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1 Introduction
The study of equilibrium problems is an important branch of optimization theory and
nonlinear functional analysis. Numerous problems in physics, optimization, transporta-
tion, signal processing, and economics are reduced to find a solution to equilibrium prob-
lems, which cover fixed point problems, variational inequalities, saddle problems, inclu-
sion problems, and so on. A closely related subject of current interest is the problem of
finding common elements in the fixed point set of nonlinear operators and in the solution
set of monotone variational inequalities; see [–] and the references therein. The moti-
vation for this subject is mainly due to its possible applications to mathematical modeling
of concrete complex problems. The aim of this paper is to investigate a common element
problem based on a Halpern-type algorithm. Strong convergence of the algorithm is ob-
tained in the framework of real Hilbert spaces. The organization of this paper is as follows.
In Section , we provide some necessary preliminaries. In Section , a Halpern-type algo-
rithm is proposed and analyzed. Strong convergence theorems for common solutions of
two problems are established in the framework of Hilbert spaces. In Section , applica-
tions of the main results are provided.

2 Preliminaries
LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed, and convex subset of H and let ProjC be the metric projection from H onto C.
Let T : C → C be a mapping. In this paper, we use F(T) to denote the fixed point set

of T . Recall that T is said to be contractive iff there exists a constant α ∈ (, ) such that

‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ C.
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For such a case, T is also said to be α-contractive. Recall that T is said to be nonexpansive
iff

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

It is well known that the fixed point set of nonexpansive mappings is nonempty provided
that the subset C is bounded, convex, and closed.
Let A : C →H be a mapping. Recall that A is said to bemonotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

Recall that A is said to be inverse-strongly monotone iff there exists a constant α >  such
that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone.
Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, we useVI(C,A) to denote the solution set of (.). It is well known that x ∈ C
is a solution of the variational inequality (.) iff x is a solution of the fixed point equation
PC(I – rA)x = x, where r >  is a constant.
Recall that a set-valued mapping M : H ⇒ H is said to be monotone iff, for all x, y ∈ H ,

f ∈Mx and g ∈My imply 〈x– y, f – g〉 > .M ismaximal iff the graphGraph(M) of R is not
properly contained in the graph of any other monotone mapping. It is well known that a
monotone mapping M is maximal if and only if, for any (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥ ,
for all (y, g) ∈Graph(M) implies f ∈ Rx.
For a maximal monotone operator M on H , and r > , we may define the single-valued

resolvent Jr : H → D(M), where D(M) denotes the domain of M. It is known that Jr is
firmly nonexpansive, andM–() = F(Jr), where F(Jr) := {x ∈D(M) : x = Jrx}, andM–() :=
{x ∈H :  ∈Mx}.
LetA : C →H be amonotonemapping, and let F be a bifunction of C×C intoR, where

R denotes the set of real numbers. We consider the following generalized equilibrium
problem:

Find x ∈ C such that F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, we use EP(F ,A) to denote the solution set of the generalized equilibrium
problem (.).
Next, we give some special cases of the generalized equilibrium problem (.).
(I) If F ≡ , then problem (.) is reduced to the classical variational inequality (.).
(II) If A≡ , the zero mapping, then problem (.) is reduced to the following

equilibrium problem:

Find x ∈ C such that F(x, y) ≥ , ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the solution set of the equilibrium problem (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/313


Zhang Journal of Inequalities and Applications 2014, 2014:313 Page 3 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/313

To study the equilibrium problems, we may assume that F satisfies the following condi-
tions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.
Recently, many authors have studied fixed point problems of nonexpansive mappings

and solution problems of the equilibrium problems (.) and (.); for more details, see
[–] and the references therein. In this paper, motivated and inspired by the research
going on in this direction, we consider common element problems based on a mean it-
erative process. Strong convergence of the iterative process is obtained in the framework
of real Hilbert spaces. The results presented in this paper improve and extend the corre-
sponding results in Hao [], Qin et al. [], Chang et al. [].
In order to prove our main results, we need the following lemmas.

