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Abstract
Based on the recent work of randommetric theory, namely the Ekeland variational
principle on a complete randommetric space, this paper studies the Daneš theorem
in a complete random normed module. In this paper, we first present the notion of
finer ordering on a random normed module. Then we establish the Daneš theorem in
a complete random normed module under the locally L0-convex topology. When the
base space of the random normed module is trivial, our result automatically
degenerates to the classical case.
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1 Introduction
In , Daneš [] presented the Daneš theorem. With the classical Ekeland variational
principle, Brøndsted [] gave it a new proof in .
Recently, Prof. Guo Tiexin and I [] established the Ekeland variational principle for an

L̄-valued function on a complete randommetric space, where L̄ is the set of equivalence
classes of extended real-valued random variables on a probability space (�,F ,P). Based
on this result, this paper establishes the Daneš theorem in a complete random normed
module under the locally L-convex topology.
A random normed module is a random generalization of an ordinary normed space.

Different from ordinary normed spaces, random normed modules possess the rich strat-
ification structure, which is introduced in this paper. It is this kind of rich stratification
structure that makes the theory of random normed modules deeply developed and also
renders it the most useful part of random metric theory [–]. When the probability
(�,F ,P) is trivial, namely F = {∅,�}, our result reduces to the classical Daneš theorem.
So our result is a nontrivial random extension.
The remainder of this article is organized as follows: in Section we give some necessary

definitions and in Section  we give the main results and proofs.

2 Preliminary
Throughout this paper, (�,F ,P) denotes a probability space, K the real number field R or
the complex number field C, N the set of positive integers, L̄(F ) the set of equivalence
classes of extended real-valued random variables on� and L(F ,K ) the algebra of equiva-
lence classes of K-valuedF -measurable random variables on � under the ordinary scalar
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multiplication, addition and multiplication operations on equivalence classes, denoted by
L(F ) when K = R.
Specially, L+(F ) = {ξ ∈ L(F ) | ξ ≥ }, L++(F ) = {ξ ∈ L(F ) | ξ >  on �}.
As usual, ξ > η means ξ ≥ η and ξ �= η, whereas ξ > η on Ameans ξ(ω) > η(ω) a.s. onA

for anyA ∈F and ξ and η in L̄(F ), where ξ and η are arbitrarily chosen representatives
of ξ and η, respectively.
For any A ∈F , Ac denotes the complement of A, Ã = {B ∈F | P(A�B) = } denotes the

equivalence class ofA, where� is the symmetric difference operation, IA the characteristic
function of A, and ĨA is used to denote the equivalence class of IA; given two ξ and η in
L̄(F ), and A = {ω ∈ � : ξ �= η}, where ξ and η are arbitrarily chosen representatives of
ξ and η, respectively, then we always write [ξ �= η] for the equivalence class of A and I[ξ �=η]

for ĨA, one can also understand the implication of such notations as I[ξ≤η], I[ξ<η], and I[ξ=η].
For an arbitrary chosen representative ξ of ξ ∈ L(F ,K ), define the two F -measurable

random variables (ξ)– and |ξ| by (ξ)–(ω) = 
ξ(ω) if ξ(ω) �= , and (ξ)–(ω) =  other-

wise, and by |ξ|(ω) = |ξ(ω)|, ∀ω ∈ �. Then the equivalence class ξ– of (ξ)– is called
the generalized inverse of ξ and the equivalence class |ξ | of |ξ| is called the absolute value
of ξ . It is clear that ξ · ξ– = I[ξ �=].

Definition . ([]) An ordered pair (E,‖ · ‖) is called a random normed space (briefly,
an RN space) over K with base (�,F ,P) if E is a linear space and ‖ · ‖ is a mapping from
E to L+(F ) such that the following three axioms are satisfied:
() ‖x‖ =  if and only if x = θ (the null vector of E);
() ‖αx‖ = |α|‖x‖, ∀α ∈ K and x ∈ E;
() ‖x + y‖ ≤ ‖x‖ + ‖y‖, ∀x, y ∈ E,

where the mapping ‖ · ‖ is called the random norm on E and ‖x‖ is called the random
norm of a vector x ∈ E.
In addition, if E is left module over the algebra L(F ,K ) such that the following is also

satisfied:
() ‖ξx‖ = |ξ |‖x‖, ∀ξ ∈ L(F ,K ) and x ∈ E,

then such an RN space is called an RN module over K with base (�,F ,P) and such a
random norm ‖ · ‖ is called an L-norm on E.

