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Abstract
In this paper, noncompact CAT(0) versions of the Fan-Browder fixed point theorem
are established. As applications, we obtain new minimax inequalities, a saddle point
theorem, a fixed point theorem for single-valued mappings, best approximation
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noncooperative games in the setting of noncompact CAT(0) spaces. These results
generalize many well-known theorems in the literature.
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1 Introduction
Fixed point theorems for set-valuedmappings play a vital role in various fields of pure and
applied mathematics. In , Browder [] proved that every set-valued mapping with
convex values and open fibers from a compact Hausdorff topological vector space to a
convex space has a continuous selection. By using this selection theorem and the Brouwer
fixed point theorem, Browder [] obtained the famous Browder fixed point theoremwhich
is equivalent to the Fan section theorem established by Fan [] in . For this reason, the
Browder fixed point theorem is also called in the literature the Fan-Browder fixed point
theorem. Since then, a body of generalizations and applications of the Fan-Browder fixed
point theorem have been extensively investigated by many authors; see, for example, [–
] and the references therein. In particular, Park [] discussed some updated unified
forms of KKM theorems under the framework of abstract convex spaces, which include
hyperconvex spaces as special cases.
We recall that a CAT() space is a special metric space and it does not possess any linear

structure. Many authors have made a lot of efforts to generalize the fixed point theory
from Euclidean spaces to CAT() spaces. Recently, a number of authors pay attention to
establish fixed point theorems in CAT() spaces. Kirk [, ] first studied the fixed point
theory in CAT() spaces. Since then, many authors have developed the fixed point theory
for single-valued and set-valued mappings in the setting of CAT() spaces. Dhompongsa
et al. [] proved that a nonexpansive mapping from a nonempty bounded closed convex
subset of a CAT() space to the family of nonempty compact subsets of the CAT() space
has a fixed point under suitable conditions. Shahzad [] obtained fixed point theorems
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for single-valued and set-valued mappings in CAT() spaces or R-trees. By using a Ky
Fan type minimax inequality in CAT() spaces, Shabanian and Vaezpour [] proved fixed
point theorems and best approximation theorems. More recently, Asadi [] studied the
existence problem of common fixed points for two mappings in CAT() spaces. Other
results, we refer the reader to the literature of Kirk [], Shahzad andMarkin [], Shahzad
[], and many others.
We know that bothCAT() and hyperconvex spaces are two interesting classes of spaces.

But a CAT() space may not be a hyperconvex, indeed a CAT() space is a hyperconvex
space if and only if it is a complete R-tree (see Kirk [] and the references therein).
Inspired and motivated by the results mentioned above, in this paper, we first estab-

lish generalized CAT() versions of the Fan-Browder fixed point theorem. As applica-
tions, newminimax inequalities, a saddle point theorem, a fixed point theorem for single-
valuedmappings, best approximation theorems, and existence theorems of ϕ-equilibrium
points formultiobjective noncooperative games are obtained in the setting of noncompact
CAT() spaces.

2 Preliminaries
LetR andN denote the set of all real numbers and the set of natural numbers, respectively.
Let X be a set. We will denote by X the family of all subsets of X, by 〈X〉 the family of
nonempty finite subsets of X. Let A be a subset of a topological space X, we will denote
the interior of A in X and the closure of A in X by intX A and clX A, respectively. Let X,
Y be two nonempty sets and T : X → Y be a set-valued mapping. Then the set-valued
mapping T– : Y → X is defined by T–(y) = {x ∈ X : y ∈ T(x)} for every y ∈ Y .
Now we introduce some notation and concepts related to CAT() spaces. For more de-

tails, the reader may consult [–, , –] and the references therein.
Let (E,d) be a metric space. A geodesic which joints the pair of points x,x ∈ E is a

mapping γ : [,a] ⊆ R → E such that γ () = x, γ (a) = x, and d(γ (t),γ (t′)) = |t – t′| for
every t, t′ ∈ [,a]. In particular, we have a = d(x,x). The image γ ([,a]) of γ is said to be
a geodesic segment joining x and x. If the segment γ ([,a]) is unique, then this geodesic
segment is denoted by [x,x]. The metric space (E,d) is said to be a geodesic space if,
for every x, y ∈ E, there is a geodesic jointing x and y, and (E,d) is called to be uniquely
geodesic if there is only one geodesic segment joining every pair of points x, y ∈ E.

Definition . ([, ]) Let D be a subset of a geodesic space (E,d). Then D is said to be
convex if every geodesic segment joining any two points in D is contained in D.

A geodesic triangleΔ in a geodesicmetric space (E,d) consists of three points x,x,x ∈
E and a geodesic segment between each pair of x,x,x ∈ E. All these geodesic segments
are called the edges of Δ. A comparison triangle for the geodesic triangle Δ in (E,d) is a
triangle Δ in the Euclidean plane R which consists of three vertices x,x,x ∈ R. The
triangle Δ has the same side lengths as Δ. That is,

dR (xi,xj) = d(xi,xj) for i, j ∈ {, , }.

We point out that such a comparison triangle always exists (see []). A geodesic space
is said to be a CAT() space if the equality d(x, y) ≤ dR (x, y) holds for every x, y ∈ Δ and
every x, y ∈ Δ. Every CAT() space (E,d) is uniquely geodesic (see []).
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Let x, y, y be points in a CAT() space (E,d) and y be the midpoint of the segment
[y, y]. Then the CAT() inequality implies the following inequality,

d(x, y) + d(x, y) ≥ d(x, y) +


d(y, y),

which is called the (CN) inequality of Bruhat and Tits [].
A subset of a CAT() space equipped with the induced metric, is a CAT() space if and

only if it is convex (see []). Let (E,d) be a CAT() space and D ⊆ E. Niculescu and
Rovenţa [] introduced the notion of a convex hull of D as follows:

co(D) =
∞⋃
n=

Dn,

where D = D and for n ≥ , the set Dn consists of all points in E which lie on geodesics
which start and end in Dn–.

Definition . ([]) Let D be a nonempty subset of a CAT() space (E,d). A set-valued
mapping G :D → E is called to be a KKMmapping if

co(F)⊆
⋃
x∈F

G(x) for every F ∈ 〈D〉.

Let K be a nonempty subset of a topological space X. If every continuous mapping φ :
K → K has a fixed point, then K is said to have the fixed point property.

Definition . ([]) A CAT() space (E,d) is said to have the convex hull finite property
if the closed convex hull of every nonempty finite subset of E has the fixed point property.

Lemma. ([]) Let (E,d) be a completeCAT() spacewith the convex hull finite property
and X be a nonempty subset of E. Suppose that H : X → X is a KKMmapping with closed
values and H(z) is compact for some z ∈ X. Then

⋂
x∈X H(x) �= ∅.

Lemma . Let (E,d) be a complete metric space. Then E is a geodesic space if and only if
for every x, y ∈ E, there exists m ∈ E such that d(x, z) = d(z, y) = 

d(x, y).

Proof The proof of sufficiency can be found in [, p.]. Therefore, it suffices to prove the
necessity. By the definition of a geodesic space, for every x, y ∈ E, there exists a mapping
γ : [,a] ⊆ R → E such that γ () = x, γ (a) = y, and d(γ (t),γ (t′)) = |t – t′| for every t, t′ ∈
[,a]. Take t = a

 ∈ [,a] and z = γ (t) ∈ E. Then we have d(x, z) = d(γ (),γ (t)) = a
 and

d(z, y) = d(γ (t),γ (a)) = a
 . Since d(x, y) = d(γ (),γ (a)) = a, it follows that d(x, z) = d(z, y) =


d(x, y). This completes the proof. �

Lemma . ([]) A geodesic space is a CAT() space if and only if it satisfies the (CN)
inequality.

Lemma . ([]) Every locally compact CAT() space (E,d) has the convex hull finite
property.
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Lemma . ([]) Let (E,d) be a CAT() space and let x, y ∈ E. Then, for every t ∈ [, ],
there exists a unique point z ∈ [x, y] such that d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y).

From now on, we will use the notation ( – t)x⊕ ty for the unique point z in Lemma ..

Lemma. ([]) Let (E,d) be aCAT() space and let x, y ∈ E such that x �= y.Then [x, y] =
{( – t)x⊕ ty : t ∈ [, ]}.

3 Fixed point theorems
In this section, we will develop four new versions of fixed point theorems in noncompact
CAT() spaces.

Theorem . Let (E,d) be a complete CAT() space with the convex hull finite property,
K be a nonempty compact subset of E, and F ,G : E → E be two set-valued mappings such
that

(i) for every y ∈ E, F(y) ⊆G(y) and G(y) is convex;
(ii) for every x ∈ E, F–(x) is open in E;
(iii) for every y ∈ K , F(y) �= ∅;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E con-
taining N such that

EN \K ⊆
⋃
x∈EN

intEN
(
G–(x)∩ EN

)
;

(iv) there exists a point x ∈ E such that clE(E \G–(x)) ⊆ K .

