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Abstract
In this paper, we study the split common fixed point problem, which is to find a fixed
point of a quasi-pseudocontractive mapping in one space whose image under a
linear transformation is a fixed point of anther quasi-pseudocontractive mapping in
the image space. We design and analyze a new iterative algorithm for solving this
split common fixed point problem. A weak convergence theorem is given.
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1 Background andmotivation
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H andH, respec-
tively. The split feasibility problem is formulated as finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q, (.)

where A : H → H is a bounded linear operator. The split feasibility problem in finite-
dimensional Hilbert spaces was first introduced by Censor and Elfving [] formodeling in-
verse problemswhich arise from phase retrievals and inmedical image reconstruction [].
A special case of the split feasibility problem (.) is when Q = {b} is singleton and then

(.) is reduced to the convexly constrained linear inverse problem []

x∗ ∈ C and Ax∗ = b, (.)

which has received considerable attention.
The well-known projected Landweber algorithm [] is widely used to solve (.). This

algorithm generates a sequence {xn} in such a way that we have
• initialization: x selected in H arbitrarily, and
• iteration:

xn+ = PC
(
xn + γAT (b –Axn)

)
, (.)
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where PC denotes the nearest point projection from H onto C, γ >  is a parameter
such that  < γ < /‖A‖, and AT is the transpose of A.

When the system (.) is reduced to the unconstrained linear system

Ax∗ = b, (.)

then the projected Landweber algorithm [] is turned to the Landweber algorithm:

xn+ = xn + γAT (b –Axn). (.)

The simultaneous algebraic reconstruction technique is a typical example of the Landwe-
ber algorithm (.) when the system (.) is finite-dimensional.
The first iterative algorithm for solving the split feasibility problem (.) in the finite-

dimensional case is proposed by Censor and Elfving [] who define a sequence xn by the
recursion:

xn+ = A–PQ
(
PA(C)(Axn)

)
, n≥ , (.)

where C and Q are closed convex sets of Rn, and A is an n × n matrix of full rank. Here
A(C) = {y ∈R

n : y = Ax,x ∈ C} is the image of C under the matrix A.
Because of the presence of the inverse A–, the algorithm (.) has not become popular.

A more popular algorithm that solves the split feasibility problem (.) is the so-called CQ
algorithm introduced by Byrne []. This algorithm, which does not involve A–, generates
a sequence {xn} as follows:

xn+ = PC
(
xn – γAT (I – PQ)Axn

)
, n≥ , (.)

where  < γ < /‖A‖ and PQ denotes the nearest point projection fromH ontoQ. Conse-
quently, Xu [] extend the above results from the finite-dimensional spaces to the infinite-
dimensional spaces.
In the case where C and Q in (.) are the intersections of finitely many fixed point sets

of nonlinear operators, problem (.) is called by Censor and Segal [] the split common
fixed point problem. More precisely, the split common fixed point problem requires one
to seek an element x∗ ∈H satisfying

x∗ ∈
m⋂
i=

Fix(Si) and Ax∗ ∈
n⋂
j=

Fix(Tj), (.)

where Fix(Si) and Fix(Tj) denote the fixed point sets of two classes of nonlinear operators
Si : H → H and Tj : H → H. In this situation, Byrne’s CQ algorithm does not work
because the metric projection onto fixed point sets is generally not easy to calculate. To
solve the two-set split common fixed point problem,motivated by the algorithms (.) and
(.), Censor and Segal [] proposed the following iterative method: For any initial guess
x ∈H, define {xn} recursively by

xn+ =U
(
xn – λA∗(I – T)Axn

)
, n≥ , (.)
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where U and T are directed operators and λ >  is known as the step-size. They proved
that if λ ∈ (, 

‖A‖ ), then (.) converges to a split common fixed point x∗ ∈ � = {x ∈
Fix(U);Ax ∈ Fix(T)}. Consequently, Moudafi [] extended (.) to the following relaxed
algorithm:

⎧⎨
⎩
un = xn – γA∗(I – T)Axn,

xn+ = ( – αn)un + αnU(un), n ∈N,

where U and T are demicontractive operators, β ∈ (, ), γ ∈ (, –μ

λ
) with λ being the

spectral radius of the operatorA∗A and αn ∈ (, ) is relaxation parameter.Wenote that the
classes of directed and demicontractive operators are important classes since they include
the orthogonal projections and the subgradient projectors. For some other related work,
please refer to [–] and [].
In the present paper, our main motivation is to extend the classes of directed and

demicontractive operators to the class of quasi-pseudocontractions because the class of
quasi-pseudocontractions includes the classes of directed and demicontractive operators
as special cases. Interest in pseudocontractive mappings stems mainly from their firm
connection with the class of monotone operators. We present a unified framework for the
study of this problem and this class of operators. We propose an iterative algorithm and
study its convergence.

