Next, we present some properties of �(δ, ε).

Proposition . For each i ∈ I , let Ti : K → Yi be compact-valued,Ai : K → Xi be closed-
valued and (p, y) → Gi(p,x, y, zi) be closed for all (x, zi) ∈ K ×Ki. Then S =

⋂
δ>,ε> �(δ, ε).

Proof Clearly, S ⊆ ⋂
δ>,ε> �(δ, ε). Hence we only need to show that

⋂
δ>,ε> �(δ, ε) ⊆ S.

If not, then there exists x ∈ ⋂
δ>,ε> �(δ, ε) such that x /∈ S. Thus, for any δ >  and ε > ,

we have x ∈ �(δ, ε)\S. For each i ∈ I and n ∈ N, it follows that x ∈ �( n ,

n )\S and there

exist pn ∈ B(p∗, n ) and yni ∈ Ti(x) such that

di
(
xi,Ai(x)

) ≤ 
n

()

and

 ∈Gi
(
pn,x, yni , zi

)
+ B+

(
,


n

)
ei(x) ()

for all zi ∈ Ai(x). Clearly, pn → p∗. Since {yni } ⊆ Ti(x) and Ti(x) is a compact set, there exist
a subsequence {ynki } of {yni } and yi ∈ Ti(x) such that ynki → yi and, for each k ∈ N ,

 ∈Gi
(
pnk ,x, ynki , zi

)
+ B+

(
,


nk

)
ei(x)

for all zi ∈ Ai(x). For all zi ∈ Ai(x), there exists λk ∈ B+(, 
nk
) such that

 ∈Gi
(
pnk ,x, ynki , zi

)
+ λkei(x)

for all zi ∈ Ai(x). Clearly, λk → . Since (p, y) �→Gi(p,x, y, zi) is closed for all (x, zi) ∈ K ×Ki,
this together with () implies that

 ∈Gi
(
p∗,x, yi, zi

)

for all zi ∈ Ai(x). Since Ai is closed-valued, it follows from () that xi ∈ Ai(x) and so x ∈ S,
which is a contradiction. This completes the proof. �
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Example . Let I be a single set, P = [–, ], X = Y = Z =R = (–∞, +∞) and K = [,+∞).
For any (p,x, y, z) ∈ P ×K × Y ×K , let

e(x) = , A(x) = [x, +∞), T(x) = {}, G(p,x, y, z) = (–∞, y – x].

Then it is easy to see that all the conditions of Proposition . are satisfied. By Proposi-
tion ., S =

⋂
δ>,ε> �(δ, ε). Indeed, for all δ, ε > ,

S =
{
x ∈ K : x ∈ A(x) and ∃y ∈ T(x) s.t.  ∈G(p,x, y, z),∀z ∈ A(x)

}
=

{
x ∈ [, +∞) :  – x ≥ 

}
= [, ]

and

�(δ, ε) =
⋃

p∈B(p∗ ,δ)

{
x ∈ K : d

(
x,A(x)

) ≤ ε and ∃y ∈ T(x)

s.t.  ∈G(p,x, y, z) + B+(, ε)e(x),∀z ∈ A(x)
}

= [,  + ε].

Therefore,
⋂

δ>,ε> �(δ, ε) = [, ] = S.

Proposition . For each i ∈ I , assume that
(i) P is a finite-dimensional space;
(ii) Ti : K → Yi is u.s.c. and compact-valued;
(iii) Ai : K → Xi is (s, s)-subcontinuous, l.s.c. and closed;
(iv) Gi : P ×K × Y ×Ki → Zi is closed.

Then �(δ, ε) is closed for any δ, ε > .

Proof For any δ, ε ≥ , let {xn} ⊂ �(δ, ε) and xn → x. Then there exists pn ∈ B(p∗, δ) such
that, for each i ∈ I ,

di
(
xni ,Ai

(
xn

)) ≤ ε ()

and there exists yni ∈ Ti(xn) such that

 ∈Gi
(
pn,xn, yn, zi

)
+ B+(, ε)ei

(
xn

)

for all zi ∈ Ai(xn). Since P is a finite-dimensional space, we can suppose that pn → p ∈
B(p∗, δ). In order to prove that x ∈ �(δ, ε), we first prove that, for each i ∈ I ,

di
(
xi,Ai(x)

) ≤ lim inf
n→∞ di

(
xni ,Ai

(
xn

)) ≤ ε.