Then there exists ŷ ∈ E such that ŷ ∈G(ŷ).

Proof We distinguish the following two cases (iv) and (iv) for the proof.
Case (iv). Suppose the contrary. Then, for every y ∈ E, we have y /∈ G(y). Define G̃, F̃ :

E → E by

G̃(x) = clE
(
E \G–(x)

)∩K , x ∈ E,

F̃(x) =
(
E \ F–(x)

)∩K , x ∈ E.

Wewill prove that the family {G̃(x) : x ∈ E} has the finite intersection property. LetN ∈ 〈E〉
be given. Then, by (iv), there exists a nonempty compact convex subset EN of E contain-
ing N . Furthermore, we define two set-valued mappings G′,F ′ : EN → EN by

G′(x) = clEN
(
EN \G–(x)

)
and F ′(x) = EN \ F–(x), x ∈ EN .

By (i) and (ii), G′(x) ⊆ F ′(x) for every x ∈ EN . Since EN is compact and every G′(x) is rela-
tively closed in EN , it follows that every G′(x) is compact. Now we show that the mapping
G∗ : EN → EN defined by

G∗(x) = EN \G–(x), x ∈ EN ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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is a KKM mapping. Suppose the contrary. Then there exist A ∈ 〈EN 〉 and y ∈ co(A) ⊆ EN

such that

y /∈
⋃
x∈A

G∗(x) = EN
∖⋂

x∈A
G–(x).

Hence, we have y ∈⋂
x∈A G–(x) and A ⊆G(y). Therefore, we have y ∈ co(A) ⊆G(y) by (i),

which is a contradiction. Hence, G∗ is a KKM mapping and so is G′. By Lemma . and
(iv), we have

∅ �=
⋂
x∈EN

G′(x) =
⋂
x∈EN

clEN
(
EN \G–(x)

)⊆ EN ∩K .

Taking ŷ ∈⋂
x∈EN G′(x) leads to

ŷ ∈
⋂
x∈EN

G′(x) ⊆
⋂
x∈N

(
G′(x)∩K

)⊆
⋂
x∈N

(
clE

(
E \G–(x)

)∩K
)
=
⋂
x∈N

G̃(x),

which implies that the family {G̃(x) : x ∈ E} has the finite intersection property. By the
compactness of K , we have

⋂
x∈E G̃(x) �= ∅. Since G̃(x) ⊆ F̃(x) for every x ∈ E, it follows

that

∅ �=
⋂
x∈E

F̃(x) =
⋂
x∈E

(
E \ F–(x)

)∩K

=
(
E
∖⋃

x∈E
F–(x)

)
∩K

= K
∖⋃

x∈E
F–(x).

By (iii), for every y ∈ K , F(y) �= ∅ and so, K ⊆⋃
x∈E F–(x), which is a contradiction. There-

fore, there exists ŷ ∈ K such that ŷ ∈G(ŷ). This completes the proof.
Case (iv). Suppose the contrary. Then, for every y ∈ E, y /∈ G(y). Now let us define two

set-valued mappings G̃, F̃ : E → E by

G̃(x) = clE
(
E \G–(x)

)
, x ∈ E,

F̃(x) = E \ F–(x), x ∈ E.

By (i) and (ii), G̃(x) ⊆ F̃(x) for every x ∈ E. We show that G̃ is a KKM mapping. That is,
for every A ∈ 〈E〉, co(A) ⊆⋃

x∈A G̃(x). Otherwise, there exist A ∈ 〈E〉 and a point y ∈ co(A)
such that y /∈⋃

x∈A G̃(x) = E \⋂x∈A intE G–(x). It follows that y ∈⋂
x∈A G–(x). Therefore,

A ⊆ G(y). Since G(y) is convex by (i), y ∈ co(A) ⊆ G(y), which is a contradiction. Hence,
G̃ is a KKM mapping. By the definition of G̃, G̃(x) is closed in E for every x ∈ E. By (iv),
there exists a point x ∈ E such that

G̃(x) = clE
(
E \G–(x)

)⊆ K ,

which implies that G̃(x) is compact. Then, by Lemma ., we get

∅ �=
⋂
x∈E

G̃(x)⊆ G̃(x) ⊆ K .

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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Therefore, we have

∅ �= K ∩
(⋂
x∈E

G̃(x)
)

⊆ K ∩
(⋂
x∈E

F̃(x)
)
.

Taking y ∈ K ∩ (
⋂

x∈E F̃(x)), we have y ∈ K and x /∈ F(y) for every x ∈ E. Hence, we have
F(y) = ∅, which contradicts (iii). Therefore, there exists ŷ ∈ K such that ŷ ∈ G(ŷ). This
completes the proof. �

Remark . Theorem . can be regarded as a generalization of the Fan-Browder fixed
point theorem on Euclidean spaces to CAT() spaces without any linear structure. Theo-
rem . is different from Theorem  of Browder [], Theorem  of Yannelis [], and Theo-
rem .′′′ of Tan and Yuan [], which are established in the setting of topological vector
spaces.

Remark . If only (iv) of Theorem . holds, then the E in Theorem . does not need
to possess the convex hull finite property. In fact, from the first part of the proof of The-
orem ., we can see that for every N ∈ 〈E〉, EN is a nonempty compact convex subset of
E and thus, it is a compact CAT() space with the induced metric. Hence, by Lemma .,
EN has the convex hull finite property. The key approach to the first part of the proof of
Theorem . is to define two set-valued mappings on each EN and then apply the KKM
lemma on EN . Therefore, the E in Theorem . does not need to have the convex hull finite
property.

Remark . If F =G, then (iv) and (iv) of Theorem . can be replaced by the following
equivalent conditions, respectively:

(iv)′ for everyN ∈ 〈E〉, there exists a nonempty compact convex subset EN of E containing
N such that EN \K ⊆⋃

x∈EN F–(x);
(iv)′ there exists a point x ∈ E such that E \ F–(x)⊆ K .

Theorem . Let (E,d) be a complete CAT() space with the convex hull finite property,
K be a nonempty compact subset of E, and F ,G : E → E be two set-valued mappings such
that

(i) for every y ∈ E, F(y) ⊆G(y) and G(y) is convex;
(ii) K ⊆⋃

x∈E intE F–(x);
(iii) one of the following conditions holds:

(iii) for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E con-
taining N such that

EN \K ⊆
⋃
x∈EN

intEN
(
G–(x)∩ EN

)
;

(iii) there exists a point x ∈ E such that clE(E \G–(x)) ⊆ K .

Then there exists ŷ ∈ E such that ŷ ∈G(ŷ).

Proof Define F̃ : E → E by F̃(y) = (intE F–)–(y) for every y ∈ E. By (i), we have F̃(y) ⊆
F(y) ⊆ G(y) for every y ∈ E. By the definition of F̃ , we have F̃–(x) = intE F–(x) for every

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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x ∈ E, which is open in E. By (ii) and by the definition of F̃ , we know that F̃(y) �= ∅ for
every y ∈ K . Thus, all the hypotheses of Theorem . for F̃ and G are satisfied. Hence, by
Theorem . for F̃ and G, the conclusion of Theorem . holds. �

Remark . We have shown that Theorem . implies Theorem .. It is evident that
Theorem . implies Theorem .. Therefore, Theorem . is equivalent to Theorem ..

By Theorem ., we have the following maximal element theorem.

Theorem . Let (E,d) be a complete CAT() space with the convex hull finite property,
K be a nonempty compact subset of E, and F ,G : E → E be two set-valued mappings such
that

(i) for every y ∈ E, F(y) ⊆G(y) and G(y) is convex;
(ii) for every x ∈ E, F–(x) is open in E;
(iii) for every y ∈ E, y /∈G(y);
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E con-
taining N such that

EN \K ⊆
⋃
x∈EN

intEN
(
G–(x)∩ EN

)
;

(iv) there exists a point x ∈ E such that clE(E \G–(x)) ⊆ K .

Then there exists ŷ ∈ K such that F(ŷ) = ∅.

Proof Suppose to the contrary that F(y) �= ∅ for every y ∈ K . Then, by Theorem ., there
exists ŷ ∈ E such that ŷ ∈ G(ŷ), which contradicts (iii) of Theorem .. Therefore, the con-
clusion of Theorem . holds. This completes the proof. �

Remark . Theorem . is equivalent to Theorem ..We have shown that Theorem .
implies Theorem .. So, it suffices to show that Theorem . implies Theorem .. Sup-
pose not. Then, for every y ∈ E, y /∈ G(y). By Theorem ., there exists ŷ ∈ K such that
F(ŷ) = ∅, which contradicts (iii) of Theorem .. Therefore, the conclusion of Theorem .
holds.

Remark . Theorem . is established in the setting of noncompact CAT() spaces
which include Hadamard manifolds as special cases (see [, ] and the references
therein). Therefore, Theorem . generalizes Theorem . of Yang and Pu [] from
Hadamard manifolds to noncompact CAT() spaces. We point out that the proof of The-
orem . is different from that of Theorem . of Yang and Pu [].