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Lemma . [] Let F : C × C → R be a bifunction satisfying (A)-(A). Then, for any
r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Define a mapping Tr :H → C as follows:

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, x ∈ H ,

then the following conclusions hold.
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

Let {Si : C → C} be a family of infinitely nonexpansive mappings and {γi} be a nonneg-
ative real sequence with  ≤ γi < , ∀i ≥ . For n ≥  define a mapping Wn : C → C as

http://www.journalofinequalitiesandapplications.com/content/2014/1/313
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follows:

Un,n+ = I,

Un,n = γnSnUn,n+ + ( – γn)I,

Un,n– = γn–Sn–Un,n + ( – γn–)I,

...

Un,k = γkSkUn,k+ + ( – γk)I, (.)

Un,k– = γk–Sk–Un,k + ( – γk–)I,

...

Un, = γSUn, + ( – γ)I,

Wn =Un, = γSUn, + ( – γ)I.

Such a mappingWn is nonexpansive from C to C and it is called aW -mapping generated
by Sn,Sn–, . . . ,S and γn,γn–, . . . ,γ; see [] and the references therein.

Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set and let {γi} be a real sequence such that  < γi ≤ l < ,
where l is some real number, ∀i≥ . Then
() Wn is nonexpansive and F(Wn) =

⋂∞
i= F(Si), for each n≥ ;

() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists;
() the mappingW : C → C defined by

Wx := lim
n→∞Wnx = lim

n→∞Un,x, x ∈ C, (.)

is a nonexpansive mapping satisfying F(W ) =
⋂∞

i= F(Si) and it is called the
W -mapping generated by S,S, . . . and γ,γ, . . . .

Lemma . [] Let B : C →H be amapping and let M :H ⇒H be amaximal monotone
operator. Then F(Jr(I – rB)) = (B +M)–(), where r is some positive real number.

Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set and let {γi} be a real sequence such that  < γi ≤ l < ,
∀i≥ . If K is any bounded subset of C, then

lim
n→∞ sup

x∈K
‖Wx –Wnx‖ = .

Throughout this paper, we always assume that  < γi ≤ l < , ∀i≥ .

Lemma . [] Let A : C →H a Lipschitz monotone mapping and let NCx be the normal
cone to C at x ∈ C; that is, NCx = {y ∈H : 〈x – u, y〉,∀u ∈ C}. Define

Wx =

⎧⎨
⎩
Ax +NCx, x ∈ C,

∅ x /∈ C.

Then W is maximal monotone and  ∈Wx if and only if x ∈VI(C,A).
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Lemma . [] Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence
in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( – βn)yn + βnxn
for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

3 Main results
Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let F be
a bifunction from C × C to R which satisfies (A)-(A). Let A : C → H be an α-inverse-
strongly monotone mapping and let B : C →H be a β-inverse-strongly monotone mapping.
Let M :H ⇒H be a maximal monotone operator. Let {Si : C → C} be a family of infinitely
nonexpansive mappings. Assume that F :=

⋂∞
i= F(Si) ∩ EP(F ,B) ∩ (A + M)–() �= ∅. Let

f : C → C be a κ-contraction. Let {xn} be a sequence generated by the process: x ∈ C and
⎧⎨
⎩
F(un, y) + 〈Bxn, y – un〉 + 

sn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + βnxn + γnWn ProjC Jrn (un – rnAun), ∀n≥ ,

where {Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences
in (, ) such that αn +βn + γn =  and {rn} and {sn} are positive number sequences. Assume
that the above control sequences satisfy the following restrictions:
(a)  < r ≤ rn ≤ r′ < α,  < r′′ ≤ sn ≤ r′′′ < β ;
(b) limn→∞ αn =  and

∑∞
n= αn = ∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ = ProjF f (x̄).

