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Abstract
This paper deals with the solvability of the higher-order nonlinear neutral delay
differential equation dn

dtn [x(t) + p(t)x(t – τ )] + (–1)n+1
∑m

i=1 qi(t)x(αi(t)) + (–1)n+1f (t,
x(β1(t)), . . . , x(βl(t))) = r(t), t ≥ t0, where τ > 0, n,m, l ∈ N, p, r,qi ,αi ,βj ∈ C([t0, +∞),R),
and f ∈ C([t0, +∞)×R

l ,R) satisfying limt→+∞ αi(t) = limt→+∞ βj(t) = +∞,
i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , l}. With respect to various ranges of the function p, we
investigate the existence of uncountably many bounded nonoscillatory solutions for
the equation. The main tools used in this paper are the Krasnoselskii and Schauder
fixed point theorems together with some new techniques. Six nontrivial examples are
given to illustrate the superiority of the results presented in this paper.
MSC: 39A10; 39A20; 39A22
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1 Introduction and preliminaries
In the past two decades, the oscillation, nonoscillation, and existence of solutions for some
kinds of neutral delay differential equations have been extensively studied by many au-
thors. See, for example, [–] and the references cited therein.
Recently, Zhang et al. [] and Öcalan [] got several existence results of a nonoscilla-

tory solution or positive solution for the first-order neutral delay differential equations

d
dt

[
x(t) + c(t)x(t – τ )

]
+ P(t)x(t – α) –Q(t)x(t – β) = , t ≥ t (.)

and

d
dt

[
x(t) + c(t)x(t – τ )

]
+

m∑
i=

Ai(t)x(t – σi) –
n∑

i=m+

Ai(t)x(t – σi) = , t ≥ t, (.)

where τ > , α,β ,σi ∈ R
+, c ∈ C([t, +∞),R) and P,Q,Ai ∈ C([t, +∞),R+) for i ∈

{, , . . . ,n}. Shen and Debnath [] obtained some sufficient conditions for the oscilla-
tions of (.) and Luo and Shen [] established a few oscillation and nonoscillation criteria
for (.). Liu and Huang [] used the coincidence degree theory to get the existence and
uniqueness results of a T-periodic solution for the first-order neutral functional differen-
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tial equation with a deviating argument of the form

d
dt

[
x(t) + cx(t – τ )

]
= g

(
t,x(t)

)
+ g

(
t,x

(
t – α(t)

))
+ f (t), (.)

where c, τ are constants, c �=±, f ,α ∈ C(R,R), g, g ∈ C(R,R), f , α areT-periodic and g,
g are T-periodic in the first argument. Using the Banach fixed point theorem, Kulenović
andHadžiomerspahić [] studied the existence of a nonoscillatory solution for the second-
order neutral delay differential equation with positive and negative coefficients

d

dt
[
x(t) + cx(t – τ )

]
+ P(t)x(t – σ ) –Q(t)x(t – δ) = , t ≥ t, (.)

where c ∈ R \ {±}, σ , δ ∈ R
+ and P,Q ∈ C([t, +∞),R+). Kong et al. [] established a

complete classification of nonoscillatory solutions for the higher-order neutral differential
equation

dn

dtn
[
x(t) – x(t – τ )

]
+ f (t)x(t – α) = , t ≥ t, (.)

and gave conditions for each type of nonoscillatory solutions to exist, where n is an odd
number, τ > , α ∈R, and f ∈ C(R+,R+). Zhou and Zhang [] extended the results in []
to higher-order neutral functional differential equation with positive and negative coeffi-
cients

dn

dtn
[
x(t) + cx(t – τ )

]
+ (–)n+

[
P(t)x(t – σ ) –Q(t)x(t – δ)

]
= , t ≥ t, (.)

where c ∈ R \ {±}, τ ,σ , δ ∈ R
+ and P,Q ∈ C([t, +∞),R+). Liu et al. [] investigated the

higher-order neutral delay differential equation with positive and negative coefficients

dn

dtn
[
x(t) + cx(t – τ )

]
+ (–)n

[
P(t)x

(
f (t)

)
–Q(t)x

(
g(t)

)]
= , t ≥ t, (.)

where c ∈R\{–}, τ ∈R
+, P,Q ∈ C([t, +∞),R+), f , g ∈ C([t, +∞),R), and limt→+∞ f (t) =

limt→+∞ g(t) = +∞. Utilizing the Banach fixed point theorem, they obtained the existence
of bounded nonoscillatory solutions for (.), suggested some algorithms for approximat-
ing these bounded nonoscillatory solutions, and discussed the convergence and stability
of iteration sequences generated by the algorithms. Parhi [] discussed the oscillation of
solutions for the higher-order neutral delay linear differential equation

dn

dtn
[
x(t) + cx(t – τ )

]
+

m∑
i=

qi(t)x
(
t – αi(t)

)
= , t ≥ , (.)

where c ∈ [, ), τ > , qi ∈ C(R+,R), and αi ∈ C(R+,R+) for i ∈ {, , . . . ,m}. Li et al. []
considered the following higher-order neutral delay differential equation with unstable
type:

dn

dtn
[
x(t) + c(t)x(t – τ )

]
= q(t)

∣∣x(t – σ )
∣∣α–x(t – σ ), t ≥ , (.)
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proved bounded oscillation and nonoscillation criteria and the existence of an un-
bounded positive solution for (.), where n is an even integer, α ≥ , τ > , σ > ,
c,q ∈ C([t, +∞),R+). Zhou and Zhang [] used the Krasnoselskii and Schauder fixed
point theorems to prove the existence of a nonoscillatory solution for the forced higher-
order nonlinear neutral functional differential equation

dn

dtn
[
x(t) + c(t)x(t – τ )

]
+

m∑
i=

qi(t)f
(
x(t – σi)

)
= g(t), t ≥ t, (.)

where τ ,σi ∈ R
+, c,qi, g ∈ C([t, +∞),R) for i ∈ {, , . . . ,m} and f ∈ C(R,R). Liu et al. []

got the existence of infinitelymany nonoscillatory solutions for the nth-order neutral delay
differential equation

dn

dtn
[
x(t)+ cx(t–τ )

]
+(–)n+f

(
t,x(t–σ),x(t–σ), . . . ,x(t–σk)

)
= g(t), t ≥ t, (.)

where c ∈ R \ {–}, τ > , σi ∈ R
+ for i ∈ {, , . . . ,k}, f ∈ C([t, +∞) × R

k ,R), and g ∈
C([t, +∞),R+).
However, to the best of our knowledge, there exist no results for the existence of solu-

tions of the higher-order nonlinear neutral delay differential equation

dn

dtn
[
x(t) + p(t)x(t – τ )

]
+ (–)n+

m∑
i=

qi(t)x
(
αi(t)

)

+ (–)n+f
(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
= r(t), t ≥ t, (.)

where τ > , n,m, l ∈ N, p, r,qi,αi,βj ∈ C([t, +∞),R), and f ∈ C([t, +∞)×R
l,R) satisfy-

ing

lim
t→+∞αi(t) = lim

t→+∞βj(t) = +∞, i ∈ {, , . . . ,m}, j ∈ {, , . . . , l}.