2 Notations and lemmas
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty closed convex subset of H .
Recall that a mapping T : C → C is called
• nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
• quasi-nonexpansive if ‖Tx – x∗‖ ≤ ‖x – x∗‖ for all x ∈ C and x∗ ∈ Fix(T);
• firmly nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ – ‖(I – T)x – (I – T)y‖ for all x, y ∈ C;
• firmly quasi-nonexpansive if ‖Tx – x∗‖ ≤ ‖x – x∗‖ – ‖Tx – x‖ for all x ∈ C and
x∗ ∈ Fix(T);

• strictly pseudocontractive if ‖Tx – Ty‖ ≤ ‖x – y‖ + k‖(I – T)x – (I – T)y‖ for all
x, y ∈ C, where k ∈ [, );

• directed if 〈Tx – x∗,Tx – x〉 ≤  for all x ∈ C and x∗ ∈ Fix(T);
• demicontractive if ‖Tx – x∗‖ ≤ ‖x – x∗‖ + k‖Tx – x‖ for all x ∈ C and x∗ ∈ Fix(T),
where k ∈ [, ).

The concept of directed operators was introduced by Bauschke and Combettes [] who
proved that T : C → C is directed if and only if

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ – ‖Tx – x‖

for all x ∈ C and x∗ ∈ Fix(T). It can be seen easily that the class of directed operators
coincides with that of firmly quasi-nonexpansive mappings.
From the above definitions, we note that the class of demicontractive operators contains

important operators such as the directed operators, the quasi-nonexpansive operators and
the strictly pseudocontractive mappings with fixed points. Such a class of operators is
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fundamental because they include many types of nonlinear operators arising in applied
mathematics and optimization; see for example [] and references therein.
Recall also that a mapping T : C → C is called pseudocontractive if

〈Tx – Ty,x – y〉 ≤ ‖x – y‖

for all x, y ∈ C. It is well known that T is pseudocontractive if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥

for all x, y ∈ C and T : C → C is said to be quasi-pseudocontractive if

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖Tx – x‖ (.)

for all x ∈ C and x∗ ∈ Fix(T).
It is obvious that the class of quasi-pseudocontractive mappings includes the class of

demicontractive mappings.
A mapping T : C → C is called L-Lipschitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖

for all x, y ∈ C.
Usually, the convergence of fixed point algorithms requires some additional smoothness

properties of the mapping T such as demiclosedness.
Recall that a mapping T is said to be demiclosed if, for any sequence {xn} which weakly

converges to x̃, and if the sequence {T(xn)} strongly converges to z, we have T(x̃) = z.
Observe also that the nonexpansive operators are both quasi-nonexpansive and strictly

pseudocontractive maps and are well known for being demiclosed. For the pseudocon-
tractions, the following demiclosedness principle is well known.

Lemma . ([]) Let H be a real Hilbert space, C a closed convex subset of H . Let U :
C → C be a continuous pseudocontractive mapping. Then

(i) Fix(U) is a closed convex subset of C,
(ii) (I –U) is demiclosed at zero.

In the next section, we will need to impose the demiclosedness to the quasi-pseudocon-
tractions.
It is well known that in a real Hilbert space H , the following equality holds:

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ (.)

for all x, y ∈ H and t ∈ [, ].

Lemma . ([]) Let H be a Hilbert space and let {un} be a sequence in H such that there
exists a nonempty set � ⊂H satisfying the following:

(i) for every u ∈ �, limn ‖un – u‖ exists,
(ii) any weak-cluster point of the sequence {un} belongs in �.