Proof First, we show that I – rnA is nonexpansive. For ∀x, y ∈ C, we have

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rnα‖Ax –Ay‖ + rn‖Ax –Ay‖

= ‖x – y‖ + rn(rn – α)‖Ax –Ay‖.

Using restriction (a), we have I – rnA is nonexpansive, so is I – snB. Fix x∗ ∈ F . It follows
that ‖un – x∗‖ ≤ ‖(I – snB)xn – (I – snB)x∗‖ ≤ ‖xn – x∗‖. Putting yn = Jrn (un – rnAun), one
finds that ‖yn – x∗‖ ≤ ‖un – x∗‖ ≤ ‖xn – x∗‖. It follows that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥Wn ProjC yn – x∗∥∥

≤ αn
∥∥f (xn) – f

(
x∗)∥∥ + αn

∥∥f (x∗) – x∗∥∥ + βn
∥∥xn – x∗∥∥ + γn

∥∥yn – x∗∥∥
≤ (

 – αn( – κ)
)∥∥xn – x∗∥∥ + αn

∥∥f (x∗) – x∗∥∥.
Hence, we have ‖xn – x∗‖ ≤ max{‖x – x∗‖, ‖f (x∗)–x∗‖

–α
}. This yields the result that {xn} is

bounded. Therefore, both {yn} and {un} are also bounded. Next, without loss of generality,

http://www.journalofinequalitiesandapplications.com/content/2014/1/313


Zhang Journal of Inequalities and Applications 2014, 2014:313 Page 6 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/313

we assume that there exists a bounded set K ⊂ C such that xn, yn,un ∈ K . Notice that
F(un+, y) + 

sn+
〈y – un+,un+ – (I – sn+B)xn+〉 ≥ , ∀y ∈ C, and F(un, y) + 

sn 〈y – un,un –
(I – snB)xn〉 ≥ , ∀y ∈ C. It follows that

〈
un+ – un,

un – (I – snB)xn
sn

–
un+ – (I – sn+B)xn+

sn+

〉
≥ .

Hence, we have

‖un+ – un‖ ≤
〈
un+ – un, (I – sn+B)xn+ – (I – snB)xn

+
(
 –

sn
sn+

)(
un+ – (I – sn+B)xn+

)〉

≤ ‖un+ – un‖
(∥∥(I – sn+B)xn+ – (I – snB)xn

∥∥

+
∣∣∣∣ – sn

sn+

∣∣∣∣∥∥un+ – (I – sn+B)xn+
∥∥)

.

This yields the result that

‖un+ – un‖ ≤ ∥∥(I – sn+B)xn+ – (I – snB)xn
∥∥

+
|sn+ – sn|

sn+

∥∥un+ – (I – sn+B)xn+
∥∥

=
∥∥(I – sn+B)xn+ – (I – sn+B)xn + (I – sn+B)xn – (I – snB)xn

∥∥
+

|sn+ – sn|
sn+

∥∥un+ – (I – sn+B)xn+
∥∥

≤ ‖xn+ – xn‖ + |sn+ – sn|M, (.)

whereM is an appropriate constant such that

M = sup
n≥

{
‖Bxn‖ + ‖un+ – (I – sn+B)xn+‖

ā

}
.

Since Jrn is firmly nonexpansive, one sees that

‖yn+ – yn‖
=

∥∥Jrn (un+ – rn+Aun+) – Jrn (un – rnAun)
∥∥

≤ ∥∥un+ – rn+Aun+ – (un – rnAun)
∥∥

=
∥∥(I – rn+A)un+ – (I – rn+A)un + (rn – rn+)Aun

∥∥
≤ ‖un+ – un‖ + |rn – rn+|‖Aun‖. (.)