Assume that the left inequality does not hold. Then there exists γ >  such that

lim inf
n→∞ di

(
xni ,Ai

(
xn

)) ≤ γ < di
(
xi,Ai(x)

)
.
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Thus there exist an increasing sequence {nk} and a sequence {uki } with uki ∈ Ai(xnk ) such
that

di
(
xnki ,uki

)
< γ .

Since, for each i ∈ I , Ai is closed and (s, s)-subcontinuous, the sequence {uki } has a subse-
quence, which is still denoted by {uki }, converging strongly to a point ui ∈ Ai(x). It follows
that, for each i ∈ I ,

γ < di
(
xi,Ai(x)

) ≤ di(xi,ui) ≤ lim inf
n→∞ di

(
xnki ,uki

) ≤ γ ,

which is a contradiction. Thus, for each i ∈ I , di(x,Ai(x))≤ ε. Since, for each i ∈ I , Ti : K →
Yi is u.s.c. and compact-valued, there exist a subsequence {ynki } of {yni } and yi ∈ Ti(x)
such that ynki → yi. For any zi ∈ Ai(x), since Ai is l.s.c., there exists a sequence {zki } with
zki ∈ Ai(xnk ) such that zki → zi and, for each k ∈N,

 ∈Gi
(
pnk ,xnk , ynk , zki

)
+ B+(, ε)ei

(
xnk

)
.

Since Gi is closed and ei is continuous, we obtain

 ∈Gi(p,x, y, zi) + B+(, ε)ei(x)

for all zi ∈ Ai(x). Thus x ∈ �(δ, ε) and so �(δ, ε) is closed. This completes the proof. �

Remark . If I is a single set and x ∈ A(x) for all x ∈ K , then Propositions . and . can
be considered as a generalization of Properties . and . of [], respectively.

In this paper, let d(x, y) = supi∈I di(xi, yi) for all x, y ∈ X. It is clear that (X,d) is a metric
space.

Theorem . For each i ∈ I , let Xi be complete.We assume that
(i) Ti : K → Yi is u.s.c. and compact-valued;
(ii) Ai : K → Xi is (s, s)-subcontinuous, l.s.c. and closed;
(iii) Gi : P ×K × Y ×Ki → Zi is closed.

Then (SQVIP) is LP well-posed by perturbations if and only if, for any δ, ε > ,

�(δ, ε) �= ∅, diam�(δ, ε)→  ()

as (δ, ε)→ (, ).

Proof Suppose that (SQVIP) is LP well-posed by perturbations. Then (SQVIP) has a
unique solution x∗ ∈ �(δ, ε) for any δ, ε > . This implies that �(δ, ε) �= ∅ for any δ, ε > .
Now, we show that

diam�(δ, ε) → 

as (δ, ε) → (, ). If not, then there exist γ > , sequences {δn} and {εn} of nonnegative
real numbers with (δn, εn) → (, ), and the sequences {xn} and {xn} with xn,xn ∈ �(δ, ε)

http://www.journalofinequalitiesandapplications.com/content/2014/1/321


Li et al. Journal of Inequalities and Applications 2014, 2014:321 Page 8 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/321

satisfying

d
(
xn,xn

)
> γ ()

for all n ∈ N. Since xn,xn ∈ �(δ, ε), there exist pn,pn ∈ B(p∗, δn) and yni ∈ Ti(xn) and yni ∈
Ti(xn) such that

di
(
xni ,Ai

(
xn

)) ≤ εn,  ∈Gi
(
pn,xn, yn, zi

)
for all zi ∈ Ai(xn) and

di
(
xni ,Ai

(
xn

)) ≤ εn,  ∈Gi
(
pn,xn, yn, zi

)
for all zi ∈ Ai(xn). Clearly, pn → p∗ and pn → p∗. Thus {xn} and {xn} are both the LP ap-
proximating solution sequences for (SQVIP) corresponding to {pn} and {pn}, respectively.
Since (SQVIP) is LP well-posed by perturbations, {xn} and {xn} have to converge strongly
to the unique solution x∗ of (SQVIP), which is a contradiction to ().
Conversely, suppose that () holds. Let {pn} ⊆ P be any sequence with pn → p∗ and {xn}

