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Abstract
In this paper, we study the problem of testing for parameter changes in generalized
random coefficient autoregressive model (GRCA). The testing method is based on the
monitoring scheme proposed by Na et al. (Stat. Methods Appl. 20:171-199, 2011), and
the test statistic relies on the conditional least-squares estimator of an unknown
parameter. Furthermore, under mild conditions, we obtain the asymptotic property of
the test statistic. Some simulation studies are also conducted to investigate the finite
sample performances of the proposed test.
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1 Introduction
Consider the following one-order generalized random coefficient autoregressive model
(GRCA()):

Yt =�tYt– + εt , t = ,±,±, . . . , (.)

where (�t , εt)τ is a random vector with E
( �t

εt

)
=

(
φt


)
andVar

( �t
εt

)
=

( Vφ,t σ�ε,t
σ�ε,t σ

ε,t

)
. In addition,

(�t , εt)τ is assumed to be independent of Ft– = σ (Yt–,Yt–, . . .).
The model (.) was first introduced by Hwang and Basawa []. When �t and εt are mu-

tually independent, the model (.) becomes the random coefficient autoregressive model
(RCAR), and when Vφ = , the model (.) becomes the usual autoregressive model. Fur-
thermore, the model (.) also includes the Markovian bilinear model (see, e.g., [, ]), the
generalized Markovian bilinear model, and the random coefficient exponential autore-
gressive model (see [] for more information) as special cases.
GRCA is designed for investigating the result of random perturbations of a dynamical

system in engineering and economic data, and it has become one of the important mod-
els in the nonlinear time series context. In several recent years, GRCA has been studied
by many authors. For instance, Hwang and Basawa [] established the local asymptotic
normality of a class of generalized random coefficient autoregressive processes. Lee []
studied the problem of testing the constancy of the coefficient. Moreover, Carrasco and
Chen [] provided tractable sufficient conditions that simultaneously imply strict station-
arity, finiteness of higher-order moments, and β-mixing with geometric decay rates. In
this paper, we consider the problem of testing for parameter changes in GRCA.
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The change-point problem has a long history and began with i.i.d. samples (see, e.g., [–
]). Observing that time series often suffer from structural changes, statisticians started
the study of the change-point problem for economic time series models (see, e.g., [, ]).
Recently, the change-point problem has become very popular in economic time series.
Lee and Park [] considered themonitoring process in time series regressionmodels with
nonstationary regressors. Gombay and Serban [] proposed sequential tests to detect an
abrupt change in any parameter, or in any collection of parameters of an autoregressive
time series model. By using the cumulative sum test, Kang and Lee [] studied the prob-
lem of testing for a parameter change in a first-order random coefficient integer-valued
autoregressive model. Moreover, Na et al. [] also designed the monitoring procedure in
general time series models and applied it to the changes of the autocovariances of linear
processes, GARCH parameters, and underlying distributions.
In order to monitor the parameter changes in generalized random coefficient autore-

gressive model, we employ the monitoring scheme proposed by Na et al. []. The test
statistic relies on the conditional least-squares estimator of an unknown parameter, and
under mild conditions we also obtain the asymptotic property of the test statistic.
The rest of this paper is organized as follows: In Section ,we introduce themethodology

and the main results. Simulation results are reported in Section . A real data analysis is
given in Section . Section  provides the proofs of the main results.
Throughout this paper, we denote p-dimensional standard Brownmotion by {Wp(s), s≥

}. The symbols ‘ d→’ and ‘
p→’ denote convergence in distribution and convergence in prob-

ability, respectively, and convergence ‘almost surely’ is written as ‘a.s.’.

2 Methodology andmain results
Na et al. [] proposed a monitoring scheme of detecting parameter changes for gen-
eral time series models. In what follows, we will first introduce this monitoring procedure
briefly, and then we give our main results.
Let {Yt} be a time series and � be unknown parameter which will be examined for the

parameter constancy. We assume that � is a constant for the historical data Y,Y, . . . ,YT .
Here, we wish to test the following hypotheses based on the estimator �̂T of �:

H: � does not change over time t > T versus H: � changes at some time t > T .