Substituting (.) into (.), one finds that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖ +
(|sn+ – sn| + |rn – rn+|

)
M, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/313
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where M is an appropriate constant such that M = max{supn≥{‖Aun‖},M}. On the
other hand, one has

‖Wn+ ProjC yn+ –Wn ProjC yn‖
≤ ‖Wn+yn+ –Wnyn‖
≤ ‖Wn+yn+ –Wyn+‖ + ‖Wyn+ –Wyn‖ + ‖Wyn –Wnyn‖
≤ sup

x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ ‖yn+ – yn‖, (.)

where K is the bounded subset of C defined above. Combining (.) with (.), one finds

‖Wn+ ProjC yn+ –Wn ProjC yn‖
≤ sup

x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ ‖xn+ – xn‖

+
(|rn+ – rn| + |sn – sn+|

)
M. (.)

Letting xn+ = ( – βn)zn + βnxn we see that

‖zn+ – zn‖ ≤ αn+

 – βn+

∥∥f (xn+) –Wn+yn+
∥∥ +

αn

 – βn

∥∥f (xn) –Wnyn
∥∥

+ ‖Wn+ ProjC yn+ –Wn ProjC yn‖. (.)

Substituting (.) into (.), we see that

‖zn+ – zn‖ – ‖xn+ – xn‖
≤ αn+

 – βn+

∥∥f (xn+) –Wn+yn+
∥∥ +

αn

 – βn

∥∥f (xn) –Wnyn
∥∥

+ sup
x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}

+
(|rn+ – rn| + |sn – sn+|

)
M.

It follows from restrictions (a), (c), and (d) that lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖) ≤ .
Using Lemma ., we find that limn→∞ ‖zn – xn‖ = . It follows that

lim
n→∞‖xn+ – xn‖ = . (.)

For any x∗ ∈ F , we see that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥Wn ProjC yn – x∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥yn – x∗∥∥. (.)

Since

∥∥yn – x∗∥∥ =
∥∥Jrn (un – rnAun) – x∗∥∥

≤ ∥∥(I – rnA)un – (I – rnA)x∗∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/313
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=
∥∥un – x∗∥∥ – rn

〈
un – x∗,Aun –Ax∗〉 + rn

∥∥Aun –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ + rn(rn – α)
∥∥Aun –Ax∗∥∥,

we find from (.) that

lim
n→∞

∥∥Aun –Ax∗∥∥ = . (.)

It also follows from (.) that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥xn – x∗ – sn

(
Bxn – Bx∗)∥∥

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥

+ γn
(∥∥xn – x∗∥∥ + sn

∥∥Bxn – Bx∗∥∥ – sn
〈
Bxn – Bx∗,xn – x∗〉)

≤ αn
∥∥f (xn) – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥xn – x∗∥∥

– snγn(β – sn)
∥∥Bxn – Bx∗∥∥.

Using (.), one arrives at

lim
n→∞

∥∥Bxn – Bx∗∥∥ = . (.)

Since Tsn is firmly nonexpansive, we find that

∥∥un – x∗∥∥ ≤ 〈
(I – snB)xn – (I – snB)x∗,un – x∗〉

≤ 

(∥∥xn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖xn – un‖ – sn
∥∥Bxn – Bx∗∥∥

+ sn
〈
Bxn – Bx∗,xn – un

〉)
,

which implies that ‖un – x∗‖ ≤ ‖xn – x∗‖ – ‖xn –un‖ + sn‖Bxn –Bx∗‖‖xn – un‖. Hence

γn‖xn – un‖ ≤ αn
∥∥f (xn) – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖

+ sn
∥∥Bxn – Bx∗∥∥‖xn – un‖.

Using (.) and (.), one has

lim
n→∞‖xn – un‖ = . (.)

Similarly, one also has

lim
n→∞‖yn – un‖ = . (.)

Since

‖Wnyn – yn‖ ≤ ‖yn – un‖ + ‖un – xn‖ + ‖xn –Wnyn‖,

http://www.journalofinequalitiesandapplications.com/content/2014/1/313
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we find from (.) and (.) that

lim
n→∞‖Wnyn – yn‖ = . (.)