It is clear that (.) includes (.)-(.) as special cases. The purpose of this paper is
to study the solvability of (.) under various ranges of the function p. Utilizing the
Krasnoselskii and Schauder fixed point theorems and some new techniques, we study suf-
ficient conditions of the existence of uncountably many bounded nonoscillatory solutions
for (.) relative to various ranges of the function p. The results presented in this paper
extend, improve, and unify the corresponding results in [] and [–]. Six nontrivial
examples are also given to illustrate the importance of the results obtained in this paper.
Throughout this paper, we assume that R, R+ and N denote the sets of all real numbers,

nonnegative numbers and positive integers, respectively, and

γ =min
{
t – τ , inf

{
αi(t),βj(t) : t ∈ [t, +∞), i ∈ {, , . . . ,m}, j ∈ {, , . . . , l}}}.

Let CB([γ , +∞),R) stand for the Banach space of all continuous and bounded functions
on [γ , +∞) with norm ‖x‖ = supt≥γ |x(t)| for all x ∈ CB([γ , +∞),R) and

A(N ,M) =
{
x ∈ CB

(
[γ , +∞),R

)
:N ≤ x(t)≤M, t ≥ γ

}
,
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whereM,N ∈R withM >N . It is easy to see that A(N ,M) is a nonempty bounded closed
convex subset of CB([γ , +∞),R).
By a solution of (.), we mean a function x ∈ C([γ , +∞),R) for some T ≥ t, such that

x(t) + p(t)x(t – τ ) is n times continuously differentiable on [T , +∞) and (.) holds for
t ≥ T . As is customary, a solution of (.) is said to be oscillatory if it has arbitrarily large
zeros and nonoscillatory otherwise.
The following lemmas are well known.

Lamma . (Krasnoselskii fixed point theorem []) Let X be a nonempty bounded closed
convex subset of a Banach space E and let U , S bemaps of X into E such that Ux+Sy ∈ X for
every pair x, y ∈ X. If U is a contraction and S is completely continuous, then the equation
Ux + Sy = x has a solution in X.

Lamma . (Schauder fixed point theorem []) Let X be a nonempty closed convex subset
of a Banach space E. Let S : X → X be a continuous mapping such that SX is a relatively
compact subset of X. Then S has at least one fixed point in X.

2 The existence of uncountably many bounded nonoscillatory solutions
Now we investigate sufficient conditions for the existence of uncountably many bounded
nonoscillatory solutions of (.) under various ranges of the function p. The proofs of the
results presented in this section are based on the Krasnoselskii and Schauder fixed point
theorems and a few new and key techniques, one of which is to construct the mappings
UL and SL satisfying the conditions in the cited fixed point theorems for each constant L,
which belongs to certain interval. Let

H(t) =M
m∑
i=

∣∣qi(t)∣∣ + ∣∣r(t)∣∣ + h(t), ∀t ∈ [T , +∞).

Theorem . Assume that there exist h ∈ C([t, +∞),R+) and constants M, N , p, and c
satisfying

∣∣f (t,u, . . . ,ul)∣∣ ≤ h(t), ∀(t,u, . . . ,ul) ∈ [t, +∞)× [N ,M]l; (.)
∫ +∞

t
sn–max

{ m∑
i=

∣∣qi(s)∣∣, ∣∣r(s)∣∣,h(s)
}
ds < +∞; (.)

 <N < ( + p)M, – < p ≤ p(t) ≤ , ∀t ≥ c≥ t. (.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).

Proof Let L ∈ (N , ( + p)M). It follows from (.) and (.) that there exist constants θ ∈
(, ) and T > |t| + τ + |c| + |γ | + n sufficiently large satisfying

θ = |p| + 
(n – )!

∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣ds (.)

and


(n – )!

∫ +∞

T
sn–H(s)ds≤min

{
(p + )M – L,L –N

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/302
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Define two mappings UL and SL : A(N ,M) → CB([γ , +∞),R) by

(ULx)(t) =

⎧⎪⎪⎨
⎪⎪⎩
L – p(t)x(t – τ ) + 

(n–)!
∫ +∞
t (s – t)n–

× (
∑m

i= qi(s)x(αi(s)) + (–)nr(s))ds, t ≥ T ,

(ULx)(T), γ ≤ t < T ;

(SLx)(t) =

⎧⎨
⎩


(n–)!

∫ +∞
t (s – t)n–f (s,x(β(s)), . . . ,x(βl(s)))ds, t ≥ T ,

(SLx)(T), γ ≤ t < T ,

(.)

for each x ∈ A(N ,M).
First of all we show that

ULx + SLy ∈ A(N ,M), ‖ULx –ULy‖ ≤ θ‖x – y‖, ∀x, y ∈ A(N ,M). (.)

Let x, y ∈ A(N ,M) and t ≥ T . By (.)-(.), we get

(ULx)(t) + (SLy)(t)

= L – p(t)x(t – τ ) +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t
(s – t)n–f

(
s, y

(
β(s)

)
, . . . , y

(
βl(s)

))
ds

≤ L +
∣∣p(t)∣∣∣∣x(t)∣∣

+


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s, y(β(s)

)
, . . . , y

(
βl(s)

))∣∣)ds

≤ L – pM +


(n – )!

∫ +∞

T
sn–H(s)ds

≤ L – pM +min
{
(p + )M – L,L –N

}
≤M,

(ULx)(t) + (SLy)(t)

≥ L –


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s, y(β(s)

)
, . . . , y

(
βl(s)

))∣∣)ds

≥ L –


(n – )!

∫ +∞

T
sn–H(s)ds

≥ L –min
{
(p + )M – L,L –N

}
≥N
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and

∣∣(ULx)(t) – (ULy)(t)
∣∣

=

∣∣∣∣∣L – p(t)x(t – τ ) +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

– L + p(t)y(t – τ ) –


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)y
(
αi(s)

)
+ (–)nr(s)

)
ds

∣∣∣∣∣
≤ –p‖x – y‖ + 

(n – )!

∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)
– y

(
αi(s)

)∣∣ds
≤ θ‖x – y‖,

which imply (.).
Second, we show that SL is continuous inA(N ,M) and SL(A(N ,M)) is relatively compact.

Let {xk}k∈N be an arbitrary sequence in A(N ,M) with

lim
k→∞

xk = x ∈ CB
(
[γ , +∞),R

)
. (.)

Since A(N ,M) is a closed subset of CB([γ , +∞),R), it follows that x ∈ A(N ,M). Put

Gk(s) =
∣∣f (s,xk(β(s)

)
, . . . ,xk

(
βl(s)

))
– f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))∣∣,
∀(s,k) ∈ [T , +∞)×N.

From (.) and the continuity of f and βj for j ∈ {, , . . . , l} we infer that

lim
k→∞

Gk(s) = , ∀s ∈ [T , +∞),

which together with (.) and the Lebesgue dominated convergence theorem yields for
any t ∈ [T , +∞)

∣∣(SLxk)(t) – (SLx)(t)
∣∣

≤ 
(n – )!

∫ +∞

t
(s – t)n–

∣∣f (s,xk(β(s)
)
, . . . ,xk

(
βl(s)

))
– f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds
≤ 

(n – )!