Then there exists x† ∈ � such that {un} weakly converges to x†.

http://www.journalofinequalitiesandapplications.com/content/2014/1/304
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In the sequel we shall use the following notations:
. ωw(un) = {x : ∃unj → x weakly} denote the weak ω-limit set of {un};
. un ⇀ x stands for the weak convergence of {un} to x;
. un → x stands for the strong convergence of {un} to x.

3 Main results
In this section, we will focus our attention on the following general two-operator split
common fixed point problem:

find x∗ ∈ C such that Ax∗ ∈Q, (.)

whereA :H →H is a bounded linear operator,U :H →H is a quasi-pseudocontractive
mapping and T : H → H is a quasi-pseudocontractive mapping with nonempty fixed
point sets Fix(U) = C and Fix(T) =Q, and we denote the solution set of the two-operator
split common fixed point problem by

� = {x ∈ C;Ax ∈Q}.

Algorithm . For u ∈H, define a sequence {un} as follows:
⎧⎪⎪⎨
⎪⎪⎩

xn = un + γ νA∗[ηI + ( – η)T(( – β)I + βT) – I]Aun,

yn = ( – ξn)xn + ξnUxn,

un+ = [ – ( – δn)αn]xn + ( – δn)αnUyn

(.)

for all n ∈N, where γ , ν , η, andβ are four constants, {αn}, {δn}, and {ξn} are three sequences
in [, ].

Now, we demonstrate the convergence analysis of the algorithm (.).

Theorem . Let H and H be two real Hilbert spaces. Let A : H → H be a bounded
linear operator. Let U :H →H and T :H →H be two L-Lipschitzian quasi-pseudocon-
tractionswith nonempty Fix(U) = C and Fix(T) =Q.AssumeT–I andU–I are demiclosed
at  and � �= ∅. If the parameters γ , ν , η, β , {αn}, {δn}, and {ξn} satisfy the following control
conditions:

(C):  < ν <  and  < γ < 
λν
, where λ is the spectral radius of the operator A∗A;

(C):  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C):  <  – η ≤ β < √

+L+
and  < a≤  – δn ≤ ξn < √

+L+
for all n ∈N.

Then the sequence {un} generated by algorithm (.) weakly converges to a split common
fixed point μ ∈ �.

Remark . Without loss of generality, we may assume that the Lipschitz constant L > .
It is obvious that β < √

+L+
< 

L for all n≥ .
Since ξn < √

+L+
, we have

 – ξn – ξ 
nL

 > 

for all n ∈N.
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Proposition . Let the mapping T :H →H be L-Lipschitzian with L > . Then

Fix(T) = Fix
(
T

(
( – β)I + βT

))

for all β ∈ (, L ).

Proof As a matter of fact, Fix(T)⊂ Fix(T(( – β)I + βT)) is obvious.
Next, we show that Fix(T(( – β)I + βT)) ⊂ Fix(T).
Take any x∗ ∈ Fix(T((–β)I+βT)).WehaveT((–β)I+βT)x∗ = x∗. Set S = (–β)I+βT .

We have TSx∗ = x∗. Write Sx∗ = y∗. Then Ty∗ = x∗. Now we show x∗ = y∗. In fact,

∥∥x∗ – y∗∥∥ =
∥∥Ty∗ – Sx∗∥∥

=
∥∥Ty∗ – ( – β)x∗ – βTx∗∥∥

= β
∥∥Ty∗ – Tx∗∥∥

≤ βL
∥∥y∗ – x∗∥∥.

Since β < 
L , we deduce y∗ = x∗ ∈ Fix(S) = Fix(T). Thus, x∗ ∈ Fix(T). Hence, Fix(T(( –

β)I + βT))⊂ Fix(T). Therefore, Fix(T(( – β)I + βT)) = Fix(T). �

Proposition .

∥∥ηx + ( – η)T
(
( – β)I + βT

)
x – x∗∥∥ ≤ ∥∥x – x∗∥∥

for all x ∈ H and all x ∈ Fix(T).

Proof Since x∗ ∈ Fix(T), we have from (.)