Let I be a finite index set and {(Ei,di)}i∈I be a family of metric spaces, where di is the
metric of Ei for every i ∈ I . Let (E,d) be the product space

∏
i∈I(Ei,di), where d is the

metric of E. For every i ∈ I , every xi ∈ Ei, and every r > , let Udi
i (xi, r) ⊆ Ei denote the

open ball centered at xi with radius r. For every x ∈ E and every r > , let Ud(x, r) ⊆ E
denote the open ball centered at x with radius r.

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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By Theorem ., we have the following collectively fixed point theorem in noncompact
CAT() spaces.

Theorem. Let {(Ei,di)}i∈I be a family of complete locally compactCAT() spaces,where
I is a finite index set. Let K be a nonempty compact subset of E =

∏
i∈I Ei. For every i ∈ I , let

Fi,Gi : E → Ei be two set-valued mappings such that
(i) for every i ∈ I and every y ∈ E, Fi(y) ⊆Gi(y) and Gi(y) is convex;
(ii) for every i ∈ I and every xi ∈ Ei, F–

i (xi) is open in E;
(iii) for every i ∈ I and every y ∈ K , Fi(y) �= ∅;
(iv) one of the following conditions holds:

(iv) for every i ∈ I and every Ni ∈ 〈Ei〉, there exists a nonempty compact convex
subset ENi of Ei containingNi such that, for every y = (yi)i∈I ∈ EN \K , there exist
r(y) >  and x(y) = (xi(y))i∈I ∈ EN such that∏

i∈I
Udi

i
(
yi, r(y)

)∩ EN ⊆
⋂
i∈I

G–
i
(
xi(y)

)∩ EN ,

where EN =
∏

i∈I ENi ;
(iv) there exists a point x = (xi)i∈I ∈ E such that clE(E \⋂i∈I G–

i (xi))⊆ K .

Then there exists ŷ ∈ E such that ŷi ∈Gi(ŷ) for every i ∈ I .

Proof Let I = {, , . . . ,n}. Define d : E × E →R by

d(x, y) =

√√√√ n∑
i=

d
i (xi, yi), x = (x,x, . . . ,xn) ∈ E, y = (y, y, . . . , yn) ∈ E.

We prove Theorem . in the following four steps.
Step . Show that (E,d) is a metric space.
In fact, it suffices to check the triangle inequality; that is, for every x = (x,x, . . . ,xn), y =

(y, y, . . . , yn), z = (z, z, . . . , zn) ∈ E, we have d(x, y) ≤ d(x, z) + d(z, y). In order to prove it,
we have to show that

n∑
i=

d
i (xi, yi) ≤ d

i (xi, zi) + d
i (zi, yi) + 

√√√√ n∑
i=

d
i (xi, zi)

√√√√ n∑
i=

d
i (zi, yi).

By the Cauchy-Schwarz inequality, we have

n∑
i=

di(xi, zi)di(zi, yi) ≤
√√√√ n∑

i=

d
i (xi, zi)

√√√√ n∑
i=

d
i (zi, yi).

Thus, we get

n∑
i=

(
di(xi, zi) + di(zi, yi)

) =
n∑
i=

d
i (xi, zi) +

n∑
i=

d
i (zi, yi) + 

n∑
i=

di(xi, zi)di(zi, yi)

≤
n∑
i=

d
i (xi, zi) +

n∑
i=

d
i (zi, yi)

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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+ 

√√√√ n∑
i=

d
i (xi, zi)

√√√√ n∑
i=

d
i (zi, yi)

=
(
d(x, z) + d(z, y)

).
Since di(xi, yi) ≤ di(xi, zi) + di(zi, yi) for every i ∈ {, , . . . ,n}, it follows from the above in-
equality that d(x, y) ≤ d(x, z) + d(z, y).
Step . Show that (E,d) is a complete locally compact space.
Firstly, we show that the topology τd associatedwith themetric d is the product topology

on E. In fact, for every x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ E, let δ(x, y) = max{di(xi, yi) :
i = , , . . . ,n}. Then δ is a metric of E and we have

δ(x, y) ≤ d(x, y) ≤ √
nδ(x, y), (x, y) ∈ E × E.

Therefore, the metric δ is equivalent to d and hence, τδ = τd . For every r >  and every x =
(x,x, . . . ,xn) ∈ E, we have Uδ(x, r) =

∏n
i=U

di
i (xi, r). In fact, y ∈ Uδ(x, r) ⇔ max{di(xi, yi) :

 ≤ i ≤ n} < r ⇔ di(xi, yi) < r for every i ∈ {, , . . . ,n}. So, y ∈ Uδ(x, r) ⇔ yi ∈ Udi
i (xi, r) for

every i ∈ {, , . . . ,n} ⇔ y ∈ ∏n
i=U

di
i (xi, r). We can see that the collection {Uδ(x, r) : x ∈

E and r > } forms a base for τδ and the collection {∏n
i=U

di
i (xi, r) : xi ∈ Ei and r > } forms

a base for the product topology on E. Hence, {Uδ(x, r) : x ∈ E and r > } also forms a base
for the product topology on E. Therefore, the topology τd associated to the metric d is the
product topology on E.
Secondly, we prove that E is a complete space. In fact, let {x(k)}k≥ be a Cauchy sequence

with points x(k) = (x(k)i )i∈I ∈ E. Thus, for every ε > , there is a positive integer n such that
for all positive integers k ≥ n and m ≥ n, d(xk ,xm) < ε. Hence, for every i ∈ {, , . . . ,n},
di(x(k)i ,x(m)

i ) ≤ d(xk ,xm) < ε whenever k ≥ n and m ≥ n, which implies that, for every
i ∈ {, , . . . ,n}, {x(k)i } is a Cauchy sequence in Ei. Since every Ei is a complete metric space,
it follows that limk→∞ x(k)i = xi for every i ∈ {, , . . . ,n}. Let ε >  be arbitrarily given. For
every i ∈ {, , . . . ,n}, there exists a positive integer k(i) such that

di
(
x(k)i ,xi

)
<

ε√
n

for all k ≥ k(i).

Consequently, we have

d
(
x(k),x

)
=

√√√√ n∑
i=

d
i
(
x(k)i ,xi

)
< ε for all k ≥ k′ =max

{
k(),k(), . . . ,k(n)

}
.

Thus, limk→∞ x(k) = x = (xi)i∈I ∈ E, which implies that E is a complete metric space.
Finally, we show that E is a locally compact space. Let x = (xi)i∈I ∈ E be an arbitrary

point. Since every Ei is a locally compact space, it follows that, for every i ∈ {, , . . . ,n},
there exists ri >  such that clEi U

di
i (xi, ri) is compact. Let r = min{r, r, . . . , rn}. Then we

have Ud(x, r)⊆∏n
i=U

di
i (xi, r) ⊆∏

i∈I U
di
i (xi, ri), which implies that

clE Ud(x, r)⊆ clE

( n∏
i=

Udi
i (xi, r)

)
⊆

n∏
i=

clEi U
di
i (xi, ri).
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Since
∏n

i= clEi U
di
i (xi, ri) is compact and clE Ud(x, r) is closed, it follows that clE Ud(x, r) is

compact. Hence, E is locally compact.
Step . Show that (E,d) is a CAT() space.
For every x = (x,x, . . . ,xn), y = (y, y, . . . , yn) ∈ E. Since every Ei is a complete CAT()

space and thus, it is a geodesic space, it follows from Lemma . that there exists zi ∈ Ei

such that di(xi, zi) = di(zi, yi) = 
di(xi, yi) for every i ∈ {, , . . . ,n}. Let z = (zi)i∈I ∈ E. Then

we have

d(x, z) =

√√√√ n∑
i=

d
i (xi, zi) =

√√√√ n∑
i=

d
i (zi, yi) = d(z, y) =



d(x, y).

Hence, by Lemma . again, E is a geodesic space. Now we claim that E satisfies the
(CN) inequality. In fact, let x = (x,x, . . . ,xn), y = (y, y, . . . , yn), z = (z, z, . . . , zn) ∈ E and
p = (p,p, . . . ,pn) ∈ E with d(y,p) = d(p, z) = 

d(y, z). We show that di(yi,pi) = di(pi, zi) =

di(yi, zi) for every i ∈ {, , . . . ,n}. Let α and β be two numbers satisfying α + β ≥ . Then
α + β ≥ 

 (α + β) ≥ 
 with equality if and only if α = β = 

 . By this fact and by the
triangle inequality, we get

(
di(yi,pi)
di(yi, zi)

)

+
(
di(pi, zi)
di(yi, zi)

)

≥ 

, i ∈ {, , . . . ,n}.