∫ +∞

T
sn–Gk(s)ds

→  as k → ∞,

which gives

lim
k→∞

‖SLxk – SLx‖ = lim
k→∞

sup
t≥γ

∣∣(SLxk)(t) – (SLx)(t)
∣∣ = lim

k→∞
sup
t≥T

∣∣(SLxk)(t) – (SLx)(t)
∣∣ = ,

which implies that SL is continuous in A(N ,M).

http://www.journalofinequalitiesandapplications.com/content/2014/1/302
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Using (.), (.), and (.), we conclude that for any x ∈ A(N ,M) and t ≥ T

∣∣(SLx)(t)∣∣ =
∣∣∣∣ 
(n – )!

∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
≤ 

(n – )!

∫ +∞

T
sn–h(s)ds

≤min
{
(p + )M – L,L –N

}
≤M,

which yields

‖SLx‖ ≤ M, ∀x ∈ A(N ,M). (.)

That is, SL(A(N ,M)) is uniformly bounded in [γ , +∞). In order to prove that SL(A(N ,M))
is relatively compact, we have to prove that SL(A(N ,M)) is equicontinuous in [γ , +∞). Let
ε >  be given. Equation (.) ensures that there exists T∗ > T satisfying


(n – )!

∫ +∞

T∗
sn–h(s)ds < ε. (.)

Put

δ =min

{
ε

 +M
,

ε

 +max{h(t) : t ∈ [T ,T∗]}
}
. (.)

Now we consider the following possible cases:
(i) t > t ≥ T∗ with |t – t| < δ. By (.), (.), and (.) we have

∣∣(SLx)(t) – (SLx)(t)
∣∣

=


(n – )!

∣∣∣∣
∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

–
∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))∣∣∣∣
≤ 

(n – )!

∫ +∞

T∗
sn–h(s)ds

< ε, ∀x ∈ A(N ,M). (.)

(ii) T ≤ t < t ≤ T∗ with |t – t| < δ and n = . By means of (.), (.), and (.) we
infer that

∣∣(SLx)(t) – (SLx)(t)
∣∣

=
∣∣∣∣
∫ +∞

t
f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds –

∫ +∞

t
f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
≤

∫ t

t

∣∣f (s,x(β(s)
)
, . . . ,x

(
βl(s)

))∣∣ds

http://www.journalofinequalitiesandapplications.com/content/2014/1/302
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≤
∫ t

t
h(s)ds

< ε, ∀x ∈ A(N ,M). (.)

(iii) T ≤ t < t ≤ T∗ with |t – t| < δ and n≥ . In light of (.), (.), and (.), we get

∣∣∣∣ ddt (SLx)(t)
∣∣∣∣ = 

(n – )!

∣∣∣∣ ddt
∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
=

∣∣∣∣ 
(n – )!

∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
≤ 

(n – )!

∫ +∞

T
sn–h(s)ds

≤ 
(n – )!

∫ +∞

T
sn–h(s)ds

≤min
{
(p + )M – L,L –N

}
≤M, ∀x ∈ A(N ,M), t ∈ [

T ,T∗],
which together with the mean value theorem and (.) yields

∣∣(SLx)(t) – (SLx)(t)
∣∣ ≤M|t – t| < ε, ∀x ∈ A(N ,M). (.)

(iv) γ ≤ t < t ≤ T with |t – t| < δ. Clearly (.) means that

∣∣(SLx)(t) – (SLx)(t)
∣∣ =  < ε, ∀x ∈ A(N ,M). (.)

It follows from (.)-(.) that SL(A(N ,M)) is equicontinuous in [γ , +∞). Thus Lem-
ma . means that there exists x ∈ A(N ,M) such that ULx + SLx = x. That is,

x(t) = L – p(t)x(t – τ ) +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t
(s – t)n–f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds, ∀t ≥ T ,

which implies that

dn

dtn
[
x(t) + p(t)x(t – τ )

]

= (–)n
( m∑

i=

qi(t)x
(
αi(t)

)
+ (–)nr(t)

)
+ (–)nf

(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
, ∀t ≥ T ,

that is, x(t) is a bounded nonoscillatory solution of (.) in A(N ,M).
Finally, we show (.) has uncountably many bounded nonoscillatory solutions in

A(N ,M). Let L,L ∈ (N , (+p)M) with L �= L. As in the above proof we can deduce that
for each k ∈ {, }, there exist constants θk ∈ (, ), Tk > |t|+ τ + |c|+ |γ |+n, andmappings
ULk ,SLk : A(N ,M) → CB([γ , +∞),R) satisfying (.)-(.), where θ ,T , L,UL and SL are re-
placed by θk , Tk , Lk , ULk , SLk , respectively, and ULk + SLk has a fixed point zk ∈ A(N ,M).
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That is, z and z are also bounded nonoscillatory solutions of (.) in A(N ,M). We now
need to show that z �= z. In view of (.) there exists T >max{T,T} satisfying


(n – )!

∫ +∞

T
sn–h(s)ds <

|L – L|


. (.)

Note that (.) means that for t ≥ T,

z(t) = L – p(t)z(t – τ )

+


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)z
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t
(s – t)n–f

(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

))
ds,

z(t) = L – p(t)z(t – τ )

+


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)z
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t
(s – t)n–f

(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

))
ds.

(.)

It follows from (.), (.), and (.) that for t ≥ T

∣∣z(t) – z(t)
∣∣

=

∣∣∣∣∣L – L – p(t)
(
z(t – τ ) – z(t – τ )

)

+


(n – )!

(∫ +∞

t
(s – t)n–

m∑
i=

qi(s)
(
z

(
αi(s)

)
– z

(
αi(s)

))
ds

+
∫ +∞

t
(s – t)n–

(
f
(
s, z

(
α(s)

)
, . . . , z

(
αl(s)

))

– f
(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

)))
ds

)∣∣∣∣∣
≥ |L – L| –

(
–p +


(n – )!

∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣ds
)

‖z – z‖

–


(n – )!

∫ +∞

T
sn–h(s)ds

≥ |L – L| – θ‖z – z‖ – 
(n – )!

∫ +∞

T
sn–h(s)ds,

which together with (.) implies that

‖z – z‖ ≥ 
 + θ

(
|L – L| – 

(n – )!

∫ +∞

T
sn–h(s)ds

)

>


 + θ

(
|L – L| – |L – L|



)
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=
|L – L|
( + θ )

> ,

which yields z �= z. This completes the proof. �

Theorem . Assume that there exist h ∈ C([t, +∞),R+) and constants M, N , p and c
satisfying (.), (.), and

 <N < ( – p)M,  ≤ p(t) ≤ p < , ∀t ≥ c≥ t. (.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).

Proof Let L ∈ (N , ( – p)M). By (.) and (.), we choose constants θ ∈ (, ) and T >
|t| + τ + |c| + |γ | + n satisfying (.) and


(n – )!

∫ +∞

T
sn–H(s)ds≤min{M – L,L – pM –N}. (.)

Define two mappings UL and SL : A(N ,M) → CB([t, +∞),R) by (.).
Let x, y ∈ A(N ,M) and t ≥ T . In terms of (.), (.), and (.), we arrive at

(ULx)(t) + (SLy)(t)

= L – p(t)x(t – τ ) +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t
(s – t)n–f

(
s, y

(
β(s)

)
, . . . , y

(
βl(s)

))
ds

≤ L +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s, y(β(s)

)
, . . . , y

(
βl(s)

))∣∣)ds

≤ L +


(n – )!

