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Abstract
We analyze the convergence of the Mann-type double sequence iteration process to
the solution of a Lipschitz pseudocontractive operator equation on a bounded closed
convex subset of arbitrary real Banach space into itself. Our results extend the result in
(Moore in Comp. Math. Appl. 43: 1585-1589, 2002).
MSC: 47H10; 54H25

Keywords: Lipschitz pseudocontractions; Mann-type double sequence iteration;
strong convergence

1 Introduction
Let E be a real Banach space and E∗ be the dual space of E. Let J be the normalized duality
mapping from E to E∗ defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖f ‖ = ‖x‖}

for all x ∈ E where 〈·, ·〉 denotes the generalized duality pairing. A single-valued duality
map will be denoted by j.
An operator T : E → E is said to be
• pseudocontractive if there exists j(x – y) ∈ J(x – y) such that

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖

for any x, y ∈ E;
• accretive if for any x, y ∈ E, there exists j(x – y) ∈ J(x – y) satisfying

〈
Tx – Ty, j(x – y)

〉 ≥ ;

• strongly pseudocontractive if there exist j(x – y) ∈ J(x – y) and a constant λ ∈ (, )
such that

〈
Tx – Ty, j(x – y)

〉 ≤ λ‖x – y‖

for any x, y ∈ E;
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• strongly accretive if for any x, y ∈ E, there exist j(x – y) ∈ J(x – y) and a constant
t ∈ (, ) satisfying

〈
Tx – Ty, j(x – y)

〉 ≥ t‖x – y‖

for all x, y ∈ E.
As a consequence of a result of Kato [], the concept of pseudocontractive operators can

equivalently be defined as follows:
T is strongly pseudocontractive if there exists λ ∈ (, ) such that the inequality

‖x – y‖ ≤ ∥∥x – y + r
[
(I – T – λI)x – (I – T – λI)y

]∥∥ (.)

holds for all x, y ∈ E and r > . If λ =  in the inequality (.), then T is pseudocontractive.
It is easy to see thatT is pseudocontractive if and only if I–T is accretivewhere I denotes

the identity mapping on E.
LetC be a compact convex subset of a real Hilbert space and letT : C → C be a Lipschitz

pseudocontraction. It remains as an open question whether the Mann iteration process
always converges to a fixed point of T . In [] it was proved that the Ishikawa iteration
process converges strongly to a fixed point of T . In , Mutangadura and Chidume
[] constructed the following example to demonstrate that the Mann iteration process is
not guaranteed to converge to a fixed point of a Lipschitz pseudocontraction mapping a
compact convex subset of a real Hilbert space H into itself.

Example [] Let H = 
 with the usual Euclidean inner product, and for x = (a,b) ∈ H
define x⊥ = (b, –a). Now, let C = B(o); the closed unit ball inH and let C = {x ∈H : ‖x‖ ≤

 }, C = {x ∈H : 

 ≤ ‖x‖ ≤ }. Define the map T : C → C by

Tx =

⎧⎨
⎩
x + x⊥, if x ∈ C;
x

‖x‖ – x + x⊥, if x ∈ C.

Observe thatT is pseudocontractive, Lipschitz continuous (with Lipschitz constant ) and
has the origin (, ) as its unique fixed point; C is compact and convex. However, for any
x ∈ C, we have

∥∥( – λ)x + λTx
∥∥ =

(
 + λ)‖x‖ > ‖x‖, ∀λ ∈ (, ),

while for any x ∈ C, we have

∥∥( – λ)x + λTx
∥∥ ≥ 


‖x‖, ∀λ ∈ (, ),

and therefore noMann sequence can converge to (, ), the unique fixed point of T , unless
the initial guess is the fixed point itself.
Moore [] introduced the concept of a Mann-type double sequence iteration process

and proved that it converges strongly to a fixed point of a continuous pseudocontraction
which maps a bounded closed convex nonempty subset of a real Hilbert space into itself.
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Definition . [] LetN denote the set of all nonnegative integers (the natural numbers)
and let E be a normed linear space. By a double sequence in E is meant a function f :
N × N → E defined by f (n,m) = xn,m ∈ E. A double sequence {xn,m} is said to converge
strongly to x∗ if given any ε > , there existN ,M >  such that ‖xn,m –x∗‖ < ε for all n≥N ,
m ≥M. If ∀n, r ≥N , ∀m, t ≥M, we have ‖xn,r – xm,t‖ < ε, then the double sequence is said
to be Cauchy. Furthermore, if for each fixed n, xn,m → x∗

n as m → ∞ and then x∗
n → x∗ as

n→ ∞, then xn,m → x∗ as n,m → ∞.