We can see that the left of the above inequality equals 
 if and only if


di(yi, zi) = di(yi,pi) =

di(pi, zi) for every i ∈ {, , . . . ,n}. Adding these inequalities leads to




n∑
i=

d
i (yi, zi)≤

n∑
i=

d
i (yi,pi) +

n∑
i=

d
i (pi, zi);

that is, 
d

(y, z) ≤ d(y,p) + d(p, z). Since d(y,p) = d(p, z) = 
d(y, z), it follows from the

above inequality that di(yi,pi) = di(pi, zi) = 
di(yi, zi) for every i ∈ {, , . . . ,n}. Since every

Ei is a CAT() space, by Lemma ., we have the following (CN) inequality:

d
i (xi, yi) + d

i (xi, zi) ≥ d
i (xi,pi) +



d
i (yi, zi), i ∈ {, , . . . ,n}.

Adding these inequalities, we get

d(x, y) + d(x, z)≥ d(x,p) +


d(y, z),

which implies that E satisfies the (CN) inequality. By Lemma . again, we know that E is
a CAT() space.
Step . Prove that there exists ŷ ∈ E such that ŷi ∈Gi(ŷ) for every i ∈ I .
By the above steps, we know that E is a complete locally compactCAT() space. Thus, by

Lemma ., E has the convex hull finite property. Nowwe define two set-valuedmappings
F ,G : E → E by

F(y) =
∏
i∈I

Fi(y) and G(y) =
∏
i∈I

Gi(y), y ∈ E.

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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By (i), F(y) ⊆G(y) for every y ∈ E. For every x ∈ E, we have

F–(x) =
{
y ∈ E : x ∈ F(y)

}
=
{
y ∈ E : x ∈

∏
i∈I

Fi(y)
}

=
{
y ∈ E : xi ∈ Fi(y),∀i ∈ I

}
=
{
y ∈ E : y ∈ F–

i (xi),∀i ∈ I
}

=
{
y ∈ E : y ∈

⋂
i∈I

F–
i (xi)

}
=
⋂
i∈I

F–
i (xi).

Then, by (ii) and by the fact that I is a finite index set, we know that F–(x) is open in E
for every x ∈ E. By (iii), for every y ∈ K , F(y) �= ∅. Suppose that (iv) holds. Then, for every
N ∈ 〈E〉 and every Ni ∈ 〈Ei〉, there exists a nonempty compact convex subset ENi of Ei

containing Ni and so, ENi is naturally a compact CAT() space with the induced metric.
By using the samemethod as in Step , we can prove that EN =

∏
i∈I ENi �N is a nonempty

compact CAT() space and hence, it is naturally a nonempty compact convex subset of E.
For every y = (y, y, . . . , yn) ∈ E and every r > , we can see that Ud(y, r) ⊆ ∏

i∈I U
di
i (yi, r).

Therefore, by this fact and by (iv), for every y = (yi)i∈I ∈ EN \ K , there exist r(y) >  and
x(y) = (xi(y))i∈I ∈ EN such that

Ud(y, r(y))∩ EN ⊆
∏
i∈I

Udi
i
(
yi, r(y)

)∩ EN

⊆
⋂
i∈I

G–
i
(
xi(y)

)∩ EN

= G–(x(y))∩ EN .

This implies that y ∈ intEN (G–(x(y)) ∩ EN ). Thus, for every N ∈ 〈E〉, there exists a
nonempty compact convex subset EN of E containing N such that

EN \K ⊆
⋃
x∈EN

intEN
(
G–(x)∩ EN

)
.

Moreover, if (iv) is satisfied, then there exists a point x = (xi)i∈I ∈ E such that

clE
(
E \G–(x)

)
= clE

(
E
∖⋂

i∈I
G–

i (xi)
)

⊆ K .

Therefore, by Theorem ., there exists ŷ = (ŷi)i∈I ∈ E such that ŷ ∈ G(ŷ); that is, ŷi ∈Gi(ŷ)
for every i ∈ I . This completes the proof. �

Remark . We can compare Theorem . with Theorem  of Prokopovych [] in the
following aspects: () every Ei in Theorem . does not need to be compact and it does
not possess any linear structure; () in Theorem ., there are two set-valued mappings,

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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but there is only one set-valued mapping in Theorem  of Prokopovych []; () (iii) of
Theorem . is weaker than the corresponding condition of Theorem  of Prokopovych
[] because the domain of every Fi does not need to be E.

4 Minimax inequalities with applications
In this section, by using Theorem ., we will give minimax inequalities in noncompact
CAT() spaces. As applications ofminimax inequalities, we obtain a saddle point theorem,
a fixed point theorem for single-valuedmappings, and best approximation theorems in the
setting of noncompact CAT() spaces.

Theorem . Let (E,d) be a complete CAT() space with the convex hull finite property,
K be a nonempty compact subset of E, and f , g : E × E →R∪ {±∞} be two functions such
that

(i) for every (x, y) ∈ E × E, f (x, y)≤ g(x, y);
(ii) for every y ∈ E, the set {x ∈ E : g(x, y) > } is convex;
(iii) for every x ∈ E, y �→ f (x, y) is lower semicontinuous on E;
(iv) for every y ∈ E, g(y, y) ≤ ;
(v) one of the following conditions holds:

(v) for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E con-
taining N such that

EN \K ⊆
⋃
x∈EN

intEN
({
y ∈ E : g(x, y) > 

}∩ EN
)
;

(v) there exists a point x ∈ E such that clE(E \ {y ∈ E : g(x, y) > }) ⊆ K .

Then there exists ŷ ∈ K such that f (x, ŷ) ≤  for every x ∈ E.

Proof Define two set-valued mappings F ,G : E → E by

F(y) =
{
x ∈ E : f (x, y) > 

}
and G(y) =

{
x ∈ E : g(x, y) > 

}
, y ∈ E.

By (i) and (ii), F(y) ⊆G(y) andG(y) is convex for every y ∈ E. By (iii), F–(x) is open in E for
every x ∈ E. It follows from (v) and the definition ofG that one of the following conditions
holds:
(a) for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E

containing N such that

EN \K ⊆
⋃
x∈EN

intEN
(
G–(x)∩ EN

)
;

(b) there exists a point x ∈ E such that clE(E \G–(x)) ⊆ K .
By (iv), y /∈ G(y) for every y ∈ E, which implies that the conclusion of Theorem . does

not hold. Hence, (iii) of Theorem . is not true. So, there exists ŷ ∈ K such that F(ŷ) = ∅,
which implies that f (x, ŷ) ≤  for every x ∈ E. This completes the proof. �

Remark . If f = g , then (v) and (v) of Theorem . can be replaced by the following
equivalent conditions, respectively:

http://www.journalofinequalitiesandapplications.com/content/2014/1/320
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(v)′ for every N ∈ 〈E〉, there exists a nonempty compact convex subset EN of E containing
N such that EN \K ⊆⋃

x∈EN {y ∈ E : f (x, y) > };
(v)′ there exists a point x ∈ E such that E \ {y ∈ E : f (x, y) > } ⊆ K .

Remark . (ii) of Theorem . can be replaced by the following condition:

(ii)′ Let y ∈ E be given. For every x,x ∈ E and every t ∈ [, ], we have

g
(
( – t)x ⊕ tx, y

)≥min
{
g(x, y), g(x, y)

}
.

In fact, we can show that (ii)′ implies (ii) of Theorem.. Suppose to the contrary that (ii) of
Theorem. does not hold; that is, for every given y ∈ E, there exist x,x ∈ {x ∈ E : g(x, y) >
} and the unique geodesic γ joining x and x such that [x,x]� {x ∈ E : g(x, y) > } and
x �= x. By Lemma., there exists t ∈ [, ] such that (–t)x⊕tx /∈ {x ∈ E : g(x, y) > }.
Therefore, by (ii)′ and by the fact that [x,x]� {x ∈ E : g(x, y) > }, we have

 ≥ g
(
( – t)x ⊕ tx, y

)≥min
{
g(x, y), g(x, y)

}
> ,

which is a contraction. Hence, (ii) of Theorem . holds.

Remark . Theorem . is equivalent to Theorem ..We have shown that Theorem .
implies Theorem .. Now we show that Theorem . implies Theorem .. Suppose that
all the hypotheses of Theorem . are satisfied. Define two real-valued functions f , g : E×
E →R by

f (x, y) =

{
, x ∈ F(y),
, x /∈ F(y),

g(x, y) =

{
, x ∈G(y),
, x /∈G(y).

By (i) of Theorem ., for every (x, y) ∈ E×E, f (x, y)≤ g(x, y) and the set {x ∈ E : g(x, y) > }
is convex for every y ∈ E. For every x ∈ E and every r ∈R, we have

{
y ∈ E : f (x, y) > r

}
=

⎧⎪⎨⎪⎩
E, r < ,
∅, r ≥ ,
F–(x), ≤ r < .