Now, we are in a position to show lim supn→∞〈f (x̄) – x̄,xn – z〉 ≤ , where x̄ = ProjF f (x̄).
To prove this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
f (x̄) – x̄,xn – x̄

〉
= lim

i→∞
〈
f (x̄) – x̄,xni – x̄

〉
. (.)

Since {xni} is bounded, without loss of generality, wemay assume that xni ⇀ q. Using (.)
and (.), we have limn→∞ ‖xn – yn‖ = . Therefore, we see that yni ⇀ q. Now, we are in a
position to prove q ∈ (A+M)–(). Notice that un–yn

rn –Aun ∈Myn. Let μ ∈Mν . SinceM is
monotone, we find that 〈 un–ynrn –Aun–μ, yn–ν〉 ≥ . This implies that 〈–Aq–μ,q–ν〉 ≥ .
This implies that –Aq ∈ Mq, that is, q ∈ (A +M)–(). Next, we show that q ∈ EP(F ,B).
Since un = Tsn (I – snB)xn, we find from (A) that

〈Bxni , y – uni〉 +
〈
y – uni ,

uni – xni
sni

〉
≥ F(y,uni ), ∀y ∈ C. (.)

Putting yt = ty + ( – t)q for any t ∈ (, ] and y ∈ C, we see that yt ∈ C. Using (.), we
find that

〈yt – uni ,Byt〉

≥ 〈yt – uni ,Byt〉 – 〈Bxni , yt – uni〉 –
〈
yt – uni ,

uni – xni
sni

〉
+ F(yt ,uni )

= 〈yt – uni ,Byt – Buni〉 + 〈yt – uni ,Buni – Bxni〉 –
〈
yt – uni ,

uni – xni
sni

〉

+ F(yt ,uni ).

Since B ismonotone, we obtain from (A) that 〈yt –w,Byt〉 ≥ F(yt ,w). Using (A) and (A),
we find that

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt ,w)

≤ tF(yt , y) + ( – t)〈yt –w,Byt〉
= tF(yt , y) + ( – t)t〈y –w,Byt〉.

Hence,  ≤ F(yt , y) + ( – t)〈y – w,Byt〉, ∀y ∈ C. It follows from (A) that w ∈ EP(F ,B).
Next, we prove that q ∈ ⋂∞

i= F(Si). Suppose to the contrary, q /∈ ⋂∞
i= F(Si), i.e., Wq �= q.

Since yni ⇀ q and the space satisfies Opial’s condition, one has

lim inf
i→∞ ‖yni – q‖ < lim inf

i→∞ ‖yni –Wq‖

≤ lim inf
i→∞

{‖yni –Wyni‖ + ‖Wyni –Wq‖}

≤ lim inf
i→∞

{‖yni –Wyni‖ + ‖yni – q‖}. (.)
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Since ‖Wyn – yn‖ ≤ supx∈K ‖Wx – Wnx‖ + ‖Wnyn – yn‖, we find from Lemma . that
limn→∞ ‖Wyn – yn‖ = . It follows that lim infi→∞ ‖yni – q‖ < lim infi→∞ ‖yni – q‖. This
leads to a contradiction. Thus, we have q ∈ ⋂∞

i= F(Si). This proves that q ∈ F . Therefore,
one has

lim sup
n→∞

〈
f (x̄) – x̄,xn – x̄

〉 ≤ .

Finally, we show that xn → x̄, as n→ ∞. Note that

‖xn+ – x̄‖

≤ αn
〈
f (xn) – f (x̄),xn+ – x̄

〉
+ αn

〈
f (x̄) – x̄,xn+ – x̄

〉
+ βn‖xn – x̄‖‖xn+ – x̄‖ + γn‖yn – x̄‖‖xn+ – x̄‖

≤ κ


αn

(‖xn – x̄‖ + ‖xn+ – x̄‖) + αn
〈
f (x̄) – x̄,xn+ – x̄

〉

+ ( – αn)‖xn – x̄‖‖xn+ – x̄‖

≤  – αn( – κ)


‖xn – x̄‖ + 

‖xn+ – x̄‖ + αn

〈
f (x̄) – x̄,xn+ – x̄

〉
,

which implies that

‖xn+ – x̄‖ ≤ (
 – αn( – κ)

)‖xn – x̄‖ + αn
〈
f (x̄) – x̄,xn+ – x̄

〉
.