Theorem . [] Let C be a bounded closed convex nonempty subset of a (real) Hilbert
space H , and let T : C → C be a continuous pseudocontractive map. Let {αn}n≥, {ak}k≥ ⊂
(, ) be real sequences satisfying the following conditions:

(i) limk→∞ ak = ,
(ii) limk,r→∞(ak – ar)/( – ak) = , ∀ < r ≤ k,
(iii) limn→∞ αn = ,
(iv)

∑
n≥ αn =∞.

For an arbitrary but fixed ω ∈ C, and for each k ≥ , define Tk : C → C by Tkx = (–ak)ω+
akTx, ∀x ∈ C. Then the double sequence {xk,n}k≥,n≥ generated from an arbitrary x, ∈ C
by

xk,n+ = ( – αn)xk,n + αnTkxk,n, k,n≥ ,

converges strongly to a fixed point x∗∞ of T in C.

The following lemma will be useful in the sequel.

Lemma . [] Let {δn} and {σn} be two sequences of nonnegative real numbers satisfying
the inequality

δn+ ≤ γ δn + σn, n≥ .

Here γ ∈ [, ). If limn→∞ σn = , then limn→∞ δn = .

It is our purpose in this paper to extend Theorem . from Hilbert space to an arbitrary
real Banach space with no further assumptions on the real sequences {αn}n≥, {ak}k≥.

2 Main results
Theorem. Let C be a bounded closed convex subset of a Banach space E and T : C → C
be a Lipschitz pseudocontraction with F(T) �= ∅. Let {αn}n≥, {ak}k≥ ⊂ (, ) be real se-
quences satisfying the following conditions:

(i) limk→∞ ak = ,
(ii) limn→∞ αn = .

For an arbitrary but fixed ω ∈ C, and for each k ≥ , define Tk : C → C by Tkx = (–ak)ω+
akTx, ∀x ∈ C. Then the double sequence {xk,n}k≥,n≥ generated from an arbitrary x, ∈ C
by

xk,n+ = ( – αn)xk,n + αnTkxk,n, k,n≥  (.)

converges strongly to a fixed point x∗ of T in C.
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Proof Since T is Lipschitzian, there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖ for all x, y ∈ C.

Since T is pseudocontractive, for each k ≥ , we have

〈
Tkx – Tky, j(x – y)

〉
= ak

〈
Tx – Ty, j(x – y)

〉 ≤ ak‖x – y‖.

Hence, Tk is Lipschitz and strongly pseudocontractive. Also, C is invariant under Tk for
all k ≥ , by convexity. Thus, for each k ≥ , Tk has a unique fixed point x∗

k , say, in C.
Now, we proceed in the following steps.
(I) for each k ≥ , xk,n → x∗

k ∈ C as n→ ∞.
(II) x∗

k → x∗ ∈ C as k → ∞.
(III) x∗ ∈ F(T).

Proof of (I). In fact, it follows from (.) that

xk,n = xk,n+ + αnxk,n – αnTkxk,n

= ( + αn)xk,n+ + αn(I – Tk – λI)xk,n+ – ( – λ)αnxk,n+ + αnxk,n

+ αn(Tkxk,n+ – Tkxk,n)

= ( + αn)xk,n+ + αn(I – Tk – λI)xk,n+ – ( – λ)αn
[
( – αn)xk,n + αnTkxk,n

]

+ αnxk,n + αn(Tkxk,n+ – Tkxk,n)

= ( + αn)xk,n+ + αn(I – Tk – λI)xk,n+ – ( – λ)αnxk,n

+ ( – λ)α
n(xk,n – Tkxk,n) + αn(Tkxk,n+ – Tkxk,n).

Thus, if x∗
k is a fixed point of Tk , k ≥ , then

xk,n+ – x∗
k = ( + αn)

(
xk,n+ – x∗

k
)
+ αn(I – Tk – λI)

(
xk,n+ – x∗

k
)

– ( – λ)αn
(
xk,n – x∗

k
)
+ ( – λ)α

n(xk,n – Tkxk,n) + αn(Tkxk,n+ – Tkxk,n).