Hence, by (ii) of Theorem ., for every x ∈ E and every r ∈R, the set {y ∈ E : f (x, y) > r} is
open in E, which implies that for every x ∈ E, the function y �→ f (x, y) is lower semicontin-
uous on E. If the conclusion of Theorem . were not true, then, for every y ∈ E, we have
g(y, y) ≤ . Suppose that (iv) of Theorem . holds. Then, by (iv) of Theorem . and
by the definition of g , we know that, for every N ∈ 〈E〉, there exists a nonempty compact
convex subset EN of E containing N such that

EN \K ⊆
⋃
x∈EN

intEN
({
y ∈ E : g(x, y) > 

}∩ EN
)
.
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If (iv) of Theorem . holds, then, by (iv) of Theorem . and by the definition of g , there
exists a point x ∈ E such that clE(E \ {y ∈ E : g(x, y) > }) ⊆ K . Thus, all the hypotheses of
Theorem . are satisfied. By Theorem ., there exists ŷ ∈ K such that f (x, ŷ) ≤  for every
x ∈ E. Therefore, x /∈ F(ŷ) for every x ∈ E, which implies that F(ŷ) = ∅. This contradicts (iii)
of Theorem .. Hence, the conclusion of Theorem . must hold.

Remark . Theorem . generalizes Theorem . of Yang and Pu [] in the following
aspects: () The underlying spaces of Theorem . and Theorem . of Yang and Pu []
are CAT() spaces and Hadamard manifolds, respectively. We can see that CAT() spaces
include Hadamard manifolds as special cases (see []); () the E in Theorem . does not
need to be compact; () in Theorem ., there are two functions, but there is only one
function in Theorem . of Yang and Pu [].

Remark . By Remarks . and ., we know that Theorem ., Theorem . and The-
orem . are equivalent.

Corollary . Let C be a closed convex subset of a complete CAT() space (E,d) with the
convex hull finite property, K be a nonempty compact subset of C, and f , g : C ×C → R∪
{±∞} be two functions. Suppose that supy∈C g(y, y) < +∞ and the following conditions are
fulfilled:

(i) for every (x, y) ∈ C ×C, f (x, y)≤ g(x, y);
(ii) for every y ∈ C, the set {x ∈ C : g(x, y) > supy∈C g(y, y)} is convex;
(iii) for every x ∈ C, y �→ f (x, y) is lower semicontinuous on C;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C con-
taining N such that

CN \K ⊆
⋃
x∈CN

intCN

({
y ∈ C : g(x, y) > sup

y∈C
g(y, y)

}
∩CN

)
;

(iv) there exists a point x ∈ C such that

clC
(
C
∖ {

y ∈ C : g(x, y) > sup
y∈C

g(y, y)
})

⊆ K .

Then there exists ŷ ∈ K such that f (x, ŷ) ≤ supy∈C g(y, y) for every x ∈ C.

Proof Since C is a closed convex subset of the complete CAT() space (E,d) with the con-
vex finite property, it follows that C equipped with the induced metric is also a complete
CAT() space with the convex hull finite property. Define two functions f ′, g ′ : C × C →
R∪ {±∞} by

f ′(x, y) = f (x, y) – sup
y∈C

g(y, y), (x, y) ∈ C ×C,

g ′(x, y) = g(x, y) – sup
y∈C

g(y, y), (x, y) ∈ C ×C.

We can easily check that f ′, g ′ satisfy all the hypotheses of Theorem .. Therefore, by
Theorem ., we infer that there exists ŷ ∈ K such that f ′(x, ŷ) ≤  for every x ∈ C; that is,
f (x, ŷ)≤ supy∈C g(y, y) for every x ∈ C. This completes the proof. �
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Remark . Corollary . generalizes Theorem . of Shabanian and Vaezpour [] in
the following aspects: () the set C in Corollary . does not need to be compact; () (ii)
of Corollary . is weaker than the corresponding () of Theorem . of Shabanian and
Vaezpour []; () in Corollary ., there are two functions, but there is only one function
in Theorem . of Shabanian and Vaezpour [].

By Theorem ., we get the following saddle point theorem in CAT() spaces.

Theorem . Let (E,d) be a complete CAT() space with the convex hull finite property,
K,K ⊆ E be two nonempty compact sets, and f : E × E → R ∪ {±∞} be a real-valued
continuous function. Assume that

(i) for every y ∈ E, f (y, y) = ;
(ii) for every y ∈ E, the set {x ∈ E : f (x, y) > } is convex;
(iii) for every x ∈ E, the set {y ∈ E : f (x, y) < } is convex;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈E〉, there exist two nonempty compact convex subsets EN , ẼN of
E containing N such that

EN \K ⊆
⋃
x∈EN

{
y ∈ E : f (x, y) > 

}
and

ẼN \K ⊆
⋃
y∈ẼN

{
x ∈ E : f (x, y) < 

}
;

(iv) there exist two points x, y ∈ E such that

E \K ⊆ {
y ∈ E : f (x, y) > 

}
and E \K ⊆ {

x ∈ E : f (x, y) < 
}
.

Then f has a saddle point (x̂, ŷ) ∈ K×K; that is, f (x, ŷ) ≤ f (x̂, ŷ)≤ f (x̂, y) for every (x, y) ∈
E × E. In particular, infx∈E supy∈E f (x, y) = supy∈E infx∈E f (x, y).

Proof By (i), (ii), the continuity of f , the first parts of (iv) and (iv), and Remark ., we can
see that all the conditions of Theorem . with f = g are satisfied. Thus, by Theorem .
with f = g , there exists ŷ ∈ K such that f (x, ŷ) ≤  for every x ∈ E. Let f ′ : E × E → R ∪
{±∞} be definedby f ′(y,x) = –f (x, y) for every (y,x) ∈ E×E. Then by (i), (iii), the continuity
of f , the second parts of (iv) and (iv), and Remark ., we can see that all the hypotheses
of Theorem . with f = g are fulfilled. Hence, by Theorem . with f = g , there exists
x̂ ∈ K such that f ′(y, x̂)≤  for every y ∈ E. Therefore, we get

f (x, ŷ)≤  = f (x̂, ŷ) ≤ f (x̂, y) for all (x, y) ∈ E × E,

and so

inf
x∈E supy∈E

f (x, y)≤ sup
y∈E

inf
x∈E f (x, y).
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Since infx∈E supy∈E f (x, y)≥ supy∈E infx∈E f (x, y) is always true, we have

inf
x∈E supy∈E

f (x, y) = sup
y∈E

inf
x∈E f (x, y).

This completes the proof. �

By Theorem ., we have the following best approximation theorem in CAT() spaces.

Theorem . Let (E,d) be a complete CAT() space, C ⊆ E be a closed locally compact
convex set, H : C → E be a continuous mapping. Suppose that there exists a nonempty
compact subset K of C such that one of the following conditions holds:

(i) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C containing
N such that

CN \K ⊆
⋃
x∈CN

{
y ∈ C : d

(
y,H(y)

)
> d

(
x,H(y)

)}
;

(i) there exists a point x ∈ C such that

C \ {y ∈ C : d
(
y,H(y)

)
> d

(
x,H(y)

)}⊆ K .

Then there exists ŷ ∈ K such that d(ŷ,H(ŷ)) = infx∈C d(x,H(ŷ)).

Proof Since C is a closed locally compact convex subset of E, it follows that C with the
induced metric is a complete locally compact CAT() space. By Lemma ., C has the
convex hull finite property. Define a function f : C ×C →R by

f (x, y) = d
(
y,H(y)

)
– d

(
x,H(y)

)
, (x, y) ∈ C ×C.

Since H is continuous, it is evident that, for every x ∈ C, the function y �→ d(y,H(y)) –
d(x,H(y)) is lower semicontinuous. For every y ∈ C, f (y, y) = . By the assumption and by
the definition of f , we know that one of the following conditions holds:
(a) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C

containing N such that CN \K ⊆⋃
x∈CN

{y ∈ C : f (x, y) > };
(b) there exists a point x ∈ C such that C \ {y ∈ C : f (x, y) > } ⊆ K .
It remains to prove that for every fixed y ∈ C, the set {x ∈ C : f (x, y) > } is convex. Sup-

pose to the contrary that there exist two points x,x ∈ {x ∈ C : f (x, y) > }, the unique
geodesic γ : [, l] → C jointing x, x, and t ∈ [, l] such that γ (t) /∈ {x ∈ C : f (x, y) > },
which implies that d(y,H(y)) ≤ d(γ (t),H(y)). Since x,x ∈ {x ∈ C : f (x, y) > }, it follows
that

d
(
x,H(y)

)
< d

(
y,H(y)

)
and d

(
x,H(y)

)
< d

(
y,H(y)

)
.