be the LP approximating solution sequence for (SQVIP) corresponding to {pn}. Then there
exist a sequence {εn} of nonnegative real numbers with εn →  and yni ∈ Ti(xn) such that

di
(
xni ,Ai

(
xn

)) ≤ εn ()

and

 ∈Gi
(
pn,xn, yn, zi

)
+ B+(, εn)ei

(
xn

)
()

for all n ∈ N. Set δn = d(pn,p∗). Then pn ∈ B(p∗, δn) and xn ∈ �(δn, εn) and δn → . It
follows from () that {xn} is a Cauchy sequence and so it converges strongly to a point
x ∈ K . By the similar arguments as in the proof of Proposition ., we can show that xi ∈
Ai(x) and there exists yi ∈ Ti(x) such that

 ∈Gi
(
p∗,x, y, zi

)
()

for all zi ∈ Ai(x). Thus x is a solution of (SQVIP).
Finally, to complete the proof, it is sufficient to prove that (SQVIP) has a unique solution.

If (SQVIP) has two distinct solutions x and x, then it is easy to see that x,x ∈ �(δ, ε) for
any δ, ε > . It follows that

 < d(x,x) ≤ diam�(δ, ε)

for all δ, ε > , which contradicts (). Thus (SQVIP) has a unique solution. This completes
the proof. �

Remark . If I is a single set, x ∈ A(x) for all x ∈ K , then Theorem . can be seen as a
generalization of Theorem . of [].
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Example . Let I be a single set, P = [–, ], X = Y = Z =R = (–∞, +∞) and K = [–, ].
For all (p,x, y, z) ∈ P ×K × Y ×K , let

e(x) = , A(x) = [x, ], T(x) = {–},
G(p,x, y, z) =

(
–∞,

(
p + 

)
(y – x)

]
.

Then A is (s, s)-subcontinuous, l.s.c. and closed, T is u.s.c. and compact-valued and G is
closed. For any δ, ε > , we have

S =
{
x ∈ K : x ∈ A(x) and ∃y ∈ T(x) s.t.  ∈G(p,x, y, z),∀z ∈ A(x)

}
=

{
x ∈ [–, ] : – – x≥ 

}
= {–}

and

�(δ, ε) =
⋃

p∈B(p∗ ,δ)

{
x ∈ K : d

(
x,A(x)

) ≤ ε and ∃y ∈ T(x)

s.t.  ∈G(p,x, y, z) + B+(, ε)e(x),∀z ∈ A(x)
}

=

⎧⎪⎨
⎪⎩
[–, ε

(p–δ)+ – ], p∗ > ,
[–, ε – ], p∗ = ,
[–, ε

(p+δ)+ – ], p∗ < 

for sufficiently small δ > . Therefore, diam�(δ, ε) →  as (δ, ε)→ (, ).

Theorem . For each i ∈ I , let Xi be complete and P be a finite-dimensional space. We
assume that

(i) Ti : K → Yi is u.s.c. and compact-valued;
(ii) Ai : K → Xi is (s, s)-subcontinuous, l.s.c. and closed;
(iii) Gi : P ×K × Y ×Ki → Zi is closed.

Then (SQVIP) is generalized LP well-posed by perturbations if and only if, for any δ, ε > ,

�(δ, ε) �= ∅, μ
(
�(δ, ε)

) →  ()

as (δ, ε)→ (, ).

Proof Suppose that (SQVIP) is generalized LP well-posed by perturbations. Then S is
nonempty.
Now, we prove that S is compact. Indeed, let {xn} be a sequence in S. Then {xn} is the

LP approximating solution sequence for (SQVIP) corresponding to {p∗}. Since (SQVIP)
is generalized LP well-posed by perturbations, {xn} has a subsequence which converges
strongly to a point of S. This implies that S is compact. For any δ, ε ≥ , since S ⊂ �(δ, ε),
we have �(δ, ε) �= ∅ and

H
(
�(δ, ε),S

)
= sup

x∈�(δ,ε)
d(x,S).
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Since S is compact,

μ
(
�(δ, ε)

) ≤ H
(
�(δ, ε),S

)
+μ(S) =  sup

x∈�(δ,ε)
d(x,S).