Weassume that, underH, �̂T is a
√
T-consistent estimator of� based onY,Y, . . . ,YT ,

its asymptotic variance-covariance matrix 	 is nonsingular and 	̂T is the consistent esti-
mator of 	 based on Y,Y, . . . ,YT . We can then define

τ (T) = inf

{
k > T :

∥∥	̂
– 


T (�̂k – �̂T )
∥∥ ≥ √

T
g
(
k
T

)}
, (.)

where �̂k is the estimator of � at time lag k > T based on Y,Y, . . . ,Yk , ‖ · ‖ denotes a
norm on Rp, and g(s) (s ∈ (,∞)) is a given boundary function.
If τ (T) is finite, we reject H. In actual practice, if there exists k ∈ (T ,T + q), with q =

T , T , T , T etc., such that ‖	̂– 


T (�̂k – �̂T )‖ ≥ √
T
g( kT ), then we reject H. Meanwhile,

the boundary function g is chosen to satisfy

lim
T→∞PH

{
τ (T) < ∞}

= α
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for a given α ∈ (, ) and

lim
T→∞PH

{
τ (T) <∞}

= .

Further, under H, suppose that the estimator �̂k (k = T ,T +, . . .) satisfies the following
conditions:

(A) �̂k can be decomposed as

�̂k =� +

k

k∑
t=

lt +�k , (.)

where � is a true value of � under H, {lt = (lt , . . . , lpt)τ , t ≥ } is a sequence of
p-dimensional random vectors and �k = (�k , . . . ,�pk)τ are negligible terms.

(A) There exists a p-dimensional standard Brownian motion {Wp(s), s≥ } such that, for
some  < λ < 

 ,

k∑
t=

lt –	– 
Wp(k) =O

(
kλ

)
a.s. (.)

(A) For each ≤ i≤ p,
√
T supk≥T |�i,k| = op().

Remark  Condition (A) holds for zero mean stationary martingale difference sequence
{lt , t ≥ } and at this point 	 = E(llτ ) (see [, ]).

Based on the above conditions, we have the following lemmas.

Lemma . Suppose that (A)-(A) hold. If g(s) = cg(s), s ∈ (,∞), c is a positive constant
and g is a given continuous real-valued function with infs∈(,∞) g(s) > , then

lim
T→∞PH

{
τ (T) < ∞}

= P
{∥∥Wp(s) – sWp()

∥∥ ≥ sg(s) for some s > 
}

= P
{∥∥Wp(s)

∥∥ ≥ g
(
/( – s)

)
for some  < s < 

}
= P

{
sup
s∈(,)

‖Wp(s)‖
g(/( – s))

≥ c
}
.

Particularly, if g(s) = c, then

lim
T→∞PH

{
τ (T) < ∞}

= P
{
sup
s∈(,)

∥∥Wp(s)
∥∥ ≥ c

}
.

Lemma . is due to Na et al. []. Moreover, (A)-(A) and the consistency of 	̂T indi-
cate that

[Ts]√
T

	̂
– 


T (θ̂[Ts] – θ̂T )
w→ Wp(s) – sWp(), s ∈ [,∞)

as T → ∞. Thus, by using Theorem . of Chu et al. [], we have the following lemma.

http://www.journalofinequalitiesandapplications.com/content/2014/1/309


Zhao et al. Journal of Inequalities and Applications 2014, 2014:309 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/309

Lemma . Suppose that (A)-(A) hold. If g(s) =
√

s–
s (e + ln( s

s– )), s ∈ (,∞) and ‖ · ‖∞
is the maximum norm, then

lim
T→∞PH

{
τ (T) < ∞}

= P
{∥∥Wp(s) – sWp()

∥∥∞ ≥ sg(s) for some s > 
}

=  –
[
 – 

{
 –�(e) + eφ(e)

}]p,
where e is a constant, φ and � denote the standard normal density and distribution func-
tions, respectively.