Hence, we have

x ∈U
(
H(y),d

(
y,H(y)

))
and x ∈U

(
H(y),d

(
y,H(y)

))
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/320


Lu et al. Journal of Inequalities and Applications 2014, 2014:320 Page 17 of 26
http://www.journalofinequalitiesandapplications.com/content/2014/1/320

where U(H(y),d(y,H(y))) denotes the open ball centered at H(y) with radius d(y,H(y)).
Since every ball in the CAT() space (E,d) is convex (see []), it follows that

γ
(
[, l]

)⊆U
(
H(y),d

(
y,H(y)

))
,

which implies that γ (t) ∈U(H(y),d(y,H(y))); that is, d(y,H(y)) > d(γ (t),H(y)). This con-
tradicts d(y,H(y)) ≤ d(γ (t),H(y)). Therefore, for every y ∈ C, the set {x ∈ C : f (x, y) > }
is convex. Thus, by Remark ., all the requirements of Theorem . with f = g are ful-
filled. Hence, by Theorem . with f = g , there exists ŷ ∈ K such that f (x, ŷ) ≤  for ev-
ery x ∈ C; that is, d(ŷ,H(ŷ)) ≤ d(x,H(ŷ)) for every x ∈ C, which implies that d(ŷ,H(ŷ)) =
infx∈C d(x,H(ŷ)). This completes the proof. �

Remark . Theorem . generalizes Theorem . of Shabanian and Vaezpour [] in
the following aspects: () the C in Theorem . does not need to be compact; () the E in
Theorem . does not need to have the convex hull finite property. We point out that the
proof of Theorem . is different from that of Theorem . of Shabanian and Vaezpour
[].

As an application of Theorem ., we have the following fixed point theorem for single-
valued mappings.

Theorem . Let (E,d) be a complete CAT() space, C ⊆ E be a closed locally compact
convex set, K be a nonempty compact subset of C, and H : C → E be a continuous mapping
such that

(i) for every c ∈ K with c �=H(c), there exists t ∈ (, ) such that

C ∩U
(
H(c), ( – t)d

(
c,H(c)

)) �= ∅,

where U(H(c), ( – t)d(c,H(c))) denotes the open ball centered at H(c) with radius
( – t)d(c,H(c));

(ii) one of the following conditions holds:

(ii) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C con-
taining N such that

CN \K ⊆
⋃
x∈CN

{
y ∈ C : d

(
y,H(y)

)
> d

(
x,H(y)

)}
;

(ii) there exists a point x ∈ C such that

C \ {y ∈ C : d
(
y,H(y)

)
> d

(
x,H(y)

)}⊆ K .

Then there exists ŷ ∈ K such that ŷ =H(ŷ).

Proof It follows from Theorem . that there exists a point ŷ ∈ K such that d(ŷ,H(ŷ)) =
infx∈C d(x,H(ŷ)).We show that ŷ is a fixed point ofH . Suppose not. Then by (i), there exists
t ∈ (, ) such that C∩U(H(ŷ), (– t)d(ŷ,H(ŷ))) �= ∅. Take x̂ ∈ C∩U(H(ŷ), (– t)d(ŷ,H(ŷ))).
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Then we have x̂ �= ŷ and

d
(
x̂,H(ŷ)

)
< ( – t)d

(
ŷ,H(ŷ)

)
< d

(
ŷ,H(ŷ)

)
,

which contradicts the fact that d(ŷ,H(ŷ)) = infx∈C d(x,H(ŷ)). Therefore, ŷ is a fixed point
of H . This completes the proof. �

Remark . Theorem. generalizes Theorem . of Shabanian andVaezpour [] in the
following aspects: () the E in Theorem . does not need to have the convex hull finite
property; () the C in Theorem . does not need to be compact.

By Theorem ., we obtain the following generalized best approximation theorem.

Theorem . Let (E,d) be a complete CAT() space, C ⊆ E be a closed locally compact
convex set, K be a nonempty compact subset of C, and G,H : C → E be two upper semi-
continuous set-valued mappings with nonempty compact values. Assume that

(i) for every y ∈ C, the set {x ∈ C : d(G(y),H(y)) > d(G(x),H(y))} is convex;
(ii) one of the following conditions holds:

(ii) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C con-
taining N such that

CN \K ⊆
⋃
x∈CN

{
y ∈ C : d

(
G(y),H(y)

)
> d

(
G(x),H(y)

)}
;

(ii) there exists a point x ∈ C such that

C \ {y ∈ C : d
(
G(y),H(y)

)
> d

(
G(x),H(y)

)}⊆ K .

Then there exists ŷ ∈ K such that d(G(ŷ),H(ŷ)) = infx∈C d(G(x),H(ŷ)).

Proof Since C is a closed locally compact convex subset of E, we know that C with the
induced metric is a complete locally compact CAT() space. So, by Lemma ., C has the
convex hull finite property. Define a function f : C ×C →R by

f (x, y) = d
(
G(y),H(y)

)
– d

(
G(x),H(y)

)
, (x, y) ∈ C ×C.

In order to prove that the function y �→ f (x, y) is lower semicontinuous for every x ∈ C,
it suffices to show that, for every x ∈ C and for every r ∈ R, the set {y ∈ C : f (x, y) ≤ r}
is closed. Let x ∈ C, r ∈ R be fixed and let {yn}n≥ ⊆ {y ∈ C : f (x, y) ≤ r} be an arbitrary
sequence such that yn → y∗ ∈ C as n → ∞. Let ε >  be arbitrary. Since G is an upper
semicontinuous set-valued mapping with nonempty compact values, it follows from the
result of Aubin and Frankowska [, p.] that there exists η >  such that for every y′ ∈
U(y∗,η), G(y′) ⊆ U(G(y∗), ε) =

⋃
x∈G(y∗)U(x, ε), where U(y∗,η) and U(x, ε) denote the

open ball centered at y∗ with radius η and the open ball centered at x with radius 
ε,

respectively. By the convergence of sequence {yn}n≥, we know that there exists N ∈ N

such that for every n ≥N, we have yn ∈U(y∗,η) and thus,G(yn) ⊆U(G(y∗), ε). Similarly,

http://www.journalofinequalitiesandapplications.com/content/2014/1/320


Lu et al. Journal of Inequalities and Applications 2014, 2014:320 Page 19 of 26
http://www.journalofinequalitiesandapplications.com/content/2014/1/320

we can prove that there exists N ∈ N such that for every n ≥ N, H(yn) ⊆ U(H(y∗), ε).
Now we let N =max{N,N}. Then, for every n≥N , we have the following:

d
(
G
(
y∗),H(

y∗)) ≤ d
(
G
(
y∗),G(yn)) + d

(
G(yn),H(yn)

)
+ d

(
H(yn),H

(
y∗))

<


ε + d

(
G(yn),H(yn)

)
≤ 


ε + r + d

(
G(x),H(yn)

)
≤ 


ε + r + d

(
G(x),H

(
y∗)) + d

(
H
(
y∗),H(yn)

)
< ε + r + d

(
G(x),H

(
y∗)).

By the arbitrariness of ε, we have d(G(y∗),H(y∗)) – d(G(x),H(y∗)) ≤ r, which implies that
y∗ ∈ {y ∈ C : f (x, y) ≤ r} and thus, the set {y ∈ C : f (x, y) ≤ r} is closed. Therefore, for ev-
ery x ∈ C, the function y �→ f (x, y) is lower semicontinuous. For every y ∈ C, we have
f (y, y) = . By (i), for every y ∈ C, the set {x ∈ C : f (x, y) > } is convex. By the assumption
and by the definition of f , we know that one of the following conditions holds:
(a) for every N ∈ 〈C〉, there exists a nonempty compact convex subset CN of C

containing N such that CN \K ⊆⋃
x∈CN

{y ∈ C : f (x, y) > };
(b) there exists a point x ∈ C such that C \ {y ∈ C : f (x, y) > } ⊆ K .
By Remark ., all the requirements of Theorem . with f = g are satisfied. Hence,

by Theorem . with f = g , there exists ŷ ∈ K such that f (x, ŷ) ≤  for every x ∈ C;
that is, d(G(ŷ),H(ŷ)) ≤ d(G(x),H(ŷ)) for every x ∈ C, which implies that d(G(ŷ),H(ŷ)) =
infx∈C d(G(x),H(ŷ)). This completes the proof. �

Remark . Theorem . generalizes Theorem . of Shabanian and Vaezpour [] in
the following aspects: () the C in Theorem . does not need to be compact; () the E in
Theorem. does not need to have the convex hull finite property; () the set-valuedmap-
pings G, H in Theorem . do not need to have convex values; () the condition that the
set-valued mapping G in Theorem . of Shabanian and Vaezpour [] is quasi-convex is
removed.We point out that the proof of Theorem . is different from that of Theorem .
of Shabanian and Vaezpour [].

Remark . Theorem . can be regarded as a generalization of Theorem .. In fact,
letG(y) = {y} for every y ∈ C andH be a single-valued continuousmapping. Then by using
the same method as in the proof Theorem ., we can show that (i) of Theorem . holds
and thus, Theorem . reduces to Theorem ..