In order to prove μ(δ,�(ε))→ , we need to prove that

sup
x∈�(δ,ε)

d(x,S)→ 

as (δ, ε) → (, ). Assume that this is not true. Then there exist α > , and the sequences
{δn} and {εn} of nonnegative real numberswith (δn, εn) → (, ) and {xn}with xn ∈ �(δn, εn)
such that, for n sufficiently large,

d
(
xn,S

)
> α. ()

Since xn ∈ �(δn, εn), there exists pn ∈ B(p∗, δn) such that, for each i ∈ I , di(xni ,Ai(xn)) ≤ εn

and there exists yni ∈ Ti(xn) satisfying

 ∈Gi
(
pn,xn, yn, zi

)
+ B+(, εn)ei

(
xn

)
for all zi ∈ Ai(xn), it follows that pn → p∗ and {xn} is the LP approximating solution se-
quence for (SQVIP) corresponding to {pn}. By the generalized LP well-posedness by per-
turbations of (SQVIP), there exists a subsequence {xnk } of {xn} which converges strongly
to a point of S, which contradicts ().
Conversely, suppose that () holds. From Propositions . and ., �(δ, ε) is closed for

any δ, ε >  and S =
⋂

δ>,ε> �(δ, ε). Since μ(�(δ, ε)) →  as (δ, ε) → (, ), theorem on
p. in [] can be applied and one concludes that the set S is nonempty compact and

H
(
�(δ, ε),S

) →  ()

as (δ, ε) → (, ). Let {pn} be any sequence in P with pn → p∗. If {xn} is the LP approxi-
mating solution sequence for (SQVIP) corresponding to {pn}, then there exists a sequence
{εn} of nonnegative numbers with εn →  and {yni } with yni ∈ Ti(xn) such that

di
(
xni ,Ai

(
xn

)) ≤ εn

and

 ∈Gi
(
pn,xn, yn, zi

)
+ B+(, εn)ei

(
xn

)
for all zi ∈ Ai(xn). For each n ∈N, let δn = d(pn,p∗). Then pn ∈ B(p∗, δn) and xn ∈ �(δn, εn).
Thus it follows from () that

d
(
xn,S

) ≤H
(
�(δn, εn),S

) → 

as (δn, εn) → (, ). The compactness of S implies that (SQVIP) is generalized LP well-
posed by perturbations. This completes the proof. �
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Remark . If I is a single set, x ∈ A(x) for every x ∈ K , then Theorem . can be consid-
ered as a generalization of Theorem . of [].

Example . Let I be a single set, P = [–, ], X = Y = Z =R = (–∞, +∞) and K = [,+∞).
For all (p,x, y, z) ∈ P ×K × Y ×K , let

e(x) = , A(x) = [,x], T(x) = {},
G(p,x, y, z) =

(
–∞,

(
p + 

)
(y – x + z)

]
.

Then all the conditions of Theorem . are satisfied. It follows that, for any δ, ε > ,

S =
{
x ∈ K : x ∈ A(x) and ∃y ∈ T(x) s.t.  ∈G(p,x, y, z),∀z ∈ A(x)

}
= [, ]

and

�(δ, ε) =
⋃

p∈B(p∗ ,δ)

{
x ∈ K : d

(
x,A(x)

) ≤ ε and ∃y ∈ T(x)

s.t.  ∈G(p,x, y, z) + B+(, ε)e(x),∀z ∈ A(x)
}

=

⎧⎪⎨
⎪⎩
[, ε

(p–δ)+ + ], p∗ > ,
[, ε + ], p∗ = ,
[, ε

(p+δ)+ + ], p∗ < 

for sufficiently small δ > . Therefore,μ(�(δ, ε))→  as (δ, ε) → (, ). FromTheorem .,
(SQVIP) is generalized LP well-posedness by perturbations.

4 The Hadamard well-posedness for (SQVIP)
In this section, for each i ∈ I , we assume that Xi, Yi and Zi are finite-dimensional spaces,
Ki ⊂ Xi is a nonempty closed and convex subset.
For each i ∈ I , letMi be the collection of all (Ai,Ti,Gi) such that
(i) Ai : K → Xi is continuous and bounded compact-convex-valued;
(ii) Ti : K → Yi is u.s.c. and bounded compact-convex-valued;
(iii) Gi : K × Y ×Ki → Zi is u.s.c. and bounded compact-convex-valued.

Definition . [] A sequence {Dn} of nonempty subsets of Rn is said to be convergent
to D in the sense of Painlevé-Kuratowski (for short, Dn

P.K.−−→D) if

lim sup
n→∞

Dn ⊂D ⊂ lim inf
n→∞ Dn,

where lim infn→∞ Dn, the inner limit, consists of all possible limit points of the sequences
{xn} with xn ∈ Dn for all n ∈ N and lim supn→∞ Dn, the outer limit, consists of all possible
cluster points of such sequences.

Definition . [] A sequence {Fn} of nonempty set-valued mappings Fn : Rk → Rh

is said to be convergent to a set-valued mapping F : Rk → Rh in the sense of Painlevé-
Kuratowski (for short, Fn

P.K.−−→ F) if gph(Fn)
P.K.−−→ gph(F), where gph(Fn) = {(x, z) ∈Rk ×Rh :

x ∈ domFn, z ∈ Fn(x)} and gph(F) = {(x, z) ∈Rk ×Rh : x ∈ domF , z ∈ F(x)}.
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We say that, for each i ∈ I , a sequence {(An
i ,Tn

i ,Gn
i )} ⊂ Mi converges to (Ai,Ti,Gi) ∈ Mi

in the sense of Painlevé-Kuratowski (for short, (An
i ,Tn

i ,Gn
i )

P.K.−−→ (Ai,Ti,Gi)) if An
i

P.K.−−→ Ai,
Tn
i

P.K.−−→ Ti and Gn
i

P.K.−−→Gi.
Next, we give the definition of theHadamardwell-posedness for (SQVIP). Asmentioned

above, we denote by S the solution set of (SQVIP) determined by (Ai,Ti,Gi) for each i ∈ I .
Similarly, we denote by Sn the solution set of (SQVIP)n determined by (An

i ,Tn
i ,Gn

i ) for each
i ∈ I and n ∈N, where (SQVIP)n is formulated as follows:
Find x ∈ K such that, for each i ∈ I , there exists yi ∈ Tn

i (x) satisfying

xi ∈ An
i (x),  ∈Gn

i (x, y, zi)

for all zi ∈ An
i (x).

Definition . (SQVIP) is said to be Hadamard well-posed if its solution set S �= ∅ and,
when, for each i ∈ I , every sequence of pairs {(An

i ,Tn
i ,Gn

i )} ⊂Mi converges to (Ai,Ti,Gi) ∈
Mi in the sense of Painlevé-Kuratowski, any sequence {xn} satisfying xn ∈ Sn has a subse-
quence which converges strongly to a point in S.

Theorem . For each i ∈ I , let (An
i ,Tn

i ,Gn
i ) ∈Mi for all n ∈N. Then the solution set Sn for

(SQVIP)n is closed.

Proof Without loss of generality, we suppose that n = . Take any sequence {xn} ⊂ S sat-
isfying xn → x∗. For each i ∈ I , since Ki is closed, it follows that K is closed and x∗ ∈ K .
Now, {xn} ⊂ S implies that, for each i ∈ I , there exists yni ∈ T 

i (xn) such that

xni ∈ A
i
(
xn

)
,  ∈G

i
(
xn, yn, zi

)
for all zi ∈ A

i (xn). For each i ∈ I , since yni ∈ T 
i (xn), T 

i (·) is u.s.c. and compact-valued, this
implies that there exist y∗

i ∈ T 
i (x∗) and a subsequence {ynki } of {yni } such that ynki → y∗

i .
Since A

i (·) is continuous and compact-valued, it follows that A
i (·) is closed, this implies

that x∗
i ∈ A

i (x∗). For each zi ∈ A
i (x∗), since A

i (·) is continuous, there exists a sequence
{zni } ⊆ Ki with zni ∈ A

i (xn) such that

zni → zi,  ∈G
i
(
xn, yn, zni

)
.