Using Lemma ., we find that limn→∞ ‖xn – x̄‖ = . This completes the proof. �

4 Applications
Recall that a mapping T : C → C is said to be a k-strict pseudo-contraction if there exists
a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥

for all x, y ∈ C. Note that the class of k-strict pseudo-contractions strictly includes the
class of nonexpansive mappings. Put A = I – T , where T : C → C is a k-strict pseudo-
contraction. Then A is –k

 -inverse-strongly monotone. Now, we are in a position to state
a results on fixed points of strict pseudo-contractions.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and
let F be a bifunction from C × C to R which satisfies (A)-(A). Let T : C → H
be a k-strict pseudo-contraction, B : C → H be a β-inverse-strongly monotone map-
ping, and {Si : C → C} be a family of infinitely nonexpansive mappings. Assume that
F :=

⋂∞
i= F(Si)∩ EP(F ,B)∩ F(T) �= ∅. Let f : C → C be a κ-contraction. Let {xn} be a se-

quence generated by x ∈ C and

⎧⎪⎪⎨
⎪⎪⎩
F(un, y) + 〈Bxn, y – un〉 + 

sn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

yn = ( – rn)un + rnTun,

xn+ = αnf (xn) + βnxn + γnWnyn, ∀n≥ ,
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where {Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences
in (, ) such that αn +βn +γn =  and {rn}, and {sn} are positive number sequences.Assume
that the above control sequences satisfy the following restrictions:
(a)  < r ≤ sn ≤ r′ < β ,  < r′′ ≤ rn ≤ r′′′ <  – k;
(b) limn→∞ αn =  and

∑∞
n= αn = ∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ = ProjF f (x̄).

Proof Taking A = I – T , wee see that A : C → H is a α-strict pseudo-contraction with
α = –k

 and F(T) =VI(C,A). Using Theorem ., we find the desired conclusion immedi-
ately. �

Let g : H → (–∞, +∞] be a proper convex lower semi-continuous function. Then the
subdifferential ∂g of g is defined as follows:

∂fg(x) =
{
y ∈H : g(z) ≥ g(x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈H .

From Rockafellar [], we know that ∂g is maximal monotone. It is not hard to verify that
 ∈ ∂g(x) if and only if g(x) =miny∈H g(y).
Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.

Since IC is a proper lower semi-continuous convex function on H , we see that the subdif-
ferential ∂IC of IC is amaximalmonotone operator. It is clear that Jrx = PCx, ∀x ∈ H . Notice
that (A + ∂IC)–() =VI(C,A). Now, we are in a position to state the result on variational
inequalities.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let F be
a bifunction from C × C to R which satisfies (A)-(A). Let A : C → H be an α-inverse-
strongly monotone mapping, B : C → H be a β-inverse-strongly monotone mapping, and
{Si : C → C} be a family of infinitely nonexpansivemappings.Assume that F :=

⋂∞
i= F(Si)∩

EP(F ,B)∩VI(C,A) �= ∅. Let f : C → C be a κ-contraction. Let {xn} be a sequence generated
by x ∈ C and

⎧⎨
⎩
F(un, y) + 〈Bxn, y – un〉 + 

sn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + βnxn + γnWnPC(un – snAun), ∀n≥ ,

where {Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences
in (, ) such that αn +βn +γn =  and {rn}, and {sn} are positive number sequences.Assume
that the above control sequences satisfy the following restrictions:
(a)  < r ≤ sn ≤ r′ < β ,  < r′′ ≤ rn ≤ r′′′ < α;
(b) limn→∞ αn =  and

∑∞
n= αn = ∞;
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(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ = ProjF f (x̄).
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