∫ +∞

T
sn–H(s)ds

≤ L +min{M – L,L – pM –N}
≤M,

(ULx)(t) + (SLy)(t)

≥ L –
∣∣p(t)∣∣∣∣x(t – τ )

∣∣
–


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s, y(β(s)

)
, . . . , y

(
βl(s)

))∣∣)ds

≥ L – pM –


(n – )!

∫ +∞

T
sn–H(s)ds
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≥ L – pM –min{M – L,L – pM –N}
≥N ,

which yieldsULx+ SLy ∈ A(N ,M) for any x, y ∈ A(N ,M). The rest of the proof is similar to
that of Theorem . and is omitted. This completes the proof. �

Theorem . Assume that there exist h ∈ C([t, +∞),R+) and constants M,N , p, p, and
c satisfying (.), (.), and

M >Nmax

{
,
p(p – p)
p(p – p)

}
> , p > p ≥ p(t) ≥ p > , ∀t ≥ c ≥ t. (.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).

Proof Let L ∈ ( ppM + pN ,pM + p
p
N). It follows from (.) and (.) that there exist

constants θ ∈ (, ) and T > |t| + τ + |c| + |γ | + n satisfying

θ =


|p|
(
 +


(n – )!

)∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣ds (.)

and


(n – )!

∫ +∞

T
sn–H(s)ds≤min

{
pM – L +

p
p

N ,
p
p

L –M – pN
}
. (.)

Define two mappings UL and SL : A(N ,M) → CB([t, +∞),R) by

(ULx)(t) =

⎧⎪⎪⎨
⎪⎪⎩

L
p(t+τ ) –

x(t+τ )
p(t+τ ) +


p(t+τ )(n–)!

∫ +∞
t+τ

(s – t – τ )n–

× (
∑m

i= qi(s)x(αi(s)) + (–)nr(s))ds, t ≥ T ,

(ULx)(T), γ ≤ t < T ;

(SLx)(t) =

⎧⎨
⎩


p(t+τ )(n–)!

∫ +∞
t+τ

(s – t – τ )n–f (s,x(β(s)), . . . ,x(βl(s)))ds, t ≥ T ,

(SLx)(T), γ ≤ t < T .

(.)

We show that (.) holds. In fact, for every x, y ∈ A(N ,M) and t ≥ T , by (.) and (.)-
(.), we get

(ULx)(t) + (SLy)(t)

=
L

p(t + τ )
–
x(t – τ )
p(t + τ )

+


p(t + τ )(n – )!

×
∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s, y

(
β(s)

)
, . . . , y

(
βl(s)

))
ds

≤ L
p

–
N
p

+


p(n – )!

∫ +∞

T
sn–H(s)ds
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≤ L
p

–
N
p

+

p

min

{
pM – L +

p
p

N ,
p
p

L –M – pN
}
=M,

(ULx)(t) + (SLy)(t)

≥ L
p

–
M
p

–


p(n – )!

∫ +∞

T
sn–H(s)ds

≥ L
p

–
M
p

–

p

min

{
pM – L +

p
p

N ,
p
p

L –M – pN
}

≥N

and

∣∣(ULx)(t) – (ULy)(t)
∣∣

=

∣∣∣∣∣ L
p(t + τ )

–
x(t – τ )
p(t + τ )

+


p(t + τ )(n – )!

×
∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

–
L

p(t + τ )
+
y(t – τ )
p(t + τ )

–


p(t + τ )(n – )!

×
∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)y
(
αi(s)

)
+ (–)nr(s)

)
ds

∣∣∣∣∣
≤ 

p
‖x – y‖ + ‖x – y‖

p(n – )!

∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣ds
= θ‖x – y‖,

which means that we have (.).
Next we show that SL(A(N ,M)) is equicontinuous in [γ , +∞). For any given ε > , (.)

guarantees that (.) holds for some sufficiently large T∗ > T . Set

f =max
{∣∣f (t,u, . . . ,ul)∣∣ : t ∈ [

T ,T∗ + τ
]
,uj ∈ [N ,M], j ∈ {, , . . . , l}}. (.)

It follows from the uniform continuity of p in [N ,M] that there exists δ >  such that

∣∣p(t + τ ) – p(t + τ )
∣∣ < ε

(M +N)
(.)

whenever t, t ∈ [T ,T∗] with |t – t| < δ. Put

δ =min

{
δ,

ε

n(M +N)
,

pε
( + f )(T∗ – T)n–

}
. (.)

We have to consider the following possible cases:
(i) t > t ≥ T∗ with |t – t| < δ. It follows from (.), (.), (.), (.), and (.) that

∣∣(SLx)(t) – (SLx)(t)
∣∣

=
∣∣∣∣ 
p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds
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–


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))∣∣∣∣
≤ 

p(n – )!

∫ +∞

T∗
sn–h(s)ds

< ε, ∀x ∈ A(N ,M). (.)

(ii) T ≤ t < t ≤ T∗ with |t – t| < δ. For each s ∈ (t + τ , +∞), it follows from the mean
value theorem that there exists ξ ∈ (s – t – τ , s – t – τ ) satisfying

(s – t – τ )n– – (s – t – τ )n– = (n – )ξn–(t – t),

which together with (.), (.), (.), and (.) yields for each n≥ 


p(t + τ )(n – )!

∫ +∞

t+τ

∣∣(s – t – τ )n– – (s – t – τ )n–
∣∣∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds
≤ |t – t|

p(n – )!

∫ +∞

t+τ

ξn–h(s)ds

≤ (n – )|t – t|
p(n – )!

∫ +∞

T
sn–h(s)ds

≤ n – 
p

· ε

n(M +N)
min

{
pM – L +

p
p

N ,
p
p

L –M – pN
}

<
ε


, ∀x ∈ A(N ,M),

which implies that for each n ∈N


p(t + τ )(n – )!

∫ +∞

t+τ

∣∣(s – t – τ )n– – (s – t – τ )n–
∣∣∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds
<

ε


, ∀x ∈ A(N ,M). (.)

By means of (.), (.), (.)-(.), and (.), we get
∣∣(SLx)(t) – (SLx)(t)

∣∣
=


(n – )!

∣∣∣∣ 
p(t + τ )

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

–


p(t + τ )

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
≤ 

(n – )!

(


p(t + τ )

∣∣∣∣
∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

–
∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds

∣∣∣∣
+

∣∣∣∣ 
p(t + τ )

–


p(t + τ )

∣∣∣∣
∫ +∞

t+τ

(s – t – τ )n–
∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds)

≤ 
p(t + τ )(n – )!

(∫ +∞

t+τ

∣∣(s – t – τ )n– – (s – t – τ )n–
∣∣

× ∣∣f (s,x(β(s)
)
, . . . ,x

(
βl(s)

))∣∣ds
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+
∫ t+τ

t+τ

∣∣(s – t – τ )n–
∣∣∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds
+

|p(t + τ ) – p(t + τ )|
p(t + τ )

∫ +∞

t+τ

(s – t – τ )n–
∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣ds)

≤ ε


+
(T∗ – T)n–f
p(n – )!

|t – t| + |p(t + τ ) – p(t + τ )|
p(n – )!