Definition . ([]) Let (E,‖ · ‖) be an RN module over K with base (�,F ,P). For any
ε ∈ L++, let B(ε) = {x ∈ E | ‖x‖ ≤ ε} and Uθ = {B(ε) | ε ∈ L++}. A set G ⊂ E is called Tc-open
if for every x ∈ G there exists some B(ε) ∈ Uθ such that x + B(ε) ⊂ G. Let Tc be the family
of Tc-open subsets, then Tc is a Hausdorff topology on E, called the locally L-convex
topology, denoted by Tc.

Let (E,‖ · ‖) be an RN module over K with base (�,F ,P), pA = ĨA ·p is called the A-strat-
ification of p for each given A ∈ F and p in E. The so-called stratification structure of E
means that E includes every stratification of an element in E. Clearly, pA = θ when P(A) = 
and pA = p when P(� \ A) = , which are both called trivial stratifications of p. Further,
when (�,F ,P) is a trivial probability space every element in E has merely the two trivial
stratifications sinceF = {�,∅}; when (�,F ,P) is arbitrary, every element in E can possess
arbitrarily many nontrivial intermediate stratifications. It is this kind of rich stratification
structure of RN modules that makes the theory of RN modules deeply developed and also
renders it the most useful part of random metric theory.

http://www.journalofinequalitiesandapplications.com/content/2014/1/317


Yang Journal of Inequalities and Applications 2014, 2014:317 Page 3 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/317

To introduce the main results of this paper, let us first recall the following.

Definition . ([]) Let X be a Hausdorff space and f : X → L̄(F ), then:
() dom(f ) := {x ∈ X | f (x) < +∞ on �} is called the effective domain of f .
() f is proper if f (x) > –∞ on � for every x ∈ X and dom(f ) �= ∅.
() f is bounded from below (resp., bounded from above) if there exists ξ ∈ L(F ) such

that f (x)≥ ξ (accordingly, f (x)≤ ξ ) for any x ∈ X .

In all the vector-valued extensions of the Ekeland variational principle, it is of key im-
portance to properly define the lower semicontinuity for a vector-valued function [–].
Recently, we have found that a kind of lower semicontinuity for L̄-valued functions is very
suitable for the study of conditional risk measures.

Definition . ([]) Let (E,‖ · ‖) be an RN module over Rwith base (�,F ,P). A function
f : E → L̄(F ) is called Tc-lower semicontinuous if epi(f ) is closed in (E,Tc)× (L(F ),Tc).

There is a kind of countable concatenation property, which is concerned with the L-
module E itself and is very important for the theory of RN module. Let us recall it.

Definition . ([]) Let E be a left module over the algebra L(F ,K ). A formal sum
∑

n∈N ĨAnxn is called a countable concatenation of a sequence {xn | n ∈ N} in E with re-
spect to a countable partition {An | n ∈ N} of � to F . Moreover, a countable concatena-
tion

∑
n∈N ĨAnxn is well defined or

∑
n∈N ĨAnxn ∈ E if there is x ∈ E such that ĨAnx = ĨAnxn,

∀n ∈ N . A subset G of E is said to have the countable concatenation property if every
countable concatenation

∑
n∈N ĨAnxn with xn ∈G for each n ∈N still belongs toG, namely

∑
n∈N ĨAnxn is well defined and there exists x ∈ G such that x =

∑
n∈N ĨAnxn.

Definition . ([]) Let E be a left module over the algebra L(F ) and f a function from
E to L̄(F ), then:
() f is L(F )-convex if f (ξx + ( – ξ )y) ≤ ξ f (x) + ( – ξ )f (y) for all x and y in E and

ξ ∈ L+(F ) such that  ≤ ξ ≤  (here we make the convention that  · (±∞) =  and
∞ –∞ =∞!).

() f is said to have the local property if ĨAf (x) = ĨAf (ĨAx) for all x ∈ E and A ∈F .

It is well known from [] that f : E → L̄(F ) is L(F )-convex iff f has the local property
and epi(f ) is L(F )-convex.

3 Main results and proofs
Definition . Let (E,‖ · ‖) be an RN module over R with base (�,F ,P), z ∈ E and r ∈
L++(F ). Denote the Tc-closed ball by

Bz(r) :=
{
x ∈ E : ‖x – z‖ ≤ r

}
.

Definition . ([]) Let (E,‖ · ‖) be an RN module over R with base (�,F ,P), Bz(r) a
Tc-closed ball in E, y ∈ E \ Bz(r). Define the L(F )-convex hull of {y} ∪ Bz(r) by

D(z, r, y) :=
{
tb + ( – t)y : b ∈ Bz(r), t ∈ L+(F ) and ≤ t ≤ 

}
.
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Definition . Let (E,‖ · ‖) be an RN module over R with base (�,F ,P), ≤ and ≤ be
both orderings on E. Then ≤ is finer than ≤, if

x ≤ y ⇒ x≤ y.

In [], we established the precise form of the Ekeland variational principle on a Tc-
complete RN-module. Here we only need its general form as follows.

Lemma . ([]) Let (F ,‖ · ‖) be a Tc-complete RN module over R with base (�,F ,P) such
that F has the countable concatenation property, ϕ : F → L̄(F ) have the local property. If
G ⊂ F is a Tc-closed subset with the countable concatenation property and ϕ|G is proper,
Tc-lower semicontinuous, and bounded frombelow onG, then for each point x ∈ dom(ϕ|G),
there exists z ∈G such that the following are satisfied:
() ϕ(z) ≤ ϕ(x) – ‖z – x‖;
() for each x ∈G such that x �= z, ϕ(x)� ϕ(z) – ‖x – z‖, which means that z is a

maximal element in (G,≤ϕ).

Remark . ([]) The ordering ≤ϕ on F is defined as follows: x ≤ϕ y if and only if either
x = y, or x and y ∈ dom(ϕ) are such that ‖x – y‖ ≤ ϕ(x) – ϕ(y).

Theorem . Let (X,‖ · ‖) be a Tc-complete RN module over R with base (�,F ,P) such
that X has the countable concatenation property, F ⊂ X a Tc-closed subset with the count-
able concatenation property, and z ∈ X \ F . Let r,R,ρ ∈ L++(F ) with  < r < R < ρ on �,
then there exists x ∈ ∂c(F) such that

‖x – z‖ ≤ ρ

and

D(z, r,x)∩ F = {x},

where R :=
∧{‖z – a‖ : a ∈ F}, and ∂c(F) denotes the Tc-boundary of F .

Proof We can, without loss of generality, suppose z = .
Let E := F ∩ B(ρ).
Define an ordering ≤̃ on E as follows: x ≤̃x if and only if x ∈ D(, r,x). It is easy to

check that ≤̃ is a partial ordering.
Define a function ϕ : E → L+(F ) by ϕ(x) = (ρ + r)(R – r)–‖x‖, ∀x ∈ E.
Since F and B(ρ) are Tc-closed and have the countable concatenation property, it fol-

lows that E is Tc-closed and has the countable concatenation property.
For each A ∈F , one can have

ĨA · ϕ(x) = ĨA · (ρ + r)(R– r)–‖x‖ = ĨA · (ρ + r)(R– r)–‖ĨA · x‖ = ĨA · ϕ(ĨA · x), ∀x ∈ E,

which implies that ϕ has the local property.
Since ϕ is Tc-continuous, it is easy to see that ϕ is Tc-lower semicontinuous.
Then from Lemma ., there exists a maximal element x in (E,≤ϕ).
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We now prove that ≤̃ is finer than the ordering ≤ϕ .
Let x, x be points in E such that x ≤̃x. Then one can have x ∈D(, r,x); thus we can

suppose

x = ( – t)x + tv, ()

where t ∈ L+(F ), ≤ t ≤ , and v ∈ B(r).
From (), it follows that ‖x‖ ≤ ( – t)‖x‖ + t‖v‖, which implies

t
(‖x‖ – ‖v‖) ≤ ‖x‖ – ‖x‖.

From R – r ≤ ‖x‖ – ‖v‖, one can have

t ≤ (‖x‖ – ‖x‖
)
(R – r)–. ()

Thus by () we have

‖x – x‖ = t‖v – x‖ ≤ t
(‖v‖ + ‖x‖

)

≤ t(r + ρ)≤ (r + ρ)(R – r)–
(‖x‖ – ‖x‖

)
,

which implies x ≤ϕ x, and hence ≤̃ is finer than the ordering ≤ϕ .
Since x is a maximal element in (E,≤ϕ) and ≤̃ is finer than ≤ϕ , it is easy to check that

x is a maximal element in (E, ≤̃). Thus we have ‖x‖ ≤ ρ and {x} =D(, r,x)∩ E, which
implies D(, r,x)∩ F = {x}.
For each x ∈D(, r,x), we can suppose x = tx + ( – t)v, where v ∈ B(r). Thus we have

‖x‖ = ∥∥tx + ( – t)v
∥∥ ≤ t‖x‖ + ( – t)‖v‖ ≤ tρ + ( – t)r < ρ

on �.
It is easy to see that for any y ∈ F \ E, ‖y‖ ≤ ρ does not hold. Hence we have x ∈ ∂c(F).

�

Remark . When the base space (�,F ,P) of theRN module is trivial, namelyF = {∅,�},
our result automatically degenerates to the classical Daneš theorem. So our result is a
nontrivial random extension.
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