Below, we use the abovemethod to detect parameter changes in themodel (.). Suppose
that σ 

ε,t = σ 
ε,, σ�ε,t = σ�ε,, Vφ,t = Vφ,, t = , , . . . . Moreover, we assume that φt = φ for

t = , . . . ,T . Consider the following hypothesis test:

H: φt = φ, t > T versus H: φt changes at some t > T .

Before we state our main results, we list some regular conditions used in this paper.

(C) The distributions of �t and εt are absolutely continuous with respect to the Lebesgue
measure on R and their densities are strictly positive on some neighborhood of .

(C) θ = φ
 +Vφ, < .

(C) E(�
t ) <  and E(εt ) <∞.

Remark It is shownbyTheorem. ofHwang andBasawa [] that, under (C), {Yt , t ≥ }
is stationary and ergodic.

In order to establish the test statistic we need to obtain the consistent estimator of pa-
rameter φ under H. Below we further assume that conditions (C)-(C) hold. Based on
the recorded data {Y, . . . ,Yk}, the conditional least-squares estimator φ̂k of φ is obtained
by minimizing

S =
k∑
t=

(
Yt – E(Yt|Yt–)

)

with respect to φ. Substituting E(Yt|Yt–) = φYt– in S and solving dS/dφ =  for φ, we
obtain

φ̂k =

( k∑
t=

Yt–Yt–

)–( k∑
t=

YtYt–

)
.

Under the conditions (C) and (C), the estimator φ̂k is consistent and asymptotically nor-
mal, and its asymptotic variance J = σ –

ε,( – θ)(σ 
ε,EY 

 + σ�ε,EY 
 + (θ – φ

)EY 
 ) (see

Hwang and Basawa []).
In what follows, we consider an estimate of J . By the ergodic theorem, it is easy to find

that, for any integer l > , 
n
∑n

t= Y l
t– is the consistent estimator of EY l

. Therefore, in order
to obtain the consistent estimator Ĵk of J , we only need to obtain the consistent estimator
of ϒ = (θ,σ 

ε,,σ�ε,)τ .
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We now consider an estimate of ϒ . A conditional least-squares estimator ϒ̂k of ϒ can
be obtained by minimizing

Q(ϒ) =
k∑
t=

(
Y 
t – E

(
Y 
t |Yt–

)) = k∑
t=

(
Y 
t –N τ

t ϒ
),

where Nt = (Y 
t–, , Yt–)τ . Solving dQ/dϒ =  for ϒ , we obtain

ϒ̂k =

( k∑
t=

NtN τ
t

)– k∑
t=

Y 
t Nt .

The following lemma indicates that ϒ̂k is the consistent estimator of ϒ .

Lemma . Suppose that (C) and (C) hold. Then, under H, we have

ϒ̂k
a.s.→ ϒ . (.)

After obtaining the consistent estimator of φ and J , we can establish the following test
statistics:

τ(T) = inf

{
k > T :

∥∥Ĵ– 


T (φ̂k – φ̂T )
∥∥ ≥ √

T
g
(
k
T

)}
. (.)

For the test statistics τ(T), we have the following results.

Theorem . Suppose that (C)-(C) hold.
(i) If g(s) = cg(s), s ∈ (,∞), c is a positive constant, and g is a given continuous

real-valued function with infs∈(,∞) g(s) > , then

lim
T→∞PH

{
τ(T) <∞}

= P
{
sup
s∈(,)

‖W(s)‖
g(/( – s))

≥ c
}
.

Particularly, if g(s) = c and ‖ · ‖ = ‖ · ‖, then

lim
T→∞PH

{
τ(T) <∞}

= P
{
sup
s∈(,)

∣∣W(s)
∣∣ ≥ c

}
.