∫ +∞

T
sn–h(s)ds

≤ ε


+
(T∗ – T)n–f
p(n – )!

· pε
(T∗ – T)n–( + f )

+
ε

(M +N)p(n – )!
min

{
pM – L +

p
p

N ,
p
p

L –M – pN
}

<
ε


+

ε


+

ε



< ε, ∀x ∈ A(N ,M). (.)

(iii) γ ≤ t < t ≤ T with |t – t| < δ. Obviously, (.) guarantees that

∣∣(SLx)(t) – (SLx)(t)
∣∣ =  < ε, ∀x ∈ A(N ,M). (.)

Using (.), (.), and (.), we conclude that SL(A(N ,M)) is equicontinuous in
[γ , +∞). As in the proof of Theorem ., we prove similarly that SL is continuous in
A(N ,M) and SL(A(N ,M)) is uniformly bounded. It follows that SL(A(N ,M)) is rela-
tively compact. Consequently, Lemma . shows that there is x ∈ A(N ,M) such that
ULx + SLx = x. That is,

x(t) =
L

p(t + τ )
–
x(t + τ )
p(t + τ )

+


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds, ∀t ≥ T + τ ,

which yields

x(t + τ ) + p(t + τ )x(t)

= L +


(n – )!

∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))
ds, ∀t ≥ T + τ ,

which implies that

dn

dtn
[
x(t) + p(t)x(t – τ )

]
= (–)n

( m∑
i=

qi(t)x
(
αi(t)

)
+ (–)nr(t)

)

+ (–)nf
(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
, ∀t ≥ T ,

that is, x(t) is a bounded nonoscillatory solution of (.) in A(N ,M).
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Finally we show (.) has uncountably many bounded nonoscillatory solutions. Let
L,L ∈ ( ppM + pN ,pM + p

p
N) with L �= L. As in the above proof, we infer that for

each k ∈ {, }, there exist constants θk ∈ (, ), Tk > |t| + τ + |c| + |γ | + n, and mappings
ULk ,SLk : A(N ,M) → CB([γ , +∞),R) satisfying (.)-(.), where θ , T , L, UL, SL are re-
placed by θk , Tk , Lk , ULk , SLk , respectively, and (.) possesses a bounded nonoscillatory
solution zk ∈ A(N ,M). In terms of (.), we select T >max{T,T} satisfying


(n – )!

∫ +∞

T
sn–h(s)ds <

p|L – L|
p

. (.)

It follows from (.), (.), and (.) that for t ≥ T + τ

∣∣z(t) – z(t)
∣∣

=

∣∣∣∣∣ L – L
p(t + τ )

–
z(t + τ ) – z(t + τ )

p(t + τ )

+


p(t + τ )(n – )!

(∫ +∞

t+τ

(s – t – τ )n–
m∑
i=

qi(s)
(
z

(
α(s)

)
– z

(
α(s)

))
ds

+
∫ +∞

t+τ

(s – t – τ )n–
(
f
(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

))

– f
(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

)))
ds

)∣∣∣∣∣
≥ |L – L|

p
–

‖z – z‖
p

(
 +


(n – )!

)∫ +∞

T
sn–

m∑
i=

∣∣qi(s)∣∣ds
–


p(n – )!

∫ +∞

T
sn–h(s)ds

≥ |L – L|
p

– θ‖z – z‖ – 
p

· p|L – L|
p

=
|L – L|

p
– θ‖z – z‖,

which yields

‖z – z‖ ≥ |L – L|
p( + θ )

> ,

that is, x �= x. This completes the proof. �

Theorem . Assume that there exist h ∈ C([t, +∞),R+) and constants M,N , p, p, and
c satisfying (.), (.), and

M >N > , pN
(
 +


p

)
> pM

(
 +


p

)
,

p ≤ p(t) ≤ p < –, ∀t ≥ c≥ t.
(.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).
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Proof Let L ∈ (pM( + 
p
),pN( + 

p
)). It follows from (.) and (.) that there exist

constants θ ∈ (, ) and T > τ + |t| + |c| + |γ | satisfying (.) and


(n – )!

∫ +∞

T
sn–H(s)ds≤min

{
–M(p + ) +

pL
p

,pN
(
 +


p

)
– L

}
. (.)

Let the mappings UL and SL : A(N ,M) → CB([t, +∞),R) be defined by (.).
Note that (.), (.), (.), and (.) imply that for each x, y ∈ A(N ,M), and t ≥ T

(ULx)(t) + (SLy)(t)

=
L

p(t + τ )
–
x(t – τ )
p(t + τ )

+


p(t + τ )(n – )!

×
∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s, y

(
β(s)

)
, . . . , y

(
βl(s)

))
ds

≤ L
p

–
M
p

–


p(n – )!

∫ +∞

T
sn–H(s)ds

≤ L
p

–
M
p

–

p

min

{
–M(p + ) +

pL
p

,pN
(
 +


p

)
– L

}

≤M

and

(ULx)(t) + (SLy)(t)

=
L

p(t + τ )
–
x(t – τ )
p(t + τ )

+


p(t + τ )(n – )!

×
∫ +∞

t+τ

(s – t – τ )n–
( m∑

i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

)
ds

+


p(t + τ )(n – )!

∫ +∞

t+τ

(s – t – τ )n–f
(
s, y

(
β(s)

)
, . . . , y

(
βl(s)

))
ds

≥ L
p

–
N
p

+


p(n – )!

∫ +∞

T
sn–H(s)ds

≥ L
p

–
N
p

+

p

min

{
–M(p + ) +

pL
p

,pN
(
 +


p

)
– L

}

≥N ,

which yieldsULx+ SLy ∈ A(N ,M) for any x, y ∈ A(N ,M). The rest of the proof is similar to
that of Theorem . and is omitted. This completes the proof. �

Theorem . Let n = . Assume that there exist h ∈ C([t, +∞),R+) and constants M, N ,
and c satisfying (.), (.), and

 <N <M, p(t) ≡ , ∀t ≥ c ≥ t. (.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).
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Proof Let L ∈ (N ,M). It follows from (.) and (.) that there exists a constant T > τ +
|t| + |c| + |γ | satisfying

∫ +∞

T
H(s)ds≤min{M – L,L –N}. (.)

Define a mapping SL : A(N ,M)→ CB([γ , +∞),R) by

(SLx)(t) =

⎧⎪⎪⎨
⎪⎪⎩
L +

∑∞
a=

∫ t+aτ
t+(a–)τ (

∑m
i= qi(s)x(αi(s)) – r(s)

+ f (s,x(β(s)), . . . ,x(βl(s)))ds), t ≥ T ,

(SLx)(T), γ ≤ t < T .

(.)