5 Existence of ϕ-equilibrium for multiobjective games
In this section, we will consider the multiobjective noncooperative game in its strategic
form Γ = (Xi,Vi)i∈I , where I = {, , . . . ,n} is the set of players; every Xi is the strategy set
of the ith player and every Vi : X =

∏
i∈I Xi → Rki is the payoff function of the ith player

with ki being a positive integer. If an action combination x = (x,x, . . . ,xn) is played, every
player i is trying to confirm his/her vector payoff function Vi(x) := (f i (x), f i(x), . . . , f iki (x))
and then minimize his/her vector payoff function according to his/her preference.
Before we introduce the equilibrium concepts of multiobjective noncooperative games,

we give the following notation.
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For every m ∈ N, let Rm
+ := {q := (q,q, . . . ,qm) ∈ Rm : qj ≥ ,∀j = , , . . . ,m} and

intRm Rm
+ := {q := (q,q, . . . ,qm) ∈ Rm : qj > ,∀j = , , . . . ,m} denote the nonnegative or-

thant of Rm and the nonempty interior of Rm
+ with the Euclidian metric topology, respec-

tively. For every q, r ∈ Rm, let q · r denote the standard Euclidean inner product.
We denote Xî :=

∏
j∈I\i Xj for every i ∈ I . If x = (x,x, . . . ,xn) ∈ X, then we write xî =

(x, . . . ,xi–,xi+, . . . ,xn) for every i ∈ I . We use the following notation

(xî, yi) := (x,x, . . . ,xi–, yi,xi+, . . . ,xn) ∈ X and

(xî,xi) := (x,x, . . . ,xi–,xi,xi+, . . . ,xn) = x ∈ X.

Let x̂ = (x̂, x̂, . . . , x̂n) ∈ X and let ϕ = (ϕ,ϕ, . . . ,ϕn) : X → X be a surjective mapping
defined by

ϕ(x) =
(
ϕ(x),ϕ(x), . . . ,ϕn(xn)

)
, x = (x,x, . . . ,xn) ∈ X.

Now we introduce the following definitions.

Definition . A strategy x̂i ∈ Xi of player i is said to be a Pareto efficient ϕ-strategy (re-
spectively, a weak Pareto efficient ϕ-strategy) with respect to x̂ if there is no strategy xi ∈ Xi

such that

Vi(x̂) –Vi(x̂î,ϕ(xi)) ∈Rki
+ \ {} (

respectively,Vi(x̂) –Vi(x̂î,ϕ(xi)) ∈ int
R
ki R

ki
+
)
.

Definition . A strategy x̂ ∈ X is said to be a Pareto ϕ-equilibrium (respectively, a weak
Pareto ϕ-equilibrium) of a gameΓ = (Xi,Vi)i∈I if, for every i ∈ I , x̂i ∈ Xi is a Pareto efficient
ϕ-strategy (respectively, a weak Pareto efficient ϕ-strategy) with respect to x̂.

Remark . Definitions .-. generalize the corresponding definitions of Wang [],
Yuan and Tarafdar [], and Yu and Yuan []. In fact, if ϕi(xi) = xi for every x = (xi)i∈I ∈ X
and every i ∈ I , then Definitions .-. coincide with the corresponding definitions of
Wang [], Yuan and Tarafdar [], and Yu and Yuan []. By the above definition, we can
see that every Pareto ϕ-equilibrium is a weak Pareto ϕ-equilibrium, but the converse is
not true in general.

Definition . A strategy x̂ ∈ X is said to be a weighted Nash ϕ-equilibrium with respect
to the weighted vector Q := (Q,Q, . . . ,Qn) of a game Γ = (Xi,Vi)i∈I if, for every i ∈ I , we
have

(i) Qi = (Qi,,Qi,, . . . ,Qi,ki ) ∈Rki
+ \ {};

(ii) Qi ·Vi(x̂) ≤Qi ·Vi(x̂î,ϕ(xi)) for every xi ∈ Xi.

Remark . If ϕi(xi) = xi for every x = (xi)i∈I ∈ X and every i ∈ I , then Definition . re-
duces to Definition . of Wang [] and Definition  of Yuan and Tarafdar [] and Yu
and Yuan []. In particular, if Qi ∈ Rki

+ with
∑ki

j=Qi,j =  for every i ∈ I , then the strategy
x̂ ∈ X is said to be a normalized weighted Nash ϕ-equilibrium with respect to Q.

As an application of Theorem ., we have the following existence theorem of weighted
Nash ϕ-equilibrium for multiobjective noncooperative games in the setting of noncom-
pact CAT() spaces.
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Theorem . Let Γ = (Xi,Vi)i∈I be a multiobjective game with V i = (f i , f i, . . . , f iki ). For ev-
ery i ∈ I , let Xi be a nonempty subset of a CAT() space (Ei,di) such that X =

∏
i∈I Xi is a

complete CAT() space with the convex hull finite property. Let K be a nonempty compact
subset of X and ϕ = (ϕ,ϕ, . . . ,ϕn) : X → X be a surjective mapping. Assume that there
is a weighted vector Q = (Q,Q, . . . ,Qn) with every Qi ∈ Rki

+ \ {} such that the following
conditions are satisfied:

(i) for every y ∈ X , the set {x ∈ X :
∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(xi))] > } is convex;
(ii) for every x ∈ X , the function y �→∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(xi))] is lower
semicontinuous on X ;

(iii) for every y ∈ X ,
∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(yi))] ≤ ;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈X〉, there exists a nonempty compact convex subset XN of X con-
taining N such that

XN \K ⊆
⋃
x∈XN

{
y ∈ X :

n∑
i=

Qi ·
[
Vi(yî, yi) –Vi(yî,ϕi(xi)

)]
> 

}
;

(iv) there exists a point x = (xi)i∈I ∈ X such that

X
∖{

y ∈ X :
n∑
i=

Qi ·
[
Vi(yî, yi) –Vi(yî,ϕi(xi)

)]
> 

}
⊆ K .

Then Γ has at least one weight Nash ϕ-equilibrium in K with respect to the weight vec-
tor Q.

Proof Following the method by Nikaido and Isoda [], we define the function S : X ×
X →R by

S(x, y) =
n∑
i=

Qi ·
[
Vi(yî, yi) –Vi(yî,ϕi(xi)

)]
, (x, y) ∈ X ×X.

By (i), for every y ∈ X, the set {y ∈ X : S(x, y) > } is convex. By (ii), for every x ∈ X, the func-
tion y �→ S(x, y) is lower semicontinuous on X. By (iii), for every y ∈ X, we have S(y, y) ≤ .
Suppose that (iv) holds. Then by (iv) and by the definition of S, we know that, for every
N ∈ 〈X〉, there exists a nonempty compact convex subset XN of X containing N such that

XN \K ⊆
⋃
x∈XN

{
y ∈ X : S(x, y) > 

}
.

If (iv) is satisfied, then it follows from (iv) and from the definition of S that there exists
a point x ∈ X such that

X \ {y ∈ X : S(x, y) > 
}⊆ K .

Thus, by Remark ., all the requirements of Theorem . with f = g are satisfied. Hence,
by Remark . and by Theorem . with f = g , there exists ŷ ∈ K such that S(x, ŷ) ≤  for
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every x ∈ X; that is,

n∑
i=

Qi ·Vi(ŷî, ŷi) ≤
n∑
i=

Qi ·Vi(ŷî,ϕi(xi)
)

for every x ∈ X.

For every given i ∈ I and xi ∈ Xi, let x = (ŷî,xi) ∈ X. Then we have

Qi ·Vi(ŷî, ŷi) –Qi ·Vi(ŷî,ϕi(xi)
)
=

n∑
j=

Qj ·
[
Vj(ŷĵ, ŷj) –Vj(ŷĵ,ϕj(xj)

)]
–
∑
j �=i

Qj ·
[
Vj(ŷĵ, ŷj) –Vj(ŷĵ,ϕj(xj)

)]

=
n∑
j=

Qj ·
[
Vj(ŷĵ, ŷj) –Vj(ŷĵ,ϕj(xj)

)]
≤ .