Since G
i is u.s.c. and compact-valued, we know that G

i is closed, which implies that  ∈
G

i (x∗, y∗, zi). Therefore, S is closed. This completes the proof. �

Theorem . For each i ∈ I , let Ki be a nonempty compact subset of Xi, (An
i ,Tn

i ,Gn
i ) ∈ Mi

for all n ∈N, (Ai,Ti,Gi) ∈ Mi and (An
i ,Tn

i ,Gn
i )

P.K.−−→ (Ai,Ti,Gi). Then

lim sup
n→∞

Sn ⊂ S. ()

Proof Suppose that () does not hold. Then there exists x∗ satisfying

x∗ ∈ lim sup
n→∞

Sn, x∗ /∈ S. ()
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From (), it follows that there exists xn ∈ Sn such that the sequence {xn} has a subse-
quence, which is still denoted by {xn}, converging strongly to x∗. For each i ∈ I , since Ki

is compact, we know that K is compact. Again, from Sn ⊂ K , S ⊂ K and Theorem ., it
follows that Sn and S are both compact. Thus, for n sufficiently large, there exists ε > 
satisfying

xn /∈ B(S, ε),

where B(S, ε) =
⋃

y∈S B(y, ε) and B(y, ε) denotes the ball with the center y and the radius ε.
It follows from xn ∈ Sn that, for each i ∈ I , there exists yni ∈ Tn

i (xn) such that

xni ∈ An
i
(
xn

)
,  ∈Gn

i
(
xn, yn, zni

)
for all zni ∈ An

i (xn). For each i ∈ I , since Tn
i

P.K.−−→ Ti, we have

lim sup
n→∞

gph
(
Tn
i
) ⊂ gph(Ti). ()

Again, since {xn} is bounded and {Tn
i } is bounded, there exists a subsequence of {yni } with

yni ∈ Tn
i (xn) converging strongly to a point y∗

i ∈ Yi. This together with () implies that
y∗
i ∈ Ti(x∗). By similar arguments, we also know that x∗

i ∈ Ai(x∗). Since An
i

P.K.−−→ Ai, we have

gph(Ai) ⊂ lim inf
n→∞ gph

(
An
i
)
. ()

By Theorem . of [], for all zi ∈ Ai(x∗), there exist a sequence {zni } converging strongly
to zi and {xn} such that zni ∈ An

i (xn) for all n ∈ N and xn → x∗. It follows from () that
there exists gni ∈Gn

i (xn, yn, zni ) such that gni = . Since Gn
i

P.K.−−→ Gi, we have

lim sup
n→∞

gph
(
Gn

i
) ⊂ gph(Gi). ()

Again, since {xn}, {yn}, {zn}, and {Gn
i } are bounded, it follows that there exists a subse-

quence of {gni } converging strongly to a point gi ∈ Zi and so, from (), gi ∈ Gi(x∗, y∗, zi).
Since gni =  for all n ∈ N, we get gi = . This implies that x∗ ∈ S, which is a contradiction.
This completes the proof. �

Theorem . For each i ∈ I , let Ki be a nonempty compact subset of Xi, (Ai,Ti,Gi) ∈ Mi

and S �= ∅. Then (SQVIP) is Hadamard well-posed.

Proof For each i ∈ I , let {(An
i ,Tn

i ,Gn
i )} ⊂ Mi, (An

i ,Tn
i ,Gn

i )
P.K.−−→ (Ai,Ti,Gi) and {xn} be a se-

quence satisfying xn ∈ Sn. For each i ∈ I , by the compactness of Ki, we know that K is
compact. Again, from {xn} ⊂ K and the compactness of K , it follows that xn → x∗ ∈ K and
so, from Theorem .,

lim sup
n→∞

Sn ⊂ S.

Thus {xn} has a subsequence which converges strongly to an element in S and so (SQVIP)
is Hadamard well-posed. This completes the proof. �
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