For every x ∈ A(N ,M) and t ≥ T , by (.), (.), and (.), we deduce that

(SLx)(t) = L +
∞∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
t,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

≤ L +
∫ +∞

t
H(s)ds

≤ L +min{M – L,L –N}
≤M,

(SLx)(t)≥ L –
∫ +∞

t
H(s)ds

≥ L –min{M – L,L –N}
≥N ,

which yield S(A(N ,M)) ⊆ A(N ,M) and hence S(A(N ,M)) is uniformly bounded in
[γ , +∞).
Let {xk}k∈N be a sequence in A(N ,M) and x ∈ A(N ,M) satisfying (.) and let

Gk(s) =
m∑
i=

∣∣qi(s)∣∣∣∣xk(αi(s)
)
– x

(
αi(s)

)∣∣ + ∣∣f (s,xk(β(s)
)
, . . . ,xk

(
βl(s)

))
– f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

))∣∣, ∀(s,k) ∈ [T , +∞)×N. (.)

Using (.), (.), and the continuity of f , qi, αi, and βj for i ∈ {, , . . . ,m} and j ∈
{, , . . . , l}, we obtain limt→+∞ Gk(s) =  for all s ∈ [T , +∞). In light of (.) and the
Lebesgue dominated convergence theorem, we conclude that for any t ≥ T

∣∣(SLxk)(t) – (SLx)(t)
∣∣

≤
∞∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

∣∣qi(s)∣∣∣∣xk(αi(s)
)
– x

(
αi(s)

)∣∣

+
∣∣f (s,xk(β(t)

)
, . . . ,xk

(
βl(t)

))
– f

(
s,x

(
β(t)

)
, . . . ,x

(
βl(s)

))∣∣)ds

≤
∫ +∞

T
Gk(s)ds→  as k → ∞,
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which means that

lim
k→∞

‖SLxk – SLx‖ = lim
k→∞

sup
t≥T

∣∣(SLxk)(t) – (SLx)(t)
∣∣ = ,

which implies that SL is continuous in A(N ,M).
Let ε be an arbitrary positive number. It follows from (.) that there exists T∗ > T large

enough such that

∫ +∞

T∗
H(s)ds <

ε


. (.)

Set

δ =
ε

KB
and B =  +max

{
H(s) : s ∈ [

T ,T∗ + Kτ
]}
, (.)

where K ∈N satisfies

either T + (K – )τ < T∗ and T + (K – )τ ≥ T∗ or

T + (K – )τ < T∗ and T + Kτ ≥ T∗.
(.)

We consider the following possible cases:
(i) t > t ≥ T∗ with |t – t| < δ. From (.), (.), and (.), we conclude immediately

that

∣∣(SLx)(t) – (SLx)(t)
∣∣

≤
∞∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣ + ∣∣f (t,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

+
∞∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣ + ∣∣f (t,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

≤ 
∫ +∞

T∗
H(s)ds

<
ε


, ∀x ∈ A(N ,M). (.)

(ii) T ≤ t < t ≤ T∗ with |t – t| < δ. In terms of (.) and (.)-(.), we deduce that

∣∣(SLx)(t) – (SLx)(t)
∣∣

≤
∣∣∣∣∣

K∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
t,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

+
K∑
a=

∫ t+(a–)τ

t+aτ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
t,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
K∑
a=

∫ t+(a–)τ

t+aτ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
t,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds
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–
K∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
t,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
+

∞∑
a=K+

∫ t+aτ

t+(a–)τ

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣ + ∣∣f (t,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

+
∞∑

a=K+

∫ t+aτ

t+(a–)τ

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣ + ∣∣f (t,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

≤
K∑
a=

∫ t+aτ

t+aτ
H(s)ds +

K∑
a=

∫ t+(a–)τ

t+(a–)τ
H(s)ds + 

∫ +∞

T∗
H(s)ds

≤ KB|t – t| + ε



< ε, ∀x ∈ A(N ,M). (.)

(iii) γ ≤ t < t ≤ T with |t – t| < δ. Equation (.) means that

∣∣(SLx)(t) – (SLx)(t)
∣∣ =  < ε, ∀x ∈ A(N ,M). (.)

It follows from (.)-(.) that SL(A(N ,M)) is equicontinuous in [γ , +∞). Thus Lem-
ma . means that SL has a fixed point x ∈ A(N ,M), that is, for any t ≥ T + τ

x(t) = L +
∞∑
a=

∫ t+aτ

t+(a–)τ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

and

x(t – τ ) = L +
∞∑
a=

∫ t+(a–)τ

t+(a–)τ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds,

which give for any t ≥ T + τ

x(t) + x(t – τ ) = L +
∫ +∞

t

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds,

which implies that

d
dt

[
x(t) + x(t – τ )

]
+

m∑
i=

qi(t)x
(
αi(t)

)
+ f

(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
= r(t), t ≥ T + τ ,

that is, x ∈ A(N ,M) is a bounded nonoscillatory solution of (.). The rest of the proof is
similar to that of Theorem . and is omitted. This completes the proof. �

Theorem . Let n ∈ N \ {}. Assume that there exist h ∈ C([t, +∞),R+) and constants
M, N , and c satisfying (.), (.), and (.). Then (.) has uncountably many bounded
nonoscillatory solutions in A(N ,M).
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Proof Let L ∈ (N ,M). It follows from (.) and (.) that there exists a constant T > τ +
|t| + |c| + |γ | satisfying


(n – )!

∫ +∞

T
sn–H(s)ds≤min{M – L,L –N}. (.)

Define a mapping SL : A(N ,M)→ CB([γ , +∞),R) by

(SLx)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L + 
(n–)!

∑∞
a=

∫ t+aτ
t+(a–)τ du

∫ +∞
u (s – u)n–

× (
∑m

i= qi(s)x(αi(s)) + (–)nr(s)

+ f (s,x(β(s)), . . . ,x(βl(s))))ds, t ≥ T ,

(SLx)(T), γ ≤ t < T ,

(.)

for each x ∈ A(N ,M).
Let x ∈ A(N ,M) and t ≥ T . By (.) and (.), we get

∣∣(SLx)(t) – L
∣∣ = 

(n – )!

∣∣∣∣∣
∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
≤ 

(n – )!

∫ +∞

t
du

∫ +∞

u
(s – u)n–H(s)ds

=


(n – )!

∫ +∞

t
ds

∫ s

t
(s – u)n–H(s)du

=


(n – )!

∫ +∞

t
(s – t)n–H(s)ds

≤ min{M – L,L –N},

which gives that S(A(N ,M))⊆ A(N ,M) and S(A(N ,M)) is uniformly bounded in [γ , +∞).
Let {xk}k∈N ⊂ A(N ,M) satisfy (.) for some x ∈ A(N ,M) and {Gk}k∈N be defined by

(.). Using (.), (.), (.), the continuity of f and βj for j ∈ {, , . . . , l}, and the
Lebesgue dominated convergence theorem, we conclude that for any t ≥ T

∣∣(SLxk)(t) – (SLx)(t)
∣∣

≤ 
(n – )!

∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

∣∣qi(s)∣∣∣∣xk(αi(s)
)
– x

(
αi(s)

)∣∣

+
∣∣f (s,xk(β(t)

)
, . . . ,xk

(
βl(t)

))
– f

(
s,x

(
β(t)

)
, . . . ,x

(
βl(s)

))∣∣)ds

≤ 
(n – )!

∫ +∞

t
du

∫ +∞

u
(s – u)n–Gk(s)ds

≤ 
(n – )!