Using inequality (.), it follows that

∥∥xk,n+ – x∗
k
∥∥ ≥ ( + αn)

∥∥xk,n+ – x∗
k
∥∥ – ( – λ)αn

∥∥xk,n – x∗
k
∥∥

– ( – λ)α
n‖xk,n – Tkxk,n‖ – αn‖Tkxk,n+ – Tkxk,n‖. (.)

On the other hand, by (.) we obtain

‖xk,n+ – xk,n‖ = αn‖Tkxk,n – xk,n‖
≤ αn

(∥∥Tkxk,n – x∗
k
∥∥ +

∥∥xk,n – x∗
k
∥∥)

= αn
(
ak

∥∥Txk,n – x∗
k
∥∥ +

∥∥xk,n – x∗
k
∥∥)

≤ αn
(
akL

∥∥xk,n – x∗
k
∥∥ +

∥∥xk,n – x∗
k
∥∥)

≤ αn(L + )
∥∥xk,n – x∗

k
∥∥.
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Therefore,

‖Tkxk,n+ – Tkxk,n‖ = ak‖Txk,n+ – Txk,n‖
≤ akL‖xk,n+ – xk,n‖
≤ L‖xk,n+ – xk,n‖
≤ αnL(L + )

∥∥xk,n – x∗
k
∥∥. (.)

Substituting (.) into (.), we arrive at

∥∥xk,n – x∗
k
∥∥ ≥ ( + αn)

∥∥xk,n+ – x∗
k
∥∥ – ( – λ)αn

∥∥xk,n – x∗
k
∥∥

– ( – λ)α
n‖xk,n – Tkxk,n‖ – L(L + )α

n
∥∥xk,n – x∗

k
∥∥,

which implies that

αn
∥∥xk,n+ – x∗

k
∥∥ ≤ ( – λ)αn

∥∥xk,n – x∗
k
∥∥ + α

n
[
L(L + )

∥∥xk,n – x∗
k
∥∥

+ ( – λ)‖xk,n – Tkxk,n‖
]
,

and so

∥∥xk,n+ – x∗
k
∥∥ ≤ ( – λ)

∥∥xk,n – x∗
k
∥∥ + αn

[
L(L + )

∥∥xk,n – x∗
k
∥∥

+ ( – λ)‖xk,n – Tkxk,n‖
]
. (.)

Since C is bounded, there existsM >  such that

M = max
{
L(L + ) sup

n≥

∥∥xk,n – x∗
k
∥∥, ( – λ) sup

n≥
‖xk,n – Tkxk,n‖

}
.

Hence, it follows from (.) that

∥∥xk,n+ – x∗
k
∥∥ ≤ ( – λ)

∥∥xk,n – x∗
k
∥∥ + αnM.

Since λ ∈ (, ) and limn→∞ αn = , it follows from Lemma . that

lim
n→∞

∥∥xk,n – x∗
k
∥∥ = ,

i.e., xk,n → x∗
k as n → ∞.

Proof of (II). We prove that {x∗
k}∞k= = {Tkx∗

k}∞k= converges to some x∗ ∈ C. For this pur-
pose, we need only to prove that {x∗

k}∞ is a Cauchy sequence.
In fact, we have

∥∥x∗
l – x∗

m
∥∥ =

〈
x∗
l – x∗

m, j
(
x∗
l – x∗

m
)〉

=
〈
Tlx∗

l – Tmx∗
m, j

(
x∗
l – x∗

m
)〉

=
〈
( – al)ω + alTx∗

l – ( – am)ω – amTx∗
m, j

(
x∗
l – x∗

m
)〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/314


Abdelhakim and Gu Journal of Inequalities and Applications 2014, 2014:314 Page 6 of 8
http://www.journalofinequalitiesandapplications.com/content/2014/1/314

= (am – al)
〈
ω, j

(
x∗
l – x∗

m
)〉
+ al

〈
Tx∗

l – Tx∗
m, j

(
x∗
l – x∗

m
)〉

+ (al – am)
〈
Tx∗

m, j
(
x∗
l – x∗

m
)〉

≤ |al – am|(‖ω‖∥∥x∗
l – x∗

m
∥∥ +

∥∥Tx∗
m
∥∥∥∥x∗

l – x∗
m
∥∥)

