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Abstract
In this paper, we give a unified computational scheme for the complexity analysis of
kernel-function-based primal-dual interior-point methods for convex quadratic
optimization over symmetric cone. By using Euclidean Jordan algebras, the currently
best-known iteration bounds for large- and small-update methods are derived,
namely, O(

√
r log r log r

ε
) and O(

√
r log r

ε
), respectively. Furthermore, this unifies the

analysis for a wide class of conic optimization problems.
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1 Introduction
Since the groundbreaking paper of Karmarkar, many researchers have proposed and an-
alyzed various interior-point methods (IPMs) for linear optimization (LO) and a large
amount of results have been reported [–]. However, there is a gap between the practical
behavior of the IPMs and the theoretical performance results. The so-called small-update
IPMs enjoy the best-knownworst-case iteration boundO(

√
n log n

ε
) but their performance

in computational practice is poor. In practice, however, the so-called large-update IPMs
are much more efficient than small-update IPMs but with relatively weak theoretical re-
sultO(n log n

ε
). Recently, Peng et al. [] introduced so-called self-regular barrier functions

for primal-dual IPMs for LO, the iteration bound for large-update methods for LO was
improved from O(n log n

ε
) to O(

√
n logn log n

ε
), which almost closes the gap between the

iteration bounds for large- and small-update methods. Bai et al. [] presented a large class
of eligible kernel functions, which is fairly general and includes the classical logarithmic
function and the self-regular functions, as well as many non-self-regular functions as spe-
cial cases. The best-known iteration bounds for LO obtained are as good as the ones in
[] for appropriate choices of the eligible kernel functions. For some other related kernel-
based IPMs we refer to [–].
In this paper, we present a unified kernel-function approach to primal-dual IPMs for

convex quadratic optimization over symmetric cone (CQSCO), which is a generalization
of symmetric cone optimization (SCO) (when Q = ), which contains LO, second-order
cone optimization (SOCO) and semidefinite optimization (SDO) as special case. CQSCO
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also includes convex quadratic optimization (CQO) and convex quadratic semidefinite
optimization (CQSDO). Let (V ,◦) be an n-dimensional Euclidean Jordan algebra (EJA)
with rank r equipped with the standard inner product 〈x, s〉 = tr(x ◦ s), and K be the cor-
responding symmetric cone. The primal problem of CQSCO is given by

min f (x) =


〈
x,Q(x)

〉
+ 〈c,x〉

s.t.A(x) = b, x ∈K,
(P)

where c ∈ V and b ∈ Rm are given data,A : V → Rm is a given linear map, andQ is a given
self-adjoint positive semidefinite (with respect to 〈·, ·〉) linear operator on V , i.e., for any
x, s ∈ V , then 〈Q(x), s〉 = 〈x,Q(s)〉 and 〈Q(x),x〉 ≥ . The dual problem of (P) is given by

max–


〈
x,Q(x)

〉
+ bTy

s.t.AT (y) + s =∇f (x) =Q(x) + c, s ∈K,
(D)

whereAT is the adjoint ofA. Many researchers have studied CQSCO and achieved plen-
tiful and beautiful results. For an overview of these results we refer to [–].
Without loss of generality, we assume that the linear mapA is surjective, which implies

that AAT is nonsingular. Furthermore, we also assume that both (P) and (D) satisfy the
interior-point condition (IPC), i.e., there exists (x, y, s) such that

A
(
x
)
= b, x ∈ intK, AT(y) + s –Q

(
x
)
= c, s ∈ intK.

The perturbed Karush-Kuhn-Tucker optimality conditions for the problems (P) and (D)
are given as follows:

A(x) = b, x ∈K,

AT (y) + s –Q(x) = c, s ∈K, ()

x ◦ s = μe,

where μ is a positive parameter that is to be driven to zero explicitly. Since the IPC holds
and A is surjective, the parameterized system () has a unique solution (x(μ), y(μ), s(μ))
for each μ > , and we call x(μ) the μ-center of (P) and (y(μ), s(μ)) the μ-center of (D).
The set of μ-centers gives a homotopy path (with μ running through all the positive real
numbers), which is called the central path. If μ → , then the limit of the central path
exists and since the limit points satisfy the complementarity condition, i.e., x ◦ s = , it
naturally yields an optimal solution for (P) and (D) (see, e.g., [, ]).
IPMs follow the central path approximately and find an approximate solution of the un-

derlying problems (P) and (D) asμ go to zero. Just like the case of a linear SDO, linearizing
the third equation in () may not lead to an element in V . Thus it is necessary to sym-
metrize that equation before linearizing it. For this purpose, we can apply the following
scaling scheme (cf. Lemma  in []): Let u ∈ intK. Then

x ◦ s = μe ⇔ P(u)x ◦ P(u–)s = μe.

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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Thus, we replace the third equation of the system () by

P(u)x ◦ P(u–)s = μe.

Applying Newton’s method, and neglecting the term P(u)�x ◦ P(u–)�s, we have

A(�x) = ,

AT (�y) +�s –Q(�x) = , ()

P(u)x ◦ P(u–)�s + P
(
u–
)
s ◦ P(u)�x = μe – P(u)x ◦ P(u–)s.

The appropriate choices of u that lead to obtaining the unique search directions from
the above system are called commutative class of search directions (see, e.g., []). In this
paper, we consider the so-called NT-scaling scheme, the resulting direction is called NT
search direction. This scaling scheme was first proposed by Nesterov and Todd [, ]
for self-scaled cones and then adapted by Faybusovich [, ] for symmetric cones.

Lemma . (Lemma . in []) Let x, s ∈ intK. Then there exists a unique w ∈ intK such
that

x = P(w)s.

Moreover,

w = P(x)


(
P
(
x



)
s
)– 


[
= P
(
s–



)(
P
(
s


)
x
) 

]
.

The point w is called the scaling point of x and s (in this order). As a consequence there
exists ṽ ∈ intK such that

ṽ = P(w)–

 x = P(w)


 s. ()

Let u = w– 
 , where w is the NT-scaling point of x and s. We define

v :=
P(w)– 

 x√
μ

[
=
P(w)  s√

μ

]
, ()

and the scaled search directions as follows:

dx :=
P(w)– 

 �x√
μ

and ds :=
P(w)  �s√

μ
. ()

It follows from () and () that

A(dx) = ,

AT (�y) + ds –Q(dx) = , ()

dx + ds = v– – v,

http://www.journalofinequalitiesandapplications.com/content/2014/1/308


Cai et al. Journal of Inequalities and Applications 2014, 2014:308 Page 4 of 22
http://www.journalofinequalitiesandapplications.com/content/2014/1/308

where A = AP(w)

√

μ
and Q = P(w) QP(w)  . We can easily verify that the system () has a

unique solution (see, e.g., [, ]).
In this paper, we replace the right-hand side of the third equation in () by –ψ ′(v), i.e.,

–∇�(v), as defined by () (see Section ), where ψ(t) is any eligible kernel function. This
yields the following system:

A(dx) = ,

AT (�y) + ds –Q(dx) = , ()

dx + ds = –ψ ′(v).

Since () has the samematrix of coefficients as (), also () has a unique solution.a It follows
that the eligible kernel function ψ ′(t) determines in a natural way search directions for an
interior-point algorithm.
The new search directions dx and ds are computed by solving (), thus �x and �s are

obtained from (). If (x, y, s) �= (x(μ), y(μ), s(μ)), then (�x,�y,�s) is nonzero. The new it-
eration point is obtained according to

x+ := x + α�x, y+ := y + α�y and s+ := s + α�s. ()

Similarly to the LO case, we require that the step size α should be taken so that the
proximity measure function �(v) decreases sufficiently. A default bound for such a step
size α will be given later by ().
Furthermore, we can conclude that

x ◦ s = μe ⇔ v = e ⇔ ∇�(v) =  ⇔ �(v) = . ()

Hence, the value of �(v) can be considered as a measure for the distance between the
given iterate (x, y, s) and the corresponding μ-center (x(μ), y(μ), s(μ)).
The algorithm considered in this paper is described in Figure .
Given any eligible kernel function ψ(t), the parameters τ , θ and the step size α should

be chosen in such a way that the algorithm is ‘optimized’ in the sense that the number of
iterations required by the algorithm is as small as possible.Wewill prove that the resulting
iteration bounds depend on the eligible kernel functions in Section .
The purpose of the paper is to propose a unified analysis of kernel-function-based

primal-dual IPMs for CQSCO and give a general scheme on how to calculate the it-
eration bounds for the entire class of eligible kernel functions. The obtained com-
plexity results match the best-known iteration bounds known for large-update meth-
ods, O(

√
r log r log r

ε
) and small-update methods, O(

√
r log r

ε
). The order of the iteration

bounds are derived as good as the ones for the LO case except that n is replaced by r, the
rank of EJA. Although expected, these results were not obvious and, at certain steps of the
analysis, they were not trivial and/or straightforward generalization of the LO case. Fur-
thermore, this unifies the analysis for a wide class of conic optimization problems, which
includes LO, CQO, SOCO, SDO, CQSDO, SCO and so on.
The outline of the paper is as follows. In Section , we provide some basic concepts and

useful results on EJAs and symmetric cones. In Section , we recall and develop some use-
ful properties of the eligible kernel functions and the corresponding barrier functions. In

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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Figure 1 Algorithm.

Section , we uniformly analyze the primal-dual IPMs for CQSCO. In Section , we derive
the complexity bounds for large- and small-updatemethods. In Section , we report some
preliminary numerical experiments. Finally, some conclusions and remarks are made in
Section .
The following notations are used throughout the paper. Rn, Rn

+, and Rn
++ denote the set

of all vectors (with n components), the set of non-negative vectors and the set of posi-
tive vectors, respectively. Rm×n is the space of all m × n matrices. Sn, Sn+ and Sn++ denote
the cones of symmetric, symmetric positive semidefinite and symmetric positive definite
n × n matrices, respectively. We use the matrix inner product A • B = tr(ATB), i.e., the
trace of the matrix ATB. The largest eigenvalue and the smallest eigenvalue of x are de-
fined by λmax(x) and λmin(x), respectively. The Löwner partial ordering ‘
K’ of V defined
by a symmetric cone K is defined by x 
K s if x – s ∈ K. The interior of K is denoted
as intK and we write x �K s if x – s ∈ intK. Finally, if g(x) ≥  is a real-valued function
of a real non-negative variable, the notation g(x) = O(x) means that g(x) ≤ c̄x for some
positive constant c̄, and g(x) = 
(x) that cx ≤ g(x) ≤ cx for the two positive constants c
and c.

2 Preliminaries
For any x, y ∈ V , the Lyapunov transformation L(x) and the quadratic representation P(x)
are given by

L(x)y := x ◦ y ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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and

P(x) := L(x) – L
(
x
)
, ()

where L(x) = L(x)L(x), respectively.
For any EJA V , the corresponding cone of squares

K(V) :=
{
x : x ∈ V

}
()

is indeed a symmetric cone (cf.Theorem III.. in []). In the sequel,Kwill always denote
a symmetric cone, and V an EJA with rank(V) = r for which K is its cone of squares.
The following theorem gives an important decomposition, the spectral decomposition,

on the space V .

Theorem . (Theorem III.. in []) Let x ∈ V . Then there exists a Jordan frame
{c, . . . , cr} and real numbers λ(x), . . . ,λr(x) such that

x =
r∑
i=

λi(x)ci. ()

The numbers λi(x) (with their multiplicities) are called the eigenvalues of x. Furthermore,
the trace and the determinant of x are given by

tr(x) =
r∑
i=

λi(x) and det(x) =
r∏
i=

λi(x),

respectively.

Let x ∈Kwith the spectral decomposition given by (), the vector-valued functionψ(x)
is defined by

ψ(x) := ψ
(
λ(x)

)
c + · · · +ψ

(
λr(x)

)
cr . ()

Furthermore, if ψ(t) is differentiable, the derivative ψ ′(t) exists, and we also have the
vector-valued function ψ ′(x), namely

ψ ′(x) =ψ ′(λ(x)
)
c + · · · +ψ ′(λr(x)

)
cr . ()

It should be noted that ψ ′(x) is just a vector-valued function induced by the derivative
ψ ′(t) of the function ψ(t) rather than the derivative of the vector-valued function ψ(x)
defined by ().
The following theorem provides another important decomposition, the Peirce decom-

position, on the space V .

Theorem . (Theorem IV.. in []) Let x ∈ V with the spectral decomposition given by
(). Then we have

V =
⊕
i≤j

Vij,

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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where

Vii := {x|x ◦ ci = x} and Vij :=
{
x
∣∣∣x ◦ ci = 


x = x ◦ cj

}
, ≤ i < j ≤ r,

are Peirce spaces of V . Then, for any x ∈ V , there exist xi ∈ R, ci ∈ Vii, and xij ∈ Vij (i < j)
such that

x =
r∑
i=

xici +
∑
i<j

xij.

For any x, s ∈ V , we define

〈x, s〉 := tr(x ◦ s), ()

and we refer to it as the trace inner product. The Frobenius norm induced by this trace
inner product, namely ‖ · ‖F , is defined by

‖x‖F :=
√〈x,x〉. ()

Thus, we have

‖x‖F =
√
tr
(
x
)
=

√√√√ r∑
i=

λ
i (x). ()

Furthermore, we can easily verify that

∣∣λmin(x)
∣∣≤ ‖x‖F and

∣∣λmax(x)
∣∣≤ ‖x‖F . ()

Lemma . (Lemma  in []) Let x, s ∈ V . Then

λmin(x + s)≥ λmin(x) + λmin(s)≥ λmin(x) – ‖s‖F

and

λmax(x + s) ≤ λmax(x) + λmax(s) ≤ λmax(x) + ‖s‖F .

Let f : D → R be a univariate function on the open set D ⊆ R that is differentiable or
even continuously differentiable if necessary, and x =

∑r
i= λi(x)ci be the spectral decom-

position of x ∈ V with respect to the Jordan frame {c, . . . , cr}. The real-valued separable
spectral function F : V → R and the vector-valued separable spectral function G : V → V
are defined by

F(x) :=
r∑
i=

f
(
λi(x)

)
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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and

G(x) :=
r∑
i=

f
(
λi(x)

)
ci, ()

respectively.
The following two theorems give explicitly the first derivatives of F(x) and G(x), respec-

tively.

Theorem . (Theorem  in []) Let f is continuously differentiable in D. Then F(x) is
continuously differentiable at x and

DxF(x) =
r∑
i=

f ′(λi(x)
)
ci.

Theorem . (Lemma  in []) Let f is a continuously differentiable in D. Then G(x) is
continuously differentiable at x and

DxG(x) =
r∑
i=

f ′(λi(x)
)
xici +

∑
i<j

λi(x)=λj(x)

f ′(λi(x)
)
xij +

∑
i<j

λi(x) �=λj(x)

f (λi(x)) – f (λj(x))
λi(x) – λj(x)

xij,

where ≤ i < j ≤ r.

3 Properties of the eligible kernel (barrier) functions
We call a univariate ψ : (,∞) → [,∞) a kernel function [] if it satisfies the following
three conditions:

ψ ′() = ψ() = , (a)

ψ ′′(t) > , (b)

lim
t↓ ψ(t) = lim

t→∞ψ(t) =∞. (c)

Thismeans thatψ(t) is strictly convex andminimal at t = , withψ() = .Moreover, (c)
implies that ψ(t) has the barrier property.
In this paper, we consider the so-called eligible kernel function [], i.e., the kernel func-

tion satisfies four of the following five conditions, namely the first and the last three con-
ditions:

tψ ′′(t) +ψ ′(t) > , t < , (a)

tψ ′′(t) –ψ ′(t) > , t > , (b)

ψ ′′′(t) < , t > , (c)

ψ ′′(t) –ψ ′(t)ψ ′′′(t) > , t < , (d)

ψ ′′(t)ψ ′(βt) – βψ ′(t)ψ ′′(βt) > , t > ,β > . (e)

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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Note that the first four conditions are logically independent, and the fifth condition is a
consequence of (b) and (c). Since (b) is much simpler to check than (e), in many
cases it is easy to know that ψ(t) is eligible if it satisfies the first four conditions [].
The following lemma is cited from [] to state the exponential convexity, which plays an

important role in the analysis of kernel-function-based primal-dual IPMs [, ].

Lemma . (Lemma . in []) Let t >  and t > . Then

ψ(
√
tt) ≤ 


(
ψ(t) +ψ(t)

)
.

Now, we define the barrier function �(v) : intK → R+ as

�(x, s,μ) := �(v) := tr
(
ψ(v)

)
. ()

It follows from Theorem . and () that

�(v) =
r∑
i=

ψ
(
λi(v)

)
. ()

Furthermore, we have, by Theorem .,

∇�(v) =ψ ′(v) := ψ ′(λ(v)
)
c + · · · +ψ ′(λr(v)

)
cr , ()

where ∇�(v) denotes the derivative of the barrier function �(v).
As a consequence of Lemma ., we have the following important result.

Theorem . (Theorem .. in []) Let x, s ∈ intK. Then

�
((
P(x)/s

)/)≤ 

(
�(x) +�(s)

)
.

Note that during the course of the algorithm the largest values of �(v) occur just after
the update of μ. So next we derive an estimate for the effect of a μ-update on the value of
�(v). It follows from () that

�(βv) =
r∑
i=

ψ
(
βλi(v)

)
.

By applying Theorem . in [], with x being the vector in Rr consisting of all the eigen-
values of the symmetric cone v, the theorem below immediately follows.

Theorem . Let v ∈ intK and β ≥ . Then

�(βv)≤ rψ
(

β�

(
�(v)
r

))
.

Corollary . Let  ≤ θ <  and v+ = v√
–θ

. If �(v)≤ τ , then

�(v+) ≤ rψ
(

�( τ
r )√

 – θ

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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Proof With β = √
–θ

≥  and �(v) ≤ τ , the corollary follows immediately from Theo-
rem .. �

The norm-based proximity measure δ(v) : intK → R+ is defined by

δ(v) :=


∥∥∇�(v)

∥∥
F . ()

It follows from () and () that

δ(v) =


∥∥ψ ′(v)

∥∥
F =




√√√√ r∑
i=

ψ ′(λi(v)
). ()

Hence, we can conclude that δ(v) ≥ , and δ(v) =  if and only if �(v) = .
It follows from () and () that δ(v) and �(v) depend only on the eigenvalues λi(v) of

the symmetric cone V . This observation makes it possible to apply Theorem . in [],
with x being the vector in Rr consisting of all the eigenvalues of the symmetric cone v.
This gives the following theorem, which yields a lower bound on δ(v) in terms of �(v).

Theorem . Let v ∈ intK. Then

δ(v)≥ 

ψ ′(�(�(v)

))
.

In what follows, we consider the derivatives of the function �(x(t)) with respect to t,
where x(t) = x + tu ∈ intK with t ∈ R and u ∈ V . It follows from Theorem . and Theo-
rem . that the spectral decomposition of x(t) with respect to the Jordan frame {c, . . . , cr}
can be defined by

x(t) =
r∑
i=

λi
(
x(t)
)
ci, ()

and the Peirce decomposition of u can be defined by

u =
r∑
i=

uici +
∑
i<j

uij. ()

From Theorem . and Theorem ., after some elementary reductions, we can derive
the first two derivatives of the general function �(x(t)) with respect to t as follows:

Dt�
(
x(t)
)
= tr
(
Dx�

(
x(t)
) ◦ x′(t)

)
= tr

( r∑
i=

ψ ′(λi
(
x(t)
))
ci ◦ u

)
()

and

D
t �
(
x(t)
)
=

r∑
i=

ψ ′′(λi
(
x(t)
))
(ui) +

∑
i<j

λi(x(t))=λj(x(t))

ψ ′′(λi
(
x(t)
))
tr
(
(uij)

)

+
∑
i<j

λi(x(t)) �=λj(x(t))

ψ ′(λi(x(t))) –ψ ′(λj(x(t)))
λi(x(t)) – λj(x(t))

tr
(
(uij)

)
. ()
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The condition (c) implies thatψ ′′(t) ismonotonically decreasing in t ∈ (, +∞). Under
the assumption that i < j implies λi(x(t))≥ λj(x(t)), we can conclude that

D
t �
(
x(t)
)≤ r∑

i=

ψ ′′(λi
(
x(t)
))
(ui) +

∑
i<j

ψ ′′(λj
(
x(t)
))
tr
(
(uij)

)
, ()

which bounds the second-order derivative of �(x(t)) with respect to t (see, e.g., []).

4 Analysis of the algorithms
From () and (), after some elementary reductions, we have

x+ =
√

μP
(
w(j))/(v + αdx) and s+ =

√
μP(w)–/(v + αds).

Note that during an inner iteration the parameter μ is fixed. Hence, after the default step
the new scaled vector v+ is given by

v+ = P(w+)–/P(w)/(v + αdx) = P(w+)/P(w)–/(v + αds),

where, according to Lemma .,

w+ = P(x+)/
((
P(x+)/s+

)–/).
To calculate a decrease of the barrier function �(v) during an inner iteration it is stan-

dard to consider a decrease as a function of α defined by

f (α) := �(v+) –�(v).

However, workingwith f (α) may not be easy because in general f (α) is not convex. Thus,
we are searching for the convex function f(α) that is an upper bound of f (α) and whose
derivatives are easier to calculate than those of f (α). The key element in this process is
replacing v+ with a similar element that will allow the use of exponential-convexity of the
barrier function. By Proposition .. in [], we have

v+ ∼ (P(v + αdx)

 (v + αds)

) 


and therefore

�(v+) = �
((
P(v + αdx)


 (v + αds)

) 

)
.

Theorem . implies that

�(v+) ≤ 

(
�(v + αdx) +�(v + αds)

)
.

Hence, we have

f (α)≤ f(α) :=


(
�(v + αdx) +�(v + αds)

)
–�(v),

http://www.journalofinequalitiesandapplications.com/content/2014/1/308
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whichmeans that f(α) gives an upper bound for the decrease of the barrier function�(v).
Furthermore, we can easily verify that f () = f() = .
It follows from () that

f ′
 (α) =



(
tr
(
ψ ′(v + αdx) ◦ dx

)
+ tr
(
ψ ′(v + αds) ◦ ds

))
.

This gives, by (),

f ′
 () =



tr
(
ψ ′(v) ◦ (dx + ds)

)
= –



tr
(
ψ ′(v) ◦ ψ ′(v)

)
= –



∥∥ψ ′(v)

∥∥
F = –δ(v) < .

Let η = v + αdx and γ = v + αds. To simplify the notations we used (and will use below),
the following conventions:

dxi := (dx)i, dsi := (ds)i, dxij := (dx)ij and dsij := (ds)ij. ()

It follows directly from () and () that

f ′′
 (α) ≤ 



r∑
i=

ψ ′′(λi(η)
)
(dxi) +

∑
i<j

ψ ′′(λj(η)
)
tr
(
(dxij)

)

+



r∑
i=

ψ ′′(λi(γ )
)
(dsi) +

∑
i<j

ψ ′′(λj(γ )
)
tr
(
(dsij)

)
. ()

In the sequel, we use the short notation δ := δ(v).

Lemma . One has

‖dx‖F + ‖ds‖F ≤ δ.

Proof SinceQ is a given self-adjoint positive semidefinite linear operator, we have

〈dx,ds〉 =
〈
dx,Q(dx) –AT (�y)

〉
=
〈
dx,
(
P(w)


QP(w)



)
(dx)
〉
–
〈
dx,A

T (�y)
〉

=
〈
P(w)


 dx,Q

(
P(w)


 dx
)〉≥ . ()

Hence, we have

δ = ‖dx + ds‖F = ‖dx‖F + ‖ds‖F + 〈dx,ds〉 ≥ ‖dx‖F + ‖ds‖F . ()

This completes the proof of the lemma. �

Similar to the proof of Lemma . in [], we have the following lemma, which gives an
upper bound of f ′′

 (α) in terms of δ and ψ ′′(t).

Lemma . One has

f ′′
 (α)≤ δψ ′′(λmin(v) – αδ

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/308


Cai et al. Journal of Inequalities and Applications 2014, 2014:308 Page 13 of 22
http://www.journalofinequalitiesandapplications.com/content/2014/1/308

Let ρ(s) : [,∞) → (, ] be the inverse function of – 
ψ

′(t) for t ≤ , where ψ(t) is the
eligible kernel function. Similar to the LO case, the default step size is chosen. In this paper,
we use

α̃ :=


ψ ′′(ρ(δ))
()

as the default step size.
In what follows, we will show that the barrier function �(v) in each inner iteration with

the default step size α̃, as defined by (), is decreasing. For this, we need the following
technical result.

Lemma . (Lemma . in []) Let h(t) be a twice differentiable convex function with
h() = , h′() <  and let h(t) attain its (global) minimum at t∗ > . If h′′(t) is increasing
for t ∈ [, t∗], then

h(t) ≤ th′()


, ≤ t ≤ t∗.

As a consequence of Lemma . and the fact that f (α) ≤ f(α), which is a twice dif-
ferentiable convex function with f() = , and f ′

 () = –δ < , we can easily prove the
following lemma.

Lemma . Let the step size α satisfies the condition α ≤ α̃. Then

f (α)≤ –αδ.

Combining the results of Lemma . and (), we have the following theorem, which
shows that the default step size () yields a sufficient decrease of the barrier function
value during each inner iteration.

Theorem . Let α̃ be the default step size, as given by (). Then

f (α̃) ≤ –
δ

ψ ′′(ρ(δ))
. ()

By using the condition (d), we can conclude that the right-hand side expression in
() is monotonically decreasing in δ (cf. Lemma . in []). Thus, combining the results
of Theorems . and ., we have

f (α̃) ≤ –
(ψ ′(�(�(v))))

ψ ′′(ρ(ψ ′(ρ(�(v)))))
. ()

This expresses the decrease in �(v) during an inner iteration completely in ψ , its first and
second derivatives, and the inverse functions ρ and �.

5 Complexity of the algorithms
In this section, we first derive an upper bound for the number of the iteration bounds by
the algorithm depicted in Figure . Thenwe conclude this section by applying the iteration
bound to a wide variety of kernel functions.
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5.1 Iteration bounds for the algorithms
We need to count howmany inner iterations are required to return to the situation where
�(v) ≤ τ . We use the value of �(v) after the μ-update by �, and the subsequent values
in the same outer iteration are denoted as �k , k = , , . . . ,K , where K denotes the total
number of inner iterations in the outer iteration.
Let the constants β >  and γ ∈ (, ] be such that for �(v)≥ τ . We have

(ψ ′(�(�(v))))

ψ ′′(ρ(ψ ′(�(�(v)))))
≥ β�(v)–γ .

Note that the left-hand side expression is increasing in �(v). Therefore, such numbers β

and γ certainly exist (take, e.g., γ =  and β equals the value of the left-hand side expression
for �(v) = τ ). In addition, the appropriate values of β and γ will vary for each eligible
kernel function and finding them may not always be straightforward.
The following lemma provides an estimate for the number of inner iterations between

two successive barrier parameter updates, in terms of � and the parameters β and γ .

Lemma . One has

K ≤ �
γ


βγ
.

Proof The definition of K implies �K– > τ and �K ≤ τ and

�k+ ≤ �k – β(�k)–γ , k = , , . . . ,K – .

Thus, the conclusion of the lemma follows immediately fromLemma  in [] with tk =�k .
This completes the proof of the lemma. �

The number of outer iterations coincides with the number of barrier parameter θ up-
dates until we obtain rμ < ε. It is well known (cf. Lemma �. in []) that the number of
outer iterations is bounded above by 

θ
log r

ε
. Thus, an upper bound on the total number

of iterations is obtained by multiplying the number of outer iterations and the number of
inner iterations.

Theorem . The total number of iterations is bounded above by

�
γ


θβγ
log

r
ε
.

From Theorem . and Corollary ., we obtain the iteration bound for the algorithm
depicted in Figure  follows:


θβγ

(
rψ
(

�( τ
r )√

 – θ

))γ

log
r
ε
, ()

which means that the total number of iterations is completely determined by the param-
eters θ , β , γ , τ , and the eligible kernel function ψ(t).
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5.2 Application to the eligible kernel functions
It follows fromTheorem . that the iteration bound of the algorithms depends on the pa-
rameters β and γ and the upper bound on�. Since these are different for different eligible
kernel functions, the iteration bounds will also vary. Similar to the analysis considered in
[], Section ., for the LO case, the iteration bounds for large- and small-update methods
based on the eligible kernel functions can be performed in a systematic way by using the
following scheme.
• Step : Input an eligible kernel function ψ(t); an update parameter θ ,  < θ < ;
a threshold parameter τ ; and an accuracy parameter ε.

• Step : Solve the equation – 
ψ

′(t) = s to get ρ(s), the inverse function of – 
ψ

′(t),
t ∈ (, ]. If the equation is hard to solve, derive a lower bound for ρ(s).

• Step : Calculate the decrease of �(v) in terms of δ for the default step size α̃ from

f (α̃) ≤ –
δ

ψ ′′(ρ(δ))
.

• Step : Solve the equation ψ(t) = s to get �(s), the inverse function of ψ(t), t ≥ . If the
equation is hard to solve, derive the lower and upper bounds for �(s).

• Step : Derive a lower bound for δ(v) in terms of �(v) by using

δ(v) ≥ 

ψ ′(�(�(v)

))
.

• Step : Using the results of Step  and Step  find positive constants β and γ , with
γ ∈ (, ], such that

f (α̃) ≤ –β�(v)–γ .

• Step : Calculate the uniform upper bound � for �(v) from

� ≤ Lψ (r, θ , τ ) := rψ
(

�( τ
r )√

 – θ

)
.

• Step : Derive an upper bound for the total number of iterations from

�
γ


θβγ
log

r
ε
.

• Step : Set τ =O(r) and θ =
() so as to calculate an iteration bound for large-update
methods, or set τ =O() and θ =
( √

r ) to get an iteration bound for small-update
methods.

The resulting iteration bounds for a wide class of eligible kernel functions have been out-
lined in a series of papers [–, , , –, ] starting with [] for LO, we immediately
get the iteration bounds for large- and small-update methods for CQSCO. The resulting
iteration bounds are summarized in the rd and th columns of Table . For the detailed
analysis of the algorithms can be refereed to the given references.

Remark . For large-update methods, the currently best-known iteration bound is

O
(√

r log r log
r
ε

)
.
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Table 1 Complexity results for the eligible kernel functions

i The eligible kernel functions ψi(t) Large-update methods Small-update methods Ref.

1 t2–1
2 – log t O(r log r

ε ) O(
√
r log r

ε ) e.g., [1]

2 1
2 (t –

1
t )
2 O(r

2
3 log r

ε ) O(
√
r log r

ε ) [6]

3 t2–1
2 + t1–q–1

q–1 , q > 1 O(qr
q+1
2q log r

ε ) O(q2
√
r log r

ε ) [6]

4 t2–1
2 + t1–q–1

q(q–1) –
q–1
q (t – 1), q > 1 O(qr

q+1
2q log r

ε ) O(q2
√
r log r

ε ) [5]

5 t2–1
2 + e

1
t –e
e O(

√
r(log r)2 log r

ε ) O(
√
r log r

ε ) [6]

6 t2–1
2 –

∫ t
1 e

1
ξ
–1
dξ O(

√
r(log r)2 log r

ε ) O(
√
r log r

ε ) [6]

7 t2–1
2 + eq(

1
t –1)–q
q , q≥ 1 O(q

√
r log r

ε ) O(q
√
qr log r

ε ) [7]

8 t2–1
2 –

∫ t
1 e

q( 1
ξ
–1)

dξ , q≥ 1 O(q
√
r log r

ε ) O(q
√
qr log r

ε ) [6]

9 t2–1
2 + (e–1)2

e
1

et–1
– e–1

e O(r
3
4 log r

ε ) O(
√
r log r

ε ) [10]

10 8t2 – 11t + 1 + 2√
t
– 4 log t O(r

5
6 log r

ε ) O(
√
r log r

ε ) [19]

11 8t2 – 10t + 2
t3

O(r
5
8 log r

ε ) O(
√
r log r

ε ) [14]

12 t2–1
2 + 6

π tan (π (1–t)
2+4t ) O(r

3
4 log r

ε ) O(
√
r log r

ε ) [17]

13 t2–1
2 – log (t) + 1

8 tan
2 (π (1–t)

2+4t ) O(r
2
3 log r

ε ) O(
√
r log r

ε ) [21]

14 p(t2–1)
2 + t–pq–1

q(q+1) –
pq(t–1)
q+1 , p≥ 1, q > 0 O(

√
r log r log r

ε ) O(
√
r log r

ε ) [15]

15 t + 1
t – 2 O(r log r

ε ) O(
√
r log r

ε ) [9]

16 t – 1 + t1–q–1
q–1 , q > 1 O(qr log r

ε ) O(q2
√
r log r

ε ) [6]

17 tp+1–1
p+1 – log t, p ∈ [0, 1] O(r log r

ε ) O(
√
r log r

ε ) [18]

18

{
tp+1–1
p+1 + t1–q–1

q–1 , t > 0,p ∈ [0, 1],q > 1

tp+1–1
p+1 – log t, t > 0,p ∈ [0, 1],q = 1

O(qr
p+q

q(1+p) log r
ε ) O(q2

√
r log r

ε ) [8]

In particular, for ψ(t) and ψ(t) this bound is obtained if we choose q = 
 log r, and for

ψ(t) and ψ(t) this bound is obtained if we choose q = log r. The same bound is achieved
for ψ(t), also by taking p =  and q = 

 log r.

Remark . For small-update methods, the currently best-known iteration bound is

O
(√

r log
r
ε

)
.

In particular, for ψ(t), ψ(t), ψ(t), ψ(t), ψ(t) and ψ(t), this bound is derived is we
take q =O().

Both for large- and small-updatemethods, the order of the iteration bounds are obtained
as good as the bounds for the LO case except that n is replaced by r, the rank of the EJA.
Thus, the iteration bounds are as good as they can be in the current state-of-the-art.

6 Numerical results
In this section, we report the computational performance of the algorithm depicted in
Figure  for CQSDO, which is an important cases of CQSCO. The numerical experiments
are carried out on a PC with Intel (R) Core (TM) i- Duo CPU at . GHz and  GB
of physical memory. The PC runs MATLAB Version: ... (Rb) on a Windows
 Enterprise -bit operating system.
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We consider the primal problem of CQSDO in the standard form

min

{


X •Q(X) +C •X : Ai •X = bi, i = , , . . . ,m,X 
 

}
,

and its dual problem

max

{
–


X •Q(X) + bTy :

m∑
i=

yiAi –Q(X) + S = C,S 
 

}
.

Here, Q : Sn → Sn is a given self-adjoint positive semidefinite linear operator on Sn, i.e.,
for any A,B ∈ Sn,Q(A)•B = A•Q(B) andQ(A)•A≥ . b ∈ Rm is a given vector, C ∈ Rn×n

is a given matrix. Without loss of generality we assume that the matrices Ai, i = , , . . . ,m
are linearly independent and CQSDO satisfy the IPC. The detailed discussion and analysis
of primal-dual IPMs for CQSDO can be found in [, , ].
Let us define

P := X


(
X


 SX



)– 

X


[
= S–



(
S


XS



) 
 S–



]
, ()

and also we define D := P 
 . This leads to the definition of the following variance matrix:

V :=
√
μ
D–XD–

[
=

√
μ
DSD

]
. ()

Furthermore, we define the scaled search directions as follows:

DX :=
√
μ
D–�XD– and DS :=

√
μ
D�SD. ()

The scaled search direction (DX ,�y,DS) is computed through solving the following linear
system:

Ai •DX = , i = , , . . . ,m,
m∑
i=

�yiAi –Q(DX) +DS = , ()

DX +DS = V– –V ,

where

Ai :=
√
μ
DAiD, i = , , . . . ,m and Q(DX) :=DQ(DDXD)D.

Then the new search direction (�X,�y,�S) is obtained from (). If (X, y,S) �= (X(μ), y(μ),
S(μ)), then (�X,�y,�S) is nonzero. The new iterate is obtained by taking a default step
size α along the search directions as follows:

X+ := X + α�X, y+ := y + α�y and S+ := S + α�S. ()
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It should be noted that the default step size () selected during each inner iteration
is small enough for analyzing the algorithm, while in practice it should be chosen large
enough for the efficiency of the algorithm. In the following test problem, we choose the
maximum allowed step size such that the next iterate satisfying the positive semidefinite-
ness condition, i.e., X + αDX 
  and S + αDS 
 .
We consider the following special CQSDO example withQ(X) = E:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b =

⎛
⎜⎜⎜⎝






⎞
⎟⎟⎟⎠ , Q(X) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

       
       
       
       
       
       
       
       

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the test problems, we use the threshold parameter τ = , the accuracy parameter
ε = –, and the update parameter θ = 


√
n with n =  in the implementation. In this case,

the algorithm depicted in Figure  is indeed a small-update method. We choose X = E,
y = e and S = E as the starting point for our algorithm. Here E and e denote the identity
matrix of dimension  and the identity vector of dimension , respectively. Note that the
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point is strictly feasible. The initial value of the barrier parameter μ is X • S/n with n = ,
i.e., . We can easily check that �(X,S;μ) =  < τ = . So these data can, indeed, be used
to initialize our algorithm.
An optimal solution of the primal problem is given by

X∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . –. –. . –.
. . . . . . . .
. . . . . –. . –.
. . . . . . . –.
–. . . . . . . –.
–. . –. . . . . .
. . . . . . . .
–. . –. –. –. . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and for the dual problem an optimal solution is given by

y∗ = (.;.; .; .),

S∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . –. –. . –. –. .
. . –. –. . –. . .
–. –. . . –. . –. –.
–. –. . . –. . –. –.
. . –. –. . –. . .
–. –. . . –. . –. –.
–. . –. –. . –. . .
. . –. –. . –. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The respective objective values are 
X •Q(X) +C •X = . and – 

X •Q(X) +
bTy = ., and the duality gap X • S is .× –, which is less than –.
The numerical results of IPM for the sample problemof CQSDObased onψ(t) with θ =



√
n are summarized in Table . For our small-update method, we need  main iterations

to reach our accuracy. To save space, we show the primal and dual objective value at the
moments when the duality gap is reduced again with a factor , until the desired accuracy
is achieved. The numerical results are summarized in Table .
It is clear from Table  that the small-update method presented in this paper is not

efficient from a practical point of view, just as the feasible IPMs with the best theoretical
performance are far from practical. In fact, our algorithm suffers from the usual drawback
of primal-dual IPMs that the number of iterations needed for convergence leads to be
close to the upper bound, namely, O(

√
n log n

ε
). This is due to the small, fixed μ-updates

(i.e., μ+ = ( – θ )μ with θ = 

√
n for CQSDO). It is desirable to make the largest possible

update θ at each iteration, albeit at the cost of extra computation.

Table 2 Output of IPM for the sample problem of CQSDO based onψ1(t) with θ = 1
2
√
n

Iteration 1
2X •Q(X) + C • X – 1

2X •Q(X) + bTy Duality gap, i.e., X • S

0 36.000000000 28.000000000 8.000000000 < 101

3 33.179225445 32.617281779 0.561943666 < 100

5 32.996521968 32.904241476 0.092280493 < 10–1

8 32.961211886 32.956512652 0.004699234 < 10–2

10 32.959417225 32.958771601 0.000645624 < 10–3

12 32.959173712 32.959084185 0.000089527 < 10–4

15 32.959139849 32.959135221 0.000004628 < 10–5

17 32.959138306 32.959137869 0.000000436 < 10–6

19 32.959138158 32.959138116 0.000000042 < 10–7
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Table 3 Output of IPM for the sample problem of CQSDO based onψ1(t) with θ = 0.9

Iteration 1
2X •Q(X) + C • X – 1

2X •Q(X) + bTy Duality gap, i.e., X • S

0 36.000000000 28.000000000 8.000000000 < 101

2 33.345388371 32.346089274 0.999299097 < 100

5 32.969032358 32.949621318 0.019411040 < 10–1

6 32.961389769 32.957573699 0.003816071 < 10–2

8 32.959247309 32.959032261 0.000215048 < 10–3

10 32.959142690 32.959127961 0.000014729 < 10–4

11 32.959138591 32.959136229 0.000002362 < 10–5

12 32.959138446 32.959137497 0.000000949 < 10–6

14 32.959138148 32.959138133 0.000000014 < 10–7

In order to reveal the impact of the update parameter θ on the performance of the algo-
rithm, we take the larger possible update parameter θ = . in the implementation. In this
case, the algorithm depicted in Figure  is indeed a large-update method. We only need
 main iterations to reach our accuracy. The outputs of IPMs for the sample problem of
CQSDO based on ψ(t) with θ = . are shown in Table .
It is clear from Table  that the iteration number of the algorithm depend on the update

parameter θ . A larger value of the update parameter θ gives rise to better results. However,
it should be pointed out that the update parameter θ would be too large to solve the prob-
lem in the computational procedure. In the solution procedure, wemight use the dynamic
updates of the barrier parameter, as described in []. This may significantly enhance the
practical performance of the proposed algorithm.

7 Conclusions and remarks
In this paper, we presented a unified approach and comprehensive treatment of primal-
dual IPMs for CQSCO based on the entire class of the eligible kernel functions. For large-
update methods the best iteration bound is O(

√
r log r log r

ε
) and for small-update meth-

ods all iteration bounds have the same order of magnitude, namely, O(
√
r log r

ε
), which

almost closes the gap between the iteration bounds for large- and small-update methods.
Some preliminary numerical results are provided to demonstrate the computational per-
formance of the algorithm depicted in Figure .
The paper generalizes results obtained in the following papers, [] where Bai et al. con-

sider kernel-based primal-dual IPMs for LO, and [, , ] and [] where Bai et al.,
El Ghami et al., Wang et al. and Vieira consider the same type of IPMs for SOCO, SDO,
CQSDO and SCO, respectively. It turns out that the iterations bounds are the same as for
the non-negative orthant except that n is replaced by r, the rank of the EJA. However, the
analysis of the proposed algorithm is far more complicated in [, , , ]. This is due
to the following fact that we lose the orthogonality of search directions that exist in LO,
SOCO, SDO, and SCO cases does not hold for CQSCO.
Some interesting topics for further research remain. First, the search direction used in

this paper is based on the NT-symmetrization scheme and it is natural to ask if other
symmetrization schemes can be used. Second, although we present a simple examples to
show the computational performance of the proposed algorithm, more numerical exper-
iments are desired to compare the behavior of our algorithm with other existing IPMs.
Finally, the extension to general nonlinear optimization over symmetric cone deserves to
be investigated.
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Endnote
a It may be worth mentioning that if we use the kernel function of the classical logarithmic barrier function, i.e.,

ψ (t) = 1
2 (t

2 – 1) – log t, then ψ ′(t) = t – t–1 , whence –ψ ′(v) = v–1 – v, and hence system (7) then coincides with the
classical system (6).
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