(ii) If g(s) =
√

s–
s (e + ln( s

s– )), s ∈ (,∞), and ‖ · ‖ = ‖ · ‖∞, then

lim
T→∞PH

{
τ(T) <∞}

=  – �(e) + eφ(e).

Remark  If g(s) = c and ‖ · ‖ = ‖ · ‖, we have

τ(T) = inf

{
k > T :

∥∥Ĵ– 


T (φ̂k – φ̂T )
∥∥
 ≥ c√

T

}

= inf

{
k > T :

∣∣Ĵ– 


T (φ̂k – φ̂T )
∣∣ ≥ c√

T

}

= inf
{
k > T : TĴ–T (φ̂k – φ̂T ) ≥ c

}
.
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By (i) of Theorem ., we can determine the constant c for any significance level α ∈ (, ).
In fact, since limT→∞ PH{τ(T) < ∞} = P{sups∈(,) |W(s)| ≥ c(α)} = α, where c(α) is the
–α quantile point of sups∈(,) |W(s)|, we thus have c = c(α).When p = , we have c = .

for α = .. Moreover, if g(s) =
√

s–
s (e + ln( s

s– )), s ∈ (,∞), and ‖ · ‖ = ‖ · ‖∞, then when
p = , we have e = . for the nominal level α = ..

3 Simulation results
In this section, we evaluate the performance of the monitoring test through a simulation
study.
Consider the following model:

Yt = (φ + αεt)Yt– + εt , (.)

where {εt} is i.i.d. normally distributed with mean  and variance .
We compare the performance of testing methods (i) and (ii) in Theorem .. For the

testing method (i), we take g(s) = c and ‖ · ‖ = ‖ · ‖. In the actual simulation, we reject
H if there exists k ∈ (T ,T + q) such that ‖Ĵ– 


T (φ̂k – φ̂T )‖ ≥ √

T
g( kT ), where the horizon

q = T , T , T and T , and T = , , ,  and ,. In each simulation, ,
observations are discarded to remove initialization effects and a repetition number of
, is utilized.
In the first simulation, we calculate the probability of rejecting the null hypothesis when

it is true at the nominal levelα = .. The results of the simulations are presented inTable ,
and the figures in parentheses are those for a constant function test.
From Table , we see that the test with the boundary function in (ii) of Theorem .

has superiority over that with the constant boundary function. We can also see that the
empirical sizes of these two tests tend to decrease as the historical sample size T increases
and increase as q increases. But even if T is small or q is large, the empirical sizes of these
two testing methods are still very close to the nominal level.
The second simulation study is designed to examine the power. We calculate the proba-

bility of rejecting the null hypothesis when the alternative hypothesis is true at the nominal
level α = .. To do this, we consider the alternative hypotheses as follows:

H: A change occurs from φt = ., α = . to φt = ., α = .;
H̃: A change occurs from φt = ., α = . to φt = ., α = ..

In all cases, the changes are assumed to occur at k∗ = .T and k∗ = .T . The results of
the simulations are presented in Table , and the figures in parentheses are those for the
constant function test.
From Table , we see that the probability of rejecting the null hypothesis when the alter-

native hypothesis is true tends to increase as T increases or q increases, and the test with
the constant boundary function tends to detect changesmore efficiently than the test in (ii)
of Theorem .. It can also be seen from Table  that if φt changes from a smaller number
to a larger number, then these two test approaches perform very well. Although these two
test approaches tend to mistakenly detect changes when φt changes from a larger number
to a smaller number when T and q are small, both these two tests still perform well when
T and q are large. Therefore, when we use the above methods to detect the parameter
changes, we suggest that one estimate the parameter firstly. If the parameter is small, we
can use a smaller q or T .
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Table 1 Empirical sizes

φt T q = 2T q = 3T q = 5T q = 10T

0.1 100 0.084 (0.179) 0.084 (0.207) 0.070 (0.255) 0.096 (0.285)
200 0.050 (0.167) 0.061 (0.181) 0.046 (0.228) 0.049 (0.245)
300 0.061 (0.162) 0.057 (0.207) 0.056 (0.229) 0.053 (0.257)
500 0.071 (0.139) 0.050 (0.184) 0.054 (0.242) 0.059 (0.258)

1,000 0.056 (0.153) 0.058 (0.185) 0.055 (0.224) 0.065 (0.300)

0.3 100 0.085 (0.170) 0.097 (0.235) 0.090 (0.264) 0.103 (0.261)
200 0.088 (0.149) 0.071 (0.202) 0.054 (0.216) 0.078 (0.253)
300 0.071 (0.156) 0.060 (0.196) 0.069 (0.229) 0.069 (0.266)
500 0.065 (0.159) 0.072 (0.192) 0.070 (0.223) 0.073 (0.272)

1,000 0.077 (0.169) 0.062 (0.195) 0.065 (0.250) 0.069 (0.260)

0.5 100 0.090 (0.160) 0.077 (0.174) 0.109 (0.223) 0.101 (0.234)
200 0.086 (0.121) 0.082 (0.159) 0.070 (0.182) 0.078 (0.198)
300 0.087 (0.149) 0.077 (0.136) 0.066 (0.174) 0.060 (0.208)
500 0.071 (0.137) 0.069 (0.142) 0.063 (0.188) 0.073 (0.203)

1,000 0.073 (0.118) 0.064 (0.151) 0.069 (0.186) 0.069 (0.220)

0.7 100 0.078 (0.138) 0.055 (0.092) 0.111 (0.184) 0.094 (0.192)
200 0.063 (0.098) 0.073 (0.090) 0.065 (0.097) 0.058 (0.115)
300 0.076 (0.096) 0.064 (0.083) 0.057 (0.110) 0.054 (0.091)
500 0.052 (0.078) 0.055 (0.089) 0.067 (0.108) 0.056 (0.117)

1,000 0.041 (0.081) 0.069 (0.081) 0.049 (0.117) 0.063 (0.111)

0.9 100 0.067 (0.100) 0.049 (0.063) 0.078 (0.117) 0.098 (0.161)
200 0.036 (0.042) 0.041 (0.052) 0.049 (0.071) 0.041 (0.085)
300 0.037 (0.060) 0.044 (0.057) 0.051 (0.060) 0.044 (0.069)
500 0.046 (0.056) 0.038 (0.068) 0.032 (0.064) 0.049 (0.074)

1,000 0.033 (0.042) 0.047 (0.063) 0.039 (0.065) 0.035 (0.081)

Table 2 Empirical powers

T k∗ q = 2T q = 3T q = 5T q = 10T

φt = 0.1, α = 0.3→ φt = 0.7, α = 0.3
100 0.3T 0.781 (0.962) 0.876 (0.992) 0.908 (0.995) 0.952 (1.000)

0.8T 0.575 (0.890) 0.756 (0.970) 0.857 (0.993) 0.923 (0.998)
200 0.3T 0.965 (0.998) 0.991 (1.000) 0.996 (1.000) 0.999 (1.000)

0.8T 0.846 (0.993) 0.961 (1.000) 0.998 (1.000) 1.000 (1.000)
300 0.3T 0.960 (0.998) 0.999 (1.000) 0.999 (1.000) 1.000 (1.000)

0.8T 0.958 (1.000) 0.995 (1.000) 1.000 (1.000) 1.000 (1.000)
500 0.3T 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.8T 0.999 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
1,000 0.3T 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.8T 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

φt = 0.7, α = 0.3→ φt = 0.1, α = 0.3
100 0.3T 0.164 (0.487) 0.206 (0.671) 0.288 (0.828) 0.385 (0.898)

0.8T 0.091 (0.266) 0.130 (0.461) 0.178 (0.702) 0.975 (1.000)
200 0.3T 0.359 (0.971) 0.193 (0.846) 0.517 (0.974) 0.974 (0.999)

0.8T 0.353 (0.976) 0.229 (0.856) 0.518 (0.979) 0.972 (1.000)
300 0.3T 0.382 (0.972) 0.227 (0.839) 0.518 (0.979) 0.977 (1.000)

0.8T 0.372 (0.968) 0.219 (0.859) 0.510 (0.866) 0.963 (0.999)
500 0.3T 0.371 (0.967) 0.806 (0.990) 0.936 (0.996) 0.971 (0.999)

0.8T 0.376 (0.974) 0.912 (1.000) 0.994 (1.000) 1.000 (1.000)
1,000 0.3T 0.385 (0.970) 0.909 (0.999) 0.997 (1.000) 1.000 (1.000)

0.8T 0.394 (0.970) 0.892 (1.000) 0.995 (1.000) 1.000 (1.000)

4 Real data analysis
In this section, we illustrate how ourmethod can be applied to a practical example. Specif-
ically, we apply the above test methods to model offence data, which are the best indicator
of crimes with victims such as robbery, sex offence, homicide, drugs, burglary, arson, etc.

http://www.journalofinequalitiesandapplications.com/content/2014/1/309
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We mainly pay attention to drugs data series. The data are available on-line at the fore-
casting principles site (http://www.forecastingprinciples.com/index.php?option=com_
content&view=article&id=&Itemid=). An observation of the time series represents
a count of drugs reported in the police car beat in Pittsburgh, during one month. The
data consist of  observations, starting in January  and ending in December .
The data are denoted y, y, . . . , y. Figure  is the sample path plot for the real data yt ,
t = , , . . . , .
The sample path plot reveals nonstationarity. Therefore, let xt = yt – yt–. The sample

path plot, the autocorrelation function (ACF), and the partial autocorrelation function
(PACF) for the differenced series xt is given in Figures , , and , respectively. From Fig-
ure , we can see that xt is from a stationary series. From Figures  and , we can see that
xt may come from an GRCA() process. Therefore, we consider a model of the data series
xt by using the following:

xt = (φ + αεt)xt– + εt , (.)

where {εt} is for i.i.d. random variables.
We assume that φ is a constant for the historical data x,x, . . . ,x. Then we test the

following hypotheses:

Figure 1 The sample path of real data yt .

Figure 2 The sample path of differenced series xt for the real data.

http://www.journalofinequalitiesandapplications.com/content/2014/1/309
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Figure 3 ACF plot of differenced series xt .

Figure 4 PACF plot of differenced series xt .

H: φ does not change over time t >  versus H: φ changes at some time t > .

Based on the historical data x,x, . . . ,x, testing methods (i) and (ii) in Theorem .
both accept the null hypothesis. That is to say, φ does not change over time t > .
Further, we use the data x,x, . . . ,x to estimate the unknown parameters φ and α,
respectively. Therefore, we can model the data x,x, . . . ,x by using the model xt =
(–. + .εt)xt– + εt , where {εt} is for i.i.d. random variables.

5 Proofs of themain results
In order to prove the main results, we need some auxiliary lemmas.

Lemma . Suppose that (C)-(C) hold. Then, under H, one-order generalized ran-
dom coefficient autoregressive model (.) is β-mixing with geometric decaying order and
EY 

t < ∞.

Proof The proof can be found in Carrasco and Chen []. �

Lemma . Suppose that (C)-(C) hold. Then, under H, for the one-order generalized
random coefficient autoregressive model (.), there exists a positive constant M such that,

http://www.journalofinequalitiesandapplications.com/content/2014/1/309
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for any  < d < ,

lim sup
k→∞

|∑k
t=(Yd

t – EYd
t )|√

k log logk
≤M a.s.

Proof This lemma can be proved by Lemma . and Theorem  in Kuelbs and Philipp
[]. �

Lemma . Let {Yi, i ≥ } be a stationary ergodic stochastic sequence with E(Yi|Y,Y,
. . . ,Yi–) =  a.s. for all i ≥  and EY 

 = . Then lim supn→∞
∑n

i=
Yi

(n log logn)


=  a.s.

Proof The proof can be found in Stout []. �

Proof of Lemma . Note that

(

k

k∑
t=

NtN τ
t

)
(ϒ̂k –ϒ) =


k

k∑
t=

(
Y 
t –N τ

t ϒ
)
Nt . (.)

By the ergodic theorem, we have


k

k∑
t=

NtN τ
t

a.s.→ E
(
NN τ


)

(.)

and


k

k∑
t=

(
Y 
t –N τ

t ϒ
)
Nt

a.s.→ . (.)

These, together with (.), imply that ϒ̂k
a.s.→ ϒ , and thus the proof of Lemma . is com-

plete. �

Proof of Theorem . We apply Lemma . to prove Theorem ..
Firstly we decompose φ̂k into the sum of martingale differences and a negligible term.

Note that

φ̂k =
∑k

t= YtYt–∑k
t= Yt–Yt–

= φ +
∑k

t= YtYt–∑k
t= Yt–Yt–

– φ = φ +
∑k

t=(Yt – φYt–)Yt–∑k
t= Yt–Yt–

= φ +

k
∑k

t=(Yt – φYt–)Yt–

EY 


+

k
∑k

t=(Yt – φYt–)Yt–

k
∑k

t= Yt–Yt–

–

k
∑k

t=(Yt – φYt–)Yt–

EY 


= φ +

k
∑n

t=(Yt – φYt–)Yt–

EY 


–

(

k

k∑
t=

Yt–Yt–

)–(
EY 


)–

×
(

k

k∑
t=

Yt–Yt– – EY 


)(

k

k∑
t=

(Yt – φYt–)Yt–

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/309
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Next, we verify that they meet the conditions of Lemma ..
Observe that (EY 

 )
–{(Yt – φYt–)Yt–, t ≥ } is a sequence of mean zero stationary

martingale difference. Thus, there exists a -dimensional standard Brownian motion
{W(s), s≥ } such that, for some  < λ < 

 ,

k∑
t=

E
(
Y 

)–(Yt – φYt–)Yt– – J–


W(k) =O

(
kλ

)
a.s. (.)

In what follows, we prove that

√
T sup

k≥T

( k
∑k

t= Yt–Yt– – EY 
 )


k
∑k

t=(Yt – φYt–)Yt–

( k
∑k

t= Yt–Yt–)EY 


= op(). (.)

By Lemma ., we have

lim sup
k→∞



(k log logk)



k∑
i=

(Yt – φYt–)Yt– =
√
E(Yt – φYt–)Y 

t– a.s. (.)

From Lemma . we know that there exists a positive constant M such that, for any  <
d < ,

lim sup
k→∞

|∑k
t=(Yd

t – EYd
t )|√

k log logk
≤M a.s., (.)

from which, together with (.), we have

√
k
( k

∑k
t= Yt–Yt– – EY 

 )

k
∑k

t=(Yt – φYt–)Yt–

( k
∑k

t= Yt–Yt–)EY 


a.s.→  as k → ∞. (.)

Further, note that

√
T sup

k≥T

( k
∑k

t= Yt–Yt– – EY 
 )


k
∑k

t=(Yt – φYt–)Yt–

( k
∑k

t= Yt–Yt–)EY 


≤ sup
k≥T

√
k
( k

∑k
t= Yt–Yt– – EY 

 )

k
∑k

t=(Yt – φYt–)Yt–

( k
∑k

t= Yt–Yt–)EY 


. (.)

By (.), we prove (.). Thus, by Lemma ., we prove Theorem .. �
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