+ al
〈
Tx∗

l – Tx∗
m, j

(
x∗
l – x∗

m
)〉

≤ |al – am|(‖ω‖ + ∥∥Tx∗
m
∥∥)∥∥x∗

l – x∗
m
∥∥ + alλ

∥∥x∗
l – x∗

m
∥∥

≤ |al – am|(‖ω‖ + ∥∥Tx∗
m
∥∥)∥∥x∗

l – x∗
m
∥∥ + λ

∥∥x∗
l – x∗

m
∥∥,

that is,

∥∥x∗
l – x∗

m
∥∥ ≤ [|al – am|(‖ω‖ + ∥∥Tx∗

m
∥∥)

+ λ
∥∥x∗

l – x∗
m
∥∥]
,

hence

∥∥x∗
l – x∗

m
∥∥ ≤ 

|al – am|
 – λ

d,

where d = diamC. If follows from condition (i) that

lim
l,m→∞

∥∥x∗
l – x∗

m
∥∥ = .

This completes step (II) of the proof.
Proof of (III). In order to accomplish step (III), we first have to prove that {x∗

k}∞k= is an
approximate fixed point sequence for T . In fact, from Tkx∗

k = ( – ak)ω + akTx∗
k , we have

∥∥x∗
k – Tx∗

k
∥∥ =

∥∥∥∥x∗
k –


ak

Tkx∗
k +

 – ak
ak

ω

∥∥∥∥

=
∥∥∥∥x∗

k –

ak

x∗
k +

 – ak
ak

ω

∥∥∥∥

=
∥∥∥∥
 – ak
ak

(
ω – x∗

k
)∥∥∥∥

≤  – ak
ak

(‖ω‖ + ∥∥x∗
k
∥∥)

≤  – ak
ak

· d,

where d = diamC. Hence limk→∞ ‖x∗
k – Tx∗

k‖ = . Since x∗
k → x∗ as k → ∞, T is contin-

uous and using continuity of the norm, we get limk→∞ ‖x∗ – Tx∗‖ = , i.e., x∗ = Tx∗. This
completes the proof. �

Corollary . Let C be a bounded closed convex subset of a Banach space E and T : C → C
be a nonexpansive mapping with F(T) �= ∅. Let {αn}n≥, {ak}k≥ ⊂ (, ) be real sequences
satisfying conditions (i)-(ii) in Theorem .. For an arbitrary but fixed ω ∈ C, and for each
k ≥ , define Tk : C → C by Tkx = ( – ak)ω + akTx, ∀x ∈ C. Then the double sequence
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{xk,n}k≥,n≥ generated from an arbitrary x, ∈ C by

xk,n+ = ( – αn)xk,n + αnTkxk,n, k,n≥ ,

converges strongly to a fixed point of T in C.

Proof Obvious, observing the fact that every nonexpansivemapping is Lipschitz andpseu-
docontractive. �

The following corollary follows from Theorem . on setting ω =  ∈ C.

Corollary . Let C, E, T , {αn}∞n=, {ak}∞k= be as in Theorem .. For an arbitrary but fixed
ω ∈ C, and for each k ≥ , define Tk : C → C by Tkx = akTx for all x ∈ C. Then the double
sequence {xk,n}k≥,n≥ generated from an arbitrary x, ∈ C by

xk,n+ = ( – αn)xk,n + αnTkxk,n, k,n≥ ,

converges strongly to a fixed point of T in C.

Remark . Theorem . improves and extends Theorem . of Moore [] in three re-
spects:
() It abolishes the condition that limr,k→∞ ak–ar

–ak
= .

() It abolishes the condition that
∑∞

n= αn =∞.
() The ambient space is no longer required to be a Hilbert space and is taken to be the

more general Banach space instead.

Remark .
() Whereas the Ishikawa iteration process was proved to converge to a fixed point of a

Lipschitz pseudocontractive mapping in compact convex subsets of a Hilbert space,
we imposed no compactness conditions to obtain the strong convergence of the
double sequence iteration process to a fixed point of a Lipschitz pseudocontraction.

() Our results may easily be extended to the slightly more general classes of Lipschitz
hemicontractive and Lipschitz quasi-nonexpansive mappings.

() Prototypes of the sequences {ak}∞k= and {αn}∞n= are

ak =
k

 + k
and αn =


(n + )

.
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