Therefore, Qi · Ri(ŷî, ŷi) ≤ Qi · Vi(ŷî,ϕi(xi)) for every i ∈ I and every xi ∈ Xi; that is, ŷ ∈ K
is a weighted Nash ϕ-equilibrium of the game Γ with respect to Q. This completes the
proof. �

Remark . Theorem . is a new result, which is different from Theorem . of Wang
[], Theorem  of Yuan and Tarafdar [], Theorem  of Yu and Yuan [], and Theo-
rem  of Borm et al. []. The main difference is that the underlying strategy spaces in
Theorem . are CAT() spaces which do not possess any linear structure. In addition, on
the basis of an existence theorem for weighted Nash equilibrium for multiobjective non-
cooperative games in the setting of compact finite dimensional spaces, Lu [] analyzed
the phenomena for the water resources utilizing conflicts among the water users in the
lower reaches of Tarim River Basin and revealed the underlying causes of water shortage
and water quality deterioration of the lower reaches of Tarim River Basin. We point out
that the underlying strategy spaces of multiobjective noncooperative gamemodels in []
are compact finite dimensional spaces and the payoff functions of players are continu-
ous, which restrict the applicable area of models. In fact, in real world, the situation that
the underlying strategy spaces of players are noncompact and nonlinear spaces and the
payoff functions of players are discontinuous is very common. So, the multiobjective non-
cooperative gamemodels in [] cannot be used to analyze many conflict problems under
the situation mentioned above. In contrast with the multiobjective noncooperative game
models in [], the multiobjective noncooperative game model in Theorem . has two
advantages; that is, the strategy spaces of players do not possess any linear and compact
structure and the payoff functions of players need not to be continuous. Therefore, by us-
ing Theorem ., we can deal with a lot of conflict problems existing in resource utilizing
and management under much more mild conditions.

Remark . (ii) of Theorem . can be replaced by the following conditions:

(ii)′ for every x ∈ X , the function y→∑n
i=Qi ·Vi(yî,ϕi(xi)) is upper semicontinuous onX ;

(ii)′′ the function (x, y)→∑n
i=Qi ·Vi(xî, yi) is jointly lower semicontinuous on X ×X .
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If ki =  for every i ∈ I , then, by Theorem ., we have the following existence result of
Nash ϕ-equilibrium for noncooperative games.

Corollary . Let Γ = (Xi, f i)i∈I be a noncooperative game with every f i being the payoff
function of player i. For every i ∈ I , let Xi be a nonempty subset of a CAT() space (Ei,di)
such that X =

∏
i∈I Xi is a complete CAT() space with the convex hull finite property. Let K

be a nonempty compact subset of X and ϕ = (ϕ,ϕ, . . . ,ϕn) : X → X be a surjectivemapping.
Assume that

(i) for every y ∈ X , the set {x ∈ X :
∑n

i=[f i(yî, yi) – f i(yî,ϕi(xi))] > } is convex;
(ii) for every x ∈ X , the function y �→∑n

i=[f i(yî, yi) – f i(yî,ϕi(xi))] is lower
semicontinuous on X ;

(iii) for every y ∈ X ,
∑n

i=[f i(yî, yi) – f i(yî,ϕi(yi))]≤ ;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈X〉, there exists a nonempty compact convex subset XN of X con-
taining N such that

XN \K ⊆
⋃
x∈XN

{
y ∈ X :

n∑
i=

[
f i(yî, yi) – f i

(
yî,ϕi(xi)

)]
> 

}
;

(iv) there exists a point x = (xi)i∈I ∈ X such that

X
∖{

y ∈ X :
n∑
i=

[
f i(yî, yi) – f i

(
yî,ϕi(xi)

)]
> 

}
⊆ K .

Then Γ has a Nash ϕ-equilibrium in K .

Remark . It is interesting to compare Corollary . with Theorem  of Niculescu and
Rovenţa [] in the following aspects: () every Xi in Corollary . is a nonempty subset of
a CAT() space (Ei,di) and it does not need to be compact, where all (Ei,di) are possibly
different; () every function f i in Corollary . does not need to be lower semicontinuous
and quasi-convex; () the mapping ϕ in Corollary . does not need to be continuous and
affine.

By Theorem ., we can derive an existence theorem of Pareto ϕ-equilibrium for mul-
tiobjective noncooperative games. In order to do so, we need the following lemma. The
proof of this lemma is similar to that of Lemma . ofWang []. For the sake of complete-
ness, we give the proof.

Lemma . Every normalized weighted Nash ϕ-equilibrium x̂ ∈ X with a weight Q =
(Q,Q, . . . ,Qn), Qi ∈ Rki

+ \ {} (respectively, Qi ∈ int
R
ki R

ki
+ ) and

∑ki
j=Qi,j =  for every

i ∈ I , is a weak Pareto ϕ-equilibrium (respectively, a Pareto ϕ-equilibrium) of the game
Γ = (Xi,Vi)i∈I .

Proof Let x̂ ∈ X be a normalized weight Nash ϕ-equilibrium of the game Γ = (Xi,Vi)i∈I
with a weight Q = (Q,Q, . . . ,Qn), Qi ∈ Rki

+ \ {} and ∑ki
j=Qi,j =  for every i ∈ I . We can

prove that x̂ is a weak Pareto ϕ-equilibrium. In fact, suppose the contrary. Then it follows

http://www.journalofinequalitiesandapplications.com/content/2014/1/320


Lu et al. Journal of Inequalities and Applications 2014, 2014:320 Page 24 of 26
http://www.journalofinequalitiesandapplications.com/content/2014/1/320

from Definition . that there exist i ∈ I and xi ∈ Xi such that

Vi(x̂î , x̂i ) –Vi(x̂î ,ϕ(xi )) ∈ int
R
ki R

ki
+ .

Since Qi ∈ R
ki
+ \ {}, it follows that Qi · [Vi(x̂î , x̂i ) – Vi(x̂î ,ϕ(xi ))] > , which con-

tradicts the assumption that x̂ is a normalized weighted Nash ϕ-equilibrium with the
weight Q = (Q,Q, . . . ,Qn). Hence, x̂ is a weak Pareto ϕ-equilibrium. Now let x̂ be a
normalized weight Nash ϕ-equilibrium of the game Γ = (Xi,Vi)i∈I with a weight Q =
(Q,Q, . . . ,Qn), Qi ∈ int

R
ki R

ki
+ and

∑ki
j=Qi,j =  for every i ∈ I . We can show that x̂ is a

Pareto ϕ-equilibrium. In fact, if it were not the case, then by Definition ., we know that
there exist i ∈ I and xi ∈ Xi such that

Vi(x̂î , x̂i ) –Vi(x̂î ,ϕ(xi )) ∈R
ki
+ \ {}.

Since Qi ∈ int
R
ki R

ki
+ , it follows that Qi · [Vi(x̂î , x̂i ) – Vi(x̂î ,ϕ(xi ))] > , which contra-

dicts the assumption that x̂ is a normalized weighted Nash ϕ-equilibrium with the weight
Q = (Q,Q, . . . ,Qn). Hence, x̂ is a Pareto ϕ-equilibrium. This completes the proof. �

Remark . The conclusion of Lemma . is still true if x̂ ∈ X is a weighted Nash
ϕ-equilibrium with a weight Q = (Q,Q, . . . ,Qn) satisfying Qi ∈ Rki

+ \ {} (respectively,
Qi ∈ int

R
ki R

ki
+ ) for every i ∈ I . We point out that a Pareto ϕ-equilibrium is not necessarily

a weighted Nash ϕ-equilibrium.

Theorem . Let Γ = (Xi,Vi)i∈I be a multiobjective game with V i = (f i , f i, . . . , f iki ). For ev-
ery i ∈ I , let Xi be a nonempty subset of a CAT() space (Ei,di) such that X =

∏
i∈I Xi is a

complete CAT() space with the convex hull finite property. Let K be a nonempty compact
subset of X and ϕ = (ϕ,ϕ, . . . ,ϕn) : X → X be a surjective mapping. Assume that there
is a weighted vector Q = (Q,Q, . . . ,Qn) with every Qi ∈ Rki

+ \ {} such that the following
conditions are satisfied:

(i) for every y ∈ X , the set {x ∈ X :
∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(xi))] > } is convex;
(ii) for every x ∈ X , the function y �→∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(xi))] is lower
semicontinuous on X ;

(iii) for every y ∈ X ,
∑n

i=Qi · [Vi(yî, yi) –Vi(yî,ϕi(yi))] ≤ ;
(iv) one of the following conditions holds:

(iv) for every N ∈ 〈X〉, there exists a nonempty compact convex subset XN of X con-
taining N such that

XN \K ⊆
⋃
x∈XN

{
y ∈ X :

n∑
i=

Qi ·
[
Vi(yî, yi) –Vi(yî,ϕi(xi)

)]
> 

}
;

(iv) there exists a point x = (xi)i∈I ∈ X such that

X
∖{

y ∈ X :
n∑
i=

Qi ·
[
Vi(yî, yi) –Vi(yî,ϕi(xi)

)]
> 

}
⊆ K .
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Then Γ has at least one weak Pareto ϕ-equilibrium in K . In addition, if Q = (Q,Q,
. . . ,Qn) with each Qi ∈ int

R
ki R

ki
+ , then Γ has at least one Pareto ϕ-equilibrium in K .

Proof It follows fromTheorem. thatΓ has at least aweightedNash ϕ-equilibriumpoint
ŷ ∈ K with respect to the weighted vector Q. By Lemma . and by Remark ., we know
that ŷ is also a weak Pareto ϕ-equilibrium point of Γ , and ŷ is a Pareto ϕ-equilibrium point
if Qi ∈ int

R
ki R

ki
+ for every i ∈ I . This completes the proof. �
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