∫ +∞

T
(s – T)n–Gk(s)ds

→  as k → ∞,
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which yields

lim
k→∞

‖SLxk – SLx‖ = lim
k→∞

sup
t≥T

∣∣(SLxk)(t) – (SLx)(t)
∣∣ = ,

that is, SL is continuous in A(N ,M).
Next we show that SL(A(N ,M)) is equicontinuous in [γ , +∞). Let ε > . Equation (.)

ensures that there exists T∗ > T large enough satisfying


(n – )!

∫ +∞

T∗
sn–H(s)ds <

ε


. (.)

Let B and K be defined by (.) and (.), respectively. Put

δ =
ε

[nK min{M – L,L –N} + B(T∗ + Kτ )n–]
. (.)

Now we have to consider the following possible cases:
(i) t > t ≥ T∗ with |t – t| < δ. In terms of (.)-(.), we know that

∣∣(SLx)(t) – (SLx)(t)
∣∣

=


(n – )!

∣∣∣∣∣
∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
≤ 

(n – )!

(∫ +∞

t
du

∫ +∞

u
(s – u)n–H(s)ds +

∫ +∞

t
du

∫ +∞

u
(s – u)n–H(s)ds

)

≤ 
(n – )!

∫ +∞

T∗
sn–H(s)ds

< ε, ∀x ∈ A(N ,M). (.)

(ii) T ≤ t < t ≤ T∗ with |t – t| < δ. By means of (.), (.), (.)-(.), and the
mean value theorem, we conclude that

∣∣(SLx)(t) – (SLx)(t)
∣∣

=


(n – )!

∣∣∣∣∣
K∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
K∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)
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+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

+
K∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
K∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

+
∞∑

a=K+

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
∞∑

a=K+

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
≤ 

(n – )!

[ K∑
a=

(∫ t+aτ

t+aτ
du

∫ +∞

u
(s – u)n–H(s)ds

+
∫ t+(a–)τ

t+(a–)τ
du

∫ +∞

u
(s – u)n–H(s)ds

)

+
∫ +∞

t+(K+)τ
du

∫ +∞

u
(s – u)n–H(s)ds

+
∫ +∞

t+(K+)τ
du

∫ +∞

u
(s – u)n–H(s)ds

]

≤ 
(n – )!

[ K∑
a=

(∫ +∞

t+aτ

[
(s – t – aτ )n– – (s – t – aτ )n–

]
H(s)ds

+
∫ t+aτ

t+aτ
(s – t – aτ )n–H(s)ds

+
∫ +∞

t+(a–)τ

[(
s – t – (a – )τ

)n– – (
s – t – (a – )τ

)n–]H(s)ds

+
∫ t+(a–)τ

t+(a–)τ

(
s – t – (a – )τ

)n–H(s)ds
)

+
∫ +∞

t+(K+)τ

(
s – t – (K + )τ

)n–H(s)ds

+
∫ +∞

t+(K+)τ

(
s – t – (K + )τ

)n–H(s)ds

]
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≤ 
(n – )!

(
K (n – )|t – t|

∫ +∞

T∗
sn–H(s)ds

+ B
(
T∗ + Kτ

)n–|t – t| +
∫ +∞

T∗
sn–H(s)ds

)

≤ 
[
K (n – )min{M – L,L –N} + B

(
T∗ + Kτ

)n–]|t – t| + ε



< ε, ∀x ∈ A(N ,M). (.)

(iii) γ ≤ t < t ≤ T with |t – t| < δ. It is easy to see that

∣∣(SLx)(t) – (SLx)(t)
∣∣ =  < ε. (.)

It follows from (.)-(.) that SL(A(N ,M)) is equicontinuous in [γ , +∞). Consequently
SL(A(N ,M)) is relatively compact. Thus Lemma . ensures that SL possesses a fixed point
x ∈ A(N ,M), that is,

x(t) = L +


(n – )!

∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds, t ≥ T + τ

and

x(t – τ ) = L +


(n – )!

∞∑
a=

∫ t+(a–)τ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds, t ≥ T ,

which imply that

x(t) + x(t – τ )

= L +


(n – )!

∫ +∞

t
du

∫ +∞

u
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

= L +


(n – )!

∫ +∞

t
ds

∫ s

t
(s – u)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
du

= L +


(n – )!

∫ +∞

t
(s – t)n–

( m∑
i=

qi(s)x
(
αi(s)

)

+ (–)nr(s) + f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds, t ≥ T + τ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/302


Liu et al. Journal of Inequalities and Applications 2014, 2014:302 Page 24 of 34
http://www.journalofinequalitiesandapplications.com/content/2014/1/302

which yields

dn

dtn
[
x(t) + x(t – τ )

]
+ (–)n+

m∑
i=

qi(t)x
(
αi(t)

)
+ (–)n+f

(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
= r(t), t ≥ T + τ ,

which together with (.) means that x is a bounded nonoscillatory solution of (.) in
A(N ,M).
Let L,L ∈ (N ,M) with L �= L. For each k ∈ {, }, there exist a constant Tk > |t| + τ +

|c| + |γ | + n and a mapping SLk : A(N ,M) → CB([γ , +∞),R) satisfying (.) and (.),
where T , L, and SL are replaced by Tk , Lk , and SLk , respectively, and (.) possesses a
bounded nonoscillatory solution zk ∈ A(N ,M). By (.), we choose some T >max{T,T}
with


(n – )!

∫ +∞

T
sn–

(
M

m∑
i=

∣∣qi(s)∣∣ + h(s)

)
ds <

|L – L|


. (.)

Using (.), (.), and (.), we infer that for t ≥ T + τ

∣∣z(t) – z(t)
∣∣

≥ |L – L| – 
(n – )!

∞∑
a=

∫ t+aτ

t+(a–)τ
du

∫ +∞

u
(s – u)n–

×
( m∑

i=

∣∣qi(s)∣∣∣∣z(αi(s)
)
– z

(
αi(s)

)∣∣

+
∣∣f (s, z(β(s)

)
, . . . , z

(
βl(s)

))
– f

(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

))∣∣)ds

≥ |L – L| – 
(n – )!

∫ +∞

t
du

∫ +∞

u
(s – u)n–

(
M

m∑
i=

∣∣qi(s)∣∣ + h(s)

)
ds

= |L – L| – 
(n – )!

∫ +∞

t
ds

∫ s

t
(s – u)n–

(
M

m∑
i=

∣∣qi(s)∣∣ + h(s)

)
du

= |L – L| – 
(n – )!

∫ +∞

t
(s – t)n–

(
M

m∑
i=

∣∣qi(s)∣∣ + h(s)

)
ds

> |L – L| – |L – L|


=
|L – L|


> ,

that is, z �= z. Consequently (.) has uncountably bounded nonoscillatory solutions in
A(N ,M). This completes the proof. �

Theorem . Assume that there exist h ∈ C([t, +∞),R+) and constants M, N , and c sat-
isfying (.),

∫ +∞

t
snmax

{ m∑
i=

∣∣qi(s)∣∣, ∣∣r(s)∣∣,h(s)
}
ds < +∞ (.)
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and

 <N <M, p(t) ≡ –, ∀t ≥ c ≥ t. (.)

Then (.) has uncountably many bounded nonoscillatory solutions in A(N ,M).

