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Abstract
We consider the problem of computing the projection PCu, where u is chosen in a
real Hilbert space H arbitrarily and the closed convex subset C of H is the intersection
of finite level sets of convex functions given as follows:
C =

⋂m
i=1 C

i �
⋂m

i=1{x ∈ H : ci(x)≤ 0}, wherem is a positive integer and ci : H →R is a
convex function for i = 1, . . . ,m. A relaxed Halpern-type algorithm is proposed for
computing the projection PCu in this paper, which is defined by
xn+1 = λnu + (1 – λn)PCmn · · ·PC2nPC1n xn, n ≥ 0, where the initial guess x0 ∈ H is chosen
arbitrarily, the sequence (λn) is in (0, 1) and (Ci

n) is a sequence of half-spaces
containing Ci for i = 1, . . . ,m. Since calculations of the projections onto half-spaces Ci

n
(i = 1, . . . ,m; n = 1, 2, . . .) are easy in practice, this algorithm is quite implementable.
Strong convergence of our algorithm is proved under some ordinary conditions.
Some numerical experiments are provided which show advantages of our algorithm.
MSC: 58E35; 47H09; 65J15
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖ and let C be
a nonempty closed convex subset of H . The projection PC from H onto C is defined by

PCx := argmin
y∈C ‖x – y‖, x ∈H .

It is well known that PC is characterized by the inequality (for x ∈H)

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C. (.)

The projection operator has a variety of specific applications in different areas, such as
the fixed point problem, the convex optimization problem, the variational inequality [],
the split feasibility problem [–], and many other applied fields. But the projection onto
a general closed convex subset has no explicit expression (unless C is a closed ball or half-
space and so on), so the computation of a projection is generally difficult. We know that
themethod of alternating projections (MAP) (also known as successive orthogonal projec-
tions (SOP)) has been thoroughly studied. The simplest and earliest convergence results
concerning alternating projections between two sets were discovered by von Neumann
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[], Bregman [] and Gubin et al. []. Now we briefly list some results of MAP. In ,
von Neumann [] proved that the sequence (xn) generated by the scheme:

xn = (PCPC )nu, n≥ , (.)

converges in norm to PC∩Cu when C and C are two closed subspaces of H . In ,
Bregman [] showed that the iterates generated by (.) converge weakly to PC∩Cu for
any pair of closed convex subsets C and C. Gubin et al. [] proved that the iterates will
converge linearly to PC∩Cu if C and C are ‘boundedly regular’. Actually, they proved
this result for alternating projections between any finite collection of closed convex sets.
Strong convergence also holds when the sets are symmetric [, Theorem .; , Corol-
lary .]. However, in , Hundal [] proved that the sequence of iterates generated by
(.) does not always converge in norm to PC∩Cu by providing an explicit counterexam-
ple.
Since the computation of a projection onto a closed convex subset is generally difficult,

to overcome this difficulty, Fukushima [] suggested a way to calculate the projection
onto a level set of a convex function by computing a sequence of projections onto half-
spaces containing the original level set. This idea is followed by Yang [] and Lopez et al.
[], respectively, who introduced the relaxed CQ algorithms for solving the split feasibil-
ity problem in the setting of finite-dimensional and infinite-dimensional Hilbert spaces,
respectively. The idea is also used by Gibali et al. [] and He et al. [] for solving varia-
tional inequalities in a Hilbert space.
The main purpose of this paper is to consider the problem of computing the projection

PCu, where u is chosen in H arbitrarily and the closed convex subset C is of the particular
structure, i.e., the intersection of finite level sets of convex functions given as follows:

C =
m⋂
i=

Ci �
m⋂
i=

{
x ∈H : ci(x)≤ 

}
,

wherem is a positive integer and ci :H →R is a convex function for i = , . . . ,m.
A relaxed Halpern-type algorithm proposed for computing the projection PCu in this

paper is defined by

xn+ = λnu + ( – λn)PCm
n · · ·PC

n
PC

n
xn, n≥ , (.)

where the initial guess x ∈ H is chosen arbitrarily, the sequence (λn) is in (, ) and (Ci
n)

is a sequence of half-spaces containing Ci for i = , . . . ,m (the specific structure of the
half-spaces Ci

n will be described in Section ). Since calculations of the projections onto
half-spaces Ci

n (i = , . . . ,m; n = , , . . .) are easy in practice, this algorithm is quite im-
plementable. Moreover, strong convergence of our algorithm can be proved under some
ordinary conditions.
The rest of this paper is organized as follows. Some useful lemmas are given in Sec-

tion . In Section , the strong convergence of our algorithm is proved. Some numerical
experiments are given in Section  which show advantages of our algorithm.
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2 Preliminaries
Throughout the rest of this paper, we denote by H a real Hilbert space. We will use the
notations:
• → denotes strong convergence.
• ⇀ denotes weak convergence.
• ωw(xn) = {x | ∃{xnk } ⊂ {xn} such that xnk ⇀ x} denotes the weak ω-limit set of {xn}.

Recall that a mapping T :H →H is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈H .

T :H →H is said to be firmly nonexpansive if, for x, y ∈H ,

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥.

Recall some definitions which are also useful for us to prove the main results. Recall that
an element g ∈H is said to be a subgradient of f :H →R at x if

f (z) ≥ f (x) + 〈g, z – x〉, ∀z ∈H .

A function f :H →R is said to be subdifferentiable at x, if it has at least one subgradient
at x. The set of subgradients of f at the point x, denoted by ∂f (x), is called the subdif-
ferential of f at x. The last relation above is called the subdifferential inequality of f at x.
A function f is called subdifferentiable, if it is subdifferentiable at all x ∈H .
Recall that a function f :H →R is said to be weakly lower semi-continuous (w-lsc) at x

if xn ⇀ x implies

f (x)≤ lim inf
n→∞ f

(
xn

)
.

Lemma . For all x, y ∈H , we have the relation

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.

This inequality is trivial but in common use.

The following lemma is the key to the proofs of strong convergence of our algorithms.
In fact, it can be used as a new fundamental tool for solving some nonlinear problems,
particularly, some problems related to projection operator.

Lemma . [] Assume (sn) is a sequence of nonnegative real numbers such that

sn+ ≤ ( – γn)sn + γnδn, n≥ , (.)

sn+ ≤ sn – ηn + αn, n ≥ , (.)

where (γn) is a sequence in (, ), (ηn) is a sequence of nonnegative real numbers and (δn)
and (αn) are two sequences in R such that

(i)
∑∞

n= γn =∞,

http://www.journalofinequalitiesandapplications.com/content/2014/1/307
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(ii) limn→∞ αn = ,
(iii) limk→∞ ηnk =  implies lim supk→∞ δnk ≤  for any subsequence (nk) ⊂ (n).

Then limn→∞ sn = .

3 Iterative algorithms
In this section, we precisely introduce algorithm (.) and analyze its strong convergence.
For the sake of simplicity, it suffices to consider the case m =  without loss of the gener-
ality, that is, C = C ∩C, where

C =
{
x ∈H : c(x)≤ 

}
,

C =
{
x ∈ H : c(x)≤ 

}
,

(.)

and c :H →R and c :H →R are two convex functions.We always assume that c and c
are subdifferentiable on H , ∂c and ∂c are bounded operators (i.e. bounded on bounded
sets). It is worth noting that every convex function defined on a finite-dimensional Hilbert
space is subdifferentiable and its subdifferential operator is a bounded operator (see []).
Suppose the nth iteraction xn has been constructed, by using the subdifferential inequality,
we construct the two half-spaces as follows:

C
n =

{
x ∈H : c

(
xn

) ≤ 〈
ξ 
n ,x

n – x
〉}
,

C
n =

{
x ∈ H : c

(
PC

n
xn

) ≤ 〈
ξ 
n ,PC

n
xn – x

〉}
,

(.)

where ξ 
n ∈ ∂c(xn), ξ 

n ∈ ∂c(PC
n
xn). By the subdifferential inequality, it is easy to see that

C
n ⊃ C =

{
x ∈H : c(x)≤ 

}
,

C
n ⊃ C =

{
x ∈H : c(x)≤ 

}
.

(.)

Algorithm . For a given u ∈ H , take an initial guess x ∈ H arbitrarily and construct
the sequence (xn) via the formula

xn+ = λnu + ( – λn)PC
n
PC

n
xn, n≥ , (.)

where C
n and C

n are given by (.) and the sequence (λn) is in (, ).

Theorem . Assume that λn →  (n → ∞) and
∑+∞

n= λn = +∞. Then the sequence (xn)
generated by Algorithm . converges strongly to the point PC∩Cu.

Proof Firstly, we verify that (xn) is bounded. Setting x∗ = PC∩Cu, sinceC∩C ⊂ C
n∩C

n ,
we obtain from (.) and Lemma . that

∥∥xn+ – x∗∥∥ =
∥∥λnu + ( – λn)PC

n
PC

n
xn – x∗∥∥

=
∥∥λn

(
u – x∗) + ( – λn)

(
PC

n
PC

n
xn – PC

n
PC

n
x∗)∥∥

≤ ( – λn)
∥∥PC

n
PC

n
xn – PC

n
PC

n
x∗∥∥

+ λn
〈
u – x∗,xn+ – x∗〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/307
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≤ ( – λn)
∥∥xn – x∗∥∥ + λn

∥∥u – x∗∥∥ · ∥∥xn+ – x∗∥∥
≤ ( – λn)

∥∥xn – x∗∥∥ +



λn
∥∥xn+ – x∗∥∥

+ λn
∥∥u – x∗∥∥, (.)

consequently

∥∥xn+ – x∗∥∥ ≤  – λn

 – 
λn

∥∥xn – x∗∥∥ +

λn

 – 
λn




∥∥u – x∗∥∥,

it turns out that

∥∥xn+ – x∗∥∥ ≤max

{∥∥xn – x∗∥∥, 
√



∥∥u – x∗∥∥}

,

inductively

∥∥xn – x∗∥∥ ≤max

{∥∥x – x∗∥∥, 
√



∥∥u – x∗∥∥}

,

which means that (xn) is bounded.
Secondly, we use Lemma . to prove the strong convergence of Algorithm .. Since a

projection is firmly nonexpansive, we obtain

∥∥PC
n
PC

n
xn – PC

n
PC

n
x∗∥∥

≤ ∥∥PC
n
xn – PC

n
x∗∥∥ –

∥∥PC
n
xn – PC

n
PC

n
xn

∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥xn – PC

n
xn

∥∥ –
∥∥PC

n
xn – PC

n
PC

n
xn

∥∥. (.)

Using (.) and the first inequality of (.), we have

∥∥xn+ – x∗∥∥ ≤ ( – λn)
∥∥PC

n
PC

n
xn – PC

n
PC

n
x∗∥∥

+ λn
〈
u – x∗,xn+ – x∗〉

≤ ∥∥xn – x∗∥∥ –
∥∥xn – PC

n
xn

∥∥

–
∥∥PC

n
xn – PC

n
PC

n
xn

∥∥ +Mλn, (.)

whereM is some positive constant such that ‖u – x∗‖ · ‖xn+ – x∗‖ ≤M (noting that (xn)
is bounded).
Setting

sn =
∥∥xn – x∗∥∥, αn =Mλn,

ηn =
∥∥xn – PC

n
xn

∥∥ +
∥∥PC

n
xn – PC

n
PC

n
xn

∥∥,

then (.) is rewritten as follows:

sn+ ≤ sn – ηn + αn. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/307
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From the first inequality of (.), we also have

∥∥xn+ – x∗∥∥ ≤ ( – λn)
∥∥xn – x∗∥∥ + λn

〈
u – x∗,xn+ – x∗〉. (.)

Setting

sn =
∥∥xn – x∗∥∥,

δn = 
〈
u – x∗,xn+ – x∗〉,

then (.) is rewritten as follows:

sn+ ≤ ( – λn)sn + λnδn. (.)

Observing that the condition λn →  implies αn →  and the condition
∑+∞

n= λn = +∞
holds, we assert from (.) and (.) that in order to complete the proof using Lemma .,
it suffices to verify that

lim
k→∞

ηnk = 

implies

lim sup
k→∞

δnk ≤ 

for any subsequence (nk) ⊂ (n). In fact, if ηnk →  as k → ∞, then ‖xnk – PC
nk
xnk‖ → 

and ‖PC
nk
xnk – PC

nk
PC

nk
xnk‖ →  hold. Since ∂c and ∂c are bounded on bounded sets,

there are two positive constants κ and κ such that ‖ξ 
nk‖ ≤ κ and ‖ξ 

nk‖ ≤ κ for all k ≥
 (noting that PC

nk
xnk is also bounded due to the fact that ‖PC

nk
xnk – x∗‖ = ‖PC

nk
xnk –

PC
nk
x∗‖ ≤ ‖xnk – x∗‖). From the trivial fact that PC

nk
xnk ∈ C

nk and PC
nk
PC

nk
xnk ∈ C

nk , it
follows that

c
(
xnk

) ≤ 〈
ξ 
nk ,x

nk – PC
nk
xnk

〉 ≤ κ
∥∥xnk – PC

nk
xnk

∥∥ →  (.)

and

c
(
PC

nk
xnk

) ≤ 〈
ξ 
nk ,PC

nk
xnk – PC

nk
PC

nk
xnk

〉

≤ κ
∥∥PC

nk
xnk – PC

nk
PC

nk
xnk

∥∥ → . (.)

Take x′ ∈ ωw(xnk ) arbitrarily and assume that xnk ⇀ x′ holds without loss of generality,
then the w-lsc of c and (.) imply that

c
(
x′) ≤ lim inf

k→∞
c

(
xnk

) ≤ ,

this means that x′ ∈ C holds. Noting that ‖xnk – PC
nk
xnk‖ →  implies PC

nk
xnk ⇀ x′, this

together with (.) and the w-lsc of c leads to the fact that

c
(
x′) ≤ lim inf

k→∞
c

(
PC

nk
xnk

) ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/307
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which implies that x′ ∈ C. Moreover, we obtain x′ ∈ C ∩C, and hence

ωw
(
xnk

) ⊂ C ∩C.

On the other hand
∥∥xnk – xnk+

∥∥ =
∥∥λnk

(
xnk – u

)
+ ( – λnk )

(
xnk – PC

nk
PC

nk
xnk

)∥∥
=

∥∥λnk
(
xnk – u

)
+ ( – λnk )

(
xnk – PC

nk
xnk + PC

nk
xnk

– PC
nk
PC

nk
xnk

)∥∥
≤ λnk

∥∥xnk – u
∥∥ + ( – λnk )

∥∥xnk – PC
nk
xnk

∥∥
+ ( – λnk )

∥∥PC
nk
xnk – PC

nk
PC

nk
xnk

∥∥.
Letting k → ∞ yields

∥∥xnk – xnk+
∥∥ → , (.)

we can deduce from (.) and (.) that

lim sup
k→∞


〈
u – x∗,xnk+ – x∗〉 = lim sup

k→∞

〈
u – x∗,xnk – x∗〉

= max
w∈ωw(xnk )


〈
u – x∗,w – x∗〉

≤ , (.)

which implies that

lim sup
k→∞

δnk ≤ ,

for any subsequence (nk) ⊂ (n). From the Lemma ., we get limn→∞ sn = , which means
xn → x∗ = PC∩Cu. �

Now we turn to a sketch of the general case. Letm be a positive integer and let Ci = {x ∈
H : ci(x) ≤ } be a level set of a convex function ci : H → R for i = , , . . . ,m. We always
assume that ci is subdifferentiable onH and ∂ci is a bounded operator for all i = , , . . . ,m.
Suppose that the nth iterate xn has been obtained, similar to (.), we construct m half-
spaces from the subdifferential inequality as follows:

C
n =

{
x ∈H : c

(
xn

) ≤ 〈
ξ 
n ,x

n – x
〉}
,

C
n =

{
x ∈ H : c

(
PC

n
xn

) ≤ 〈
ξ 
n ,PC

n
xn – x

〉}
,

· · ·
Cm
n =

{
x ∈H : cm

(
PCm–

n
· · ·PC

n
PC

n
xn

) ≤ 〈
ξm
n ,PCm–

n
· · ·PC

n
PC

n
xn – x

〉}
,

(.)

where ξ 
n ∈ ∂c(xn), ξ 

n ∈ ∂c(PC
n
xn), . . . , ξm

n ∈ ∂cm(PCm–
n

· · ·PC
n
PC

n
xn). By the subdifferen-

tial inequality, it is easy to see that Ci
n ⊃ Ci holds for all n ≥  and i = , . . . ,m.

http://www.journalofinequalitiesandapplications.com/content/2014/1/307
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Algorithm . For a given u ∈ H , take an initial guess x ∈ H arbitrarily and construct
the sequence (xn) via the formula

xn+ = λnu + ( – λn)PCm
n · · ·PC

n
PC

n
xn, n≥ ,

where C
n,C

n , . . . ,Cm
n are given by (.) and the sequence (λn) is in (, ).

By an argument very similar to the proof of Theorem ., it is not difficult to see that
our result of Theorem . can be extended easily to the general case.

Theorem . Assume that λn →  (n → ∞) and
∑+∞

n= λn = +∞. Then the sequence (xn)
generated by Algorithm . converges strongly to the point PC∩C∩···∩Cmu.

Finally, we point out that if the computation of the projection operator PCi is easy for all
i = , . . . ,m (for example, Ci is a closed ball or a half-space for all i = , . . . ,m), then we have
no need to adopt the relaxation technique in the algorithm designs, that is, one can use
the following algorithm to compute the projection PC∩C∩···∩Cmu for a given point u ∈H .
Moreover, the strong convergence of this algorithm can be proved by an argument similar
to the proof of Theorem . (in fact, its proof is much simpler than that of Theorem .).

Algorithm . Let u ∈ H and start an initial guess x ∈ H arbitrarily. The sequence (xn)
is constructed via the formula

xn+ = λnu + ( – λn)PCm · · ·PCPCxn, n ≥ ,

where the sequence (λn) is in (, ).

Theorem . Assume that λn →  (n → ∞) and
∑+∞

n= λn = +∞. Then the sequence (xn)
generated by Algorithm . converges strongly to the point PC∩C∩···∩Cmu.

4 Numerical experiments
In this section, in order to show advantages of our algorithms, we present some numerical
results via implementing Algorithm . and Algorithm . for two examples, respectively,
in the setting of finite-dimensional Hilbert space. The codes were written inMatlab a
and run on an Amd Liano APU A-M Core CPU kt (CPU . GHz) personal
computer. In the following two examples, we always takeH =R

 and λn = 
n for n≥ . The

nth step iterate is denoted by xn = (xn ,xn,xn)�. Since we do not know the exact projection
PC∩Cu, we use En � ‖xn+–xn‖

‖xn‖ to measure the error of the nth step iteration.

Example . Take u = (, , )�, x = (, , )�, and

C =
{
x = (x,x,x)� :

x


+
x


+
x


–  ≤ 
}
,

C =
{
x = (x,x,x)� :

(x – )


+
(x – 

 )



+
(x – )


–  ≤ 

}
.

Use Algorithm . to calculate the projection PC∩Cu.
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Table 1 Numerical results as regards Example 4.1

n xn1 xn2 xn3 En
1 4.269110 1.992852 0.999360 1.33E–01

110 3.272412 1.954756 0.995899 4.00E–03
262 3.165479 1.951198 0.995565 1.82E–03
300 3.397080 1.957359 0.996125 1.32E–03
398 3.080705 1.948784 0.995342 1.28E–03
466 3.360174 1.956241 0.996020 8.78E–04
509 3.498434 1.959931 0.996356 7.15E–04
671 3.187363 1.951509 0.995587 7.01E–04
891 2.840956 1.942152 0.994733 6.77E–04
969 3.010468 1.946694 0.995147 5.53E–04
987 3.050742 1.947773 0.995245 5.27E–04

1,000 3.076057 1.948451 0.995307 5.10E–04

Table 2 Numerical results as regards Example 4.2

n xn1 xn2 xn3 En
1 2.298142 4.596285 5.745356 1.16E–01

110 0.626949 1.253898 1.567372 9.69E–03
262 0.609227 1.218453 1.523067 3.94E–03
311 0.607194 1.214388 1.517985 3.45E–03
371 0.605435 1.210869 1.513586 2.98E–03
422 0.604331 1.208663 1.510829 2.63E–03
504 0.603025 1.206050 1.507562 2.02E–03
575 0.602194 1.204388 1.505485 1.77E–03
611 0.601846 1.203693 1.504616 1.67E–03
687 0.601232 1.202464 1.503080 1.52E–03
742 0.600980 1.201959 1.502449 1.47E–03
808 0.600492 1.200984 1.501230 1.37E–03
919 0.599984 1.199969 1.499961 1.20E–03

1,000 0.599685 1.199370 1.499213 1.07E–03

Example . Take u = (, , )�, x = (., ., .)�, and

C =
{
x = (x,x,x)� : x + x + x –  ≤ 

}
,

C =
{
x = (x,x,x)� : (x – ) + x + x – ≤ 

}
.

Use Algorithm . to calculate the projection PC∩Cu.

Numerical results on Example . and Example . are provided in Table  and Table ,
respectively, as follows.
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