∥∥T(
( – β)I + βT

)
x – x∗∥∥ ≤ ∥∥( – β)

(
x – x∗) + β

(
Tx – x∗)∥∥

+
∥∥(
( – β)I + βT

)
x – T

(
( – β)I + βT

)
x
∥∥ (.)

and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖Tx – x‖ (.)

for all x ∈H.
By (.), (.), and (.), we obtain

∥∥T(
( – β)I + βT

)
x – x∗∥∥

≤ ∥∥( – β)
(
x – x∗) + β

(
Tx – x∗)∥∥

+
∥∥(
( – β)I + βT

)
x – T

(
( – β)I + βT

)
x
∥∥

=
∥∥( – β)

(
x – T

(
( – β)I + βT

)
x
)
+ β

(
Tx – T

(
( – β)I + βT

)
x
)∥∥

+
∥∥( – β)

(
x – x∗) + β

(
Tx – x∗)∥∥

= ( – β)
∥∥x – T

(
( – β)I + βT

)
x
∥∥ + β

∥∥Tx – T
(
( – β)I + βT

)
x
∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/304
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– β( – β)‖x – Tx‖ + ( – β)
∥∥x – x∗∥∥ + β

∥∥Tx – x∗∥∥ – β( – β)‖x – Tx‖

≤ ( – β)
∥∥x – x∗∥∥ + β

(∥∥x – x∗∥∥ + ‖x – Tx‖)

– β( – β)‖x – Tx‖ + ( – β)
∥∥x – T

(
( – β)I + βT

)
x
∥∥

+ β
∥∥Tx – T

(
( – β)I + βT

)
x
∥∥.

Noting that T is L-Lipschitzian and x – (( – β)I + βT)x = β(x – Tx), we have

∥∥T(
( – β)I + βT

)
x – x∗∥∥

≤ ( – β)
∥∥x – x∗∥∥ + β

(∥∥x – x∗∥∥ + ‖x – Tx‖)

– β( – β)‖x – Tx‖ + ( – β)
∥∥x – T

(
( – β)I + βT

)
x
∥∥ + βL‖x – Tx‖

=
∥∥x – x∗∥∥ + ( – β)

∥∥x – T
(
( – β)I + βT

)
x
∥∥ – β

(
 – β – βL

)‖x – Tx‖. (.)

Since β < √
+L+

, we have

 – β – βL > .

From (.), we can deduce

∥∥T(
( – β)I + βT

)
x – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ( – β)

∥∥x – T
(
( – β)I + βT

)
x
∥∥ (.)

for all x ∈H and x∗ ∈ Fix(T).
Hence,

∥∥ηx + ( – η)T
(
( – β)I + βT

)
x – x∗∥∥

≤ ∥∥η
(
x – x∗) + ( – η)

(
T

(
( – β)I + βT

)
x – x∗)∥∥

= η
∥∥x – x∗∥∥ + ( – η)

∥∥T(
( – β)I + βT

)
x – x∗∥∥

– η( – η)
∥∥T(

( – β)I + βT
)
x – x

∥∥

≤ η
∥∥x – x∗∥∥ + ( – η)

[∥∥x – x∗∥∥ + ( – β)
∥∥x – T

(
( – β)I + βT

)
x
∥∥]

– η( – η)
∥∥T(

( – β)I + βT
)
x – x

∥∥

=
∥∥x – x∗∥∥ + ( – η)( – β – η)

∥∥T(
( – β)I + βT

)
x – x

∥∥. (.)

By (C) and (.), we deduce

∥∥ηx + ( – η)T
(
( – β)I + βT

)
x – x∗∥∥ ≤ ∥∥x – x∗∥∥. �

Proposition . Let the mapping T : H → H be L-Lipschitzian with L > . If T – I is
demiclosed at , then T(( – β)I + βT) – I is also demiclosed at  when β ∈ (, L ).

Proof Let the sequence {xn} ⊂H satisfying xn ⇀ x̃ and xn–T((–β)I+βT)xn → . Next,
we will show that x̃ ∈ Fix(T(( – β)I + βT)).

http://www.journalofinequalitiesandapplications.com/content/2014/1/304
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From Proposition ., we only need to prove that x̃ ∈ Fix(T). As a matter of fact, since
T is L-Lipschitzian, we have

‖xn – Txn‖ ≤ ∥∥xn – T
(
( – β)I + βT

)
xn

∥∥ +
∥∥T(

( – β)I + βT
)
xn – Txn

∥∥
≤ ∥∥xn – T

(
( – β)I + βT

)
xn

∥∥ + βL‖xn – Txn‖.

It follows that

‖xn – Txn‖ ≤ 
 – βL

∥∥xn – T
(
( – β)I + βT

)
xn

∥∥.

Hence,

lim
n→∞‖xn – Txn‖ = .

Applying the demiclosedness of T , we immediately deduce x̃ ∈ Fix(T). �

Next, we prove Theorem ..

Proof Let x∗ ∈ �. Then we get x∗ ∈ Fix(U) andAx∗ ∈ Fix(T). From (.) and (.), we have

∥∥un+ – x∗∥∥ =
∥∥[
 – ( – δn)αn

]
xn + ( – δn)αnUyn – x∗∥∥

=
∥∥( – αn)

(
xn – x∗) + αn

[
δnxn + ( – δn)Uyn – x∗]∥∥

= ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥δnxn + ( – δn)Uyn – x∗∥∥

– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥

= αn
[
δn

∥∥xn – x∗∥∥ + ( – δn)
∥∥Uyn – x∗∥∥ – δn( – δn)‖Uyn – xn‖

]

+ ( – αn)
∥∥xn – x∗∥∥ – αn( – αn)

∥∥δnxn + ( – δn)Uyn – xn
∥∥. (.)

Since x∗ ∈ Fix(U), we have from (.)

∥∥Ux – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖x –Ux‖ (.)

for all x ∈ C.
By a similar argument to that of (.), we obtain

∥∥Uyn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + ( – ξn)‖xn –Uyn‖. (.)

Substituting (.) to (.) and noting that  – ξn ≤ δn, we have

∥∥un+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αn

{
δn

∥∥xn – x∗∥∥ + ( – δn)
[∥∥xn – x∗∥∥

+ ( – ξn)‖xn –Uyn‖
]
– δn( – δn)‖Uyn – xn‖

}

– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥

= ( – αn)
∥∥xn – x∗∥∥ + αn

{∥∥xn – x∗∥∥

+ ( – δn)( – ξn – δn)‖xn –Uyn‖
}

http://www.journalofinequalitiesandapplications.com/content/2014/1/304
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– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥

≤ ∥∥xn – x∗∥∥ – αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥. (.)

Since λ is the spectral radius of the operator AA∗, we deduce

〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,AA∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun

〉

≤ λ
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥.

This together with (.) implies that

∥∥xn – x∗∥∥ =
∥∥un – x∗ + γ νA∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun

∥∥

=
∥∥un – x∗∥∥ + γ ν

〈
A∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,un – x∗〉

+ γ ν∥∥A∗[ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

=
∥∥un – x∗∥∥ + γ ν

〈
A∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,un – x∗〉

+ γ ν〈[ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun,

AA∗[ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

〉

≤ ∥∥un – x∗∥∥ + γ ν
〈
A∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,un – x∗〉

+ γ νλ
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥. (.)

By Proposition . and noting that Ax∗ ∈ Fix(T), we have

∥∥[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun –Ax∗∥∥ ≤ ∥∥Aun –Ax∗∥∥.

At the same time, we have the following equality in Hilbert spaces:

‖x – y‖ = ‖x‖ + ‖y‖ – 〈x, y〉. (.)

In (.), picking up x = [ηI + ( – η)T(( – β)I + βT) – I]Aun and y = [ηI + ( – η)T(( –
β)I + βT)]Aun –Ax∗ we deduce

∥∥Aun –Ax∗∥∥ =
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

–
{[

ηI + ( – η)T
(
( – β)I + βT

)]
Aun –Ax∗}∥∥

=
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

+
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)]
Aun –Ax∗∥∥

– 
〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,

[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun –Ax∗〉

≤ ∥∥[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun

∥∥ +
∥∥Aun –Ax∗∥∥

– 
〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,

[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun –Ax∗〉.
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It follows that

〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,

[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun –Ax∗〉

≤ 

∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥.

Thus,

〈
A∗[ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,un – x∗〉

=
〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,Aun –Ax∗〉

=
〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,

[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun –Ax∗〉

+
〈[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun,

Aun –
[
ηI + ( – η)T

(
( – β)I + βT

)]
Aun

〉

≤ 

∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

–
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

= –


∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥. (.)

From (.), (.), and (.), we get

∥∥un+ – x∗∥∥ ≤ ∥∥un – x∗∥∥ – γ ν( – λγ ν)
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

– αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥. (.)

We deduce immediately that

∥∥un+ – x∗∥∥ ≤ ∥∥un – x∗∥∥.

Hence, limn→∞ ‖un – x∗‖ exists. This implies that {un} is bounded. Consequently, we have

 ≤ γ ν( – λγ ν)
∥∥[

ηI + ( – η)T
(
( – β)I + βT

)
– I

]
Aun

∥∥

≤ ∥∥un – x∗∥∥ –
∥∥un+ – x∗∥∥ → .

Therefore,

lim
n→∞

∥∥[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aun

∥∥ = . (.)

Since {un} is bounded, ωw(un) �= ∅. We can take μ ∈ ωw(un), that is, there exists {unj} such
that ω – limj→∞ unj = μ. Since T – I is demiclosed at , by Proposition ., we see that
T(( – β)I + βT) – I is also demiclosed at . Then, from (.), we obtain

[
ηI + ( – η)T

(
( – β)I + βT

)
– I

]
Aμ = .

Thus, Aμ ∈ Fix(T(( – β)I + βT)) = Fix(T).
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From (.), we deduce

αn( – αn)
∥∥δnxn + ( – δn)Uyn – xn

∥∥ ≤ ∥∥un – x∗∥∥ –
∥∥un+ – x∗∥∥ → .

This together with (C) implies that

lim
n→∞

∥∥δnxn + ( – δn)Uyn – xn
∥∥ = lim

n→∞( – δn)‖Uyn – xn‖ = .

Noticing that  – δn ≥ a, we get immediately

lim
n→∞‖Uyn – xn‖ = .

Since U is L-Lipschitzian, we have

‖Uxn – xn‖ ≤ ‖Uxn –Uyn‖ + ‖Uyn – xn‖
≤ L‖xn – yn‖ + ‖Uyn – xn‖
= Lξn‖Uxn – xn‖ + ‖Uyn – xn‖.

It follows that

‖Uxn – xn‖ ≤ 
 – Lξn

‖Uyn – xn‖.

Since ξn < √
+L+

< 
L , we deduce

lim
n→∞‖Uxn – xn‖ = . (.)

From (.) and (.), we have limn→∞ ‖xn – un‖ = . Thus, ω – limj→∞ xnj = μ. By the
demiclosedness of U – I at  and (.), we get μ ∈ Fix(U). Hence, μ ∈ Fix(U). Therefore,
μ ∈ �.
Note that there is nomore than oneweak-cluster point of {un}. In fact, if we assume there

exists another {unk } such that ω – limk→∞ unk = μ̃ �= μ, then we can deduce μ̃ ∈ Fix(U).
Now we show μ̃ = μ. By the Opial property of Hilbert space, we have

lim inf
k→∞

‖unk – μ̃‖ < lim inf
k→∞

‖unk –μ‖ = lim
n→∞‖un –μ‖

= lim inf
j→∞ ‖unj –μ‖ < lim inf

j→∞ ‖unj – μ̃‖

= lim
n→∞‖un – μ̃‖

= lim inf
k→∞

‖unk – μ̃‖.

This is a contradiction. Hence, the weak convergence of the whole sequence {un} follows
by applying Lemma . with � = �. This completes the proof. �

Remark . Since the class of quasi-pseudocontractions contains the demicontractive
operators, the directed operators, the quasi-nonexpansive operators and the strictly pseu-
docontractive mappings with fixed points as special cases, our results present a unified
framework for the study of this problem and this class of operators.
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Corollary . Let H and H be two real Hilbert spaces. Let A : H → H be a bounded
linear operator. Let U :H → H and T :H → H be two L-Lipschitzian demicontractive
mappings with nonempty Fix(U) = C and Fix(T) = Q. Assume T – I and U – I are demi-
closed at  and � �= ∅. If the parameters γ , ν , η, β , {αn}, {δn} and {ξn} satisfy the following
control conditions:

(C):  < ν <  and  < γ < 
λν
, where λ is the spectral radius of the operator A∗A;

(C):  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(C):  <  – η ≤ β < √

+L+
and  < a≤  – δn ≤ ξn < √

+L+
for all n ∈N.

Then the sequence {un} generated by algorithm (.) weakly converges to a split common
fixed point μ ∈ �.
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