Proof Let L ∈ (N ,M). It follows from (.) that there exists a constant T > τ + |t| + |c| +
|γ | + |t|

τ
+ n satisfying


τ (n – )!

∫ +∞

T
snH(s)ds≤min{M – L,L –N}. (.)

Let t ≥ t and [ s–t–Tτ
τ

] denote the largest integer not exceeding s–t–Tτ
τ

. Note that

 +
[
s – t – Tτ

τ

]
≤  +

s – t – Tτ

τ
≤ s

τ
, ∀s≥ t + Tτ ,

and (.) implies that

∞∑
a=T

∫ +∞

t+aτ
(s – t – aτ )n–H(s)ds≤

∞∑
a=T

∫ +∞

t+aτ
sn–H(s)ds

=
∫ +∞

t+Tτ

(
 +

[
s – t – Tτ

τ

])
sn–H(s)ds

≤ 
τ

∫ +∞

t+Tτ

snH(s)ds < +∞,

which yields

∞∑
a=

∫ +∞

t+aτ
(s – t – aτ )n–H(s)ds < +∞. (.)

Define a mapping SL : A(N ,M)→ CB([t, +∞),R) by

(SLx)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L + 
(n–)!

∑∞
a=

∫ +∞
t+aτ (s – t – aτ )n–

× (
∑m

i= qi(s)x(αi(s)) + (–)nr(s)

+ f (s,x(β(s)), . . . ,x(βl(s))))ds, t ≥ T ,

(SLx)(T), γ ≤ t < T .

(.)

Notice that (.) and (.) mean that the mapping SL is well defined. Let x ∈ A(N ,M). In
view of (.), (.), and (.), we conclude that for any t ≥ T

∣∣(SLx)(t) – L
∣∣ = 

(n – )!

∣∣∣∣∣
∞∑
a=

∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
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≤ 
(n – )!

∞∑
a=

∫ +∞

t+aτ
sn–H(s)ds

≤ 
τ (n – )!

∫ +∞

T
snH(s)ds

≤ min{M – L,L –N},

which shows that SL(A(N ,M)) ⊆ A(N ,M) and SL(A(N ,M)) is uniformly bounded in
[γ , +∞).
Let {xk}k∈N be a sequence in A(N ,M) and x ∈ A(N ,M) satisfying (.) and let Gk be

defined by (.). By means of (.), (.), the continuity of f , qi, αi and βj for i ∈
{, , . . . ,m} and j ∈ {, , . . . , l}, and the Lebesgue dominated convergence theorem, we de-
duce that for any t ≥ T

∣∣(SLxk)(t) – (SLx)(t)
∣∣

≤ 
(n – )!

∞∑
a=

∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

∣∣qi(s)∣∣∣∣xk(αi(s)
)
– x

(
αi(s)

)∣∣

+
∣∣f (s,xk(β(t)

)
, . . . ,xk

(
βl(t)

))
– f

(
s,x

(
β(t)

)
, . . . ,x

(
βl(s)

))∣∣)ds

=


(n – )!

∞∑
a=

∫ +∞

t+aτ
sn–Gk(s)ds

≤ 
τ (n – )!

∫ +∞

T
snGk(s)ds

→  as k → ∞,

which gives

lim
k→∞

‖SLxk – SLx‖ = lim
k→∞

sup
t≥T

∣∣(SLxk)(t) – (SLx)(t)
∣∣ = ,

that is, SL is continuous in A(N ,M).
Next we prove that SL(A(N ,M)) is equicontinuous in [γ , +∞). Given a positive num-

ber ε. It follows from (.) that there exists T∗ > T large enough satisfying


τ (n – )!

∫ +∞

T∗
snH(s)ds <

ε


. (.)

Let B and K be defined by (.) and (.), respectively. Put

δ =min

{
,

ε

KB
,

ε

Kτ (n – )min{M – L,L –N}
}
. (.)

Now we have to consider the following possible cases:
(i) t > t ≥ T∗ with |t – t| < δ. In view of (.) and (.)-(.), we get

∣∣(SLx)(t) – (SLx)(t)
∣∣

≤ 
(n – )!

∞∑
a=

[∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣
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+
∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

+
∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

]

≤ 
(n – )!

∞∑
a=

(∫ +∞

t+aτ
sn–H(s)ds +

∫ +∞

t+aτ
sn–H(s)ds

)

≤ 
τ (n – )!

(∫ +∞

t+τ

snH(s)ds +
∫ +∞

t+τ

snH(s)ds
)

≤ 
τ (n – )!

∫ +∞

T∗
H(s)ds

<
ε


, ∀x ∈ A(N ,M). (.)

(ii) T ≤ t < t ≤ T∗ with |t – t| < δ. Let n≥ . In light of (.), (.), (.)-(.), and
the mean value theorem, we conclude that

∣∣(SLx)(t) – (SLx)(t)
∣∣

≤ 
(n – )!

K∑
a=

∣∣∣∣∣
∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

+
∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
+


(n – )!

∞∑
a=K+

[∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣

+
∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds +
∫ +∞

t+aτ
(s – t – aτ )n–
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×
( m∑

i=

∣∣qi(s)∣∣∣∣x(αi(s)
)∣∣ + ∣∣r(s)∣∣ + ∣∣f (s,x(β(s)

)
, . . . ,x

(
βl(s)

))∣∣)ds

]

≤ 
(n – )!

K∑
a=

[∫ +∞

t+aτ

[
(s – t – aτ )n– – (s – t – aτ )n–

]
H(s)ds

+
∫ t+aτ

t+aτ
(t + aτ – s)n–H(s)ds

]

+


(n – )!

∞∑
a=K+

(∫ +∞

t+aτ
sn–H(s)ds +

∫ +∞

t+aτ
sn–H(s)ds

)

≤ 
(n – )!

K∑
a=

(
(n – )|t – t|

∫ +∞

t+aτ
sn–H(s)ds + B|t – t|n

)

+


τ (n – )!

(∫ +∞

t+(K+)τ
snH(s)ds +

∫ +∞

t+(K+)τ
snH(s)ds

)

≤ Kδ

(n – )!

(
(n – )

∫ +∞

T
sn–H(s)ds + B

)

+


τ (n – )!

∫ +∞

T∗
snH(s)ds

<
ε


+

ε


+

ε



< ε. (.)

Let n = . By means of (.), (.), and (.)-(.), we get

∣∣(SLx)(t) – (SLx)(t)
∣∣

=

∣∣∣∣∣
∞∑
a=

∫ +∞

t+aτ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

–
∞∑
a=

∫ +∞

t+aτ

( m∑
i=

qi(s)x
(
αi(s)

)
– r(s) + f

(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds

∣∣∣∣∣
≤

K∑
a=

∫ t+aτ

t+aτ
H(s)ds +

∞∑
a=K+

(∫ +∞

t+aτ
H(s)ds +

∫ +∞

t+aτ
H(s)ds

)

≤ KB|t – t| + 
τ

∫ +∞

T∗
sH(s)ds

<
ε


+

ε



< ε. (.)

(iii) γ ≤ t < t ≤ T with |t – t| < δ. It is easy to see that

∣∣(SLx)(t) – (SLx)(t)
∣∣ =  < ε. (.)

It is easy to see that (.)-(.) ensure that SL(A(N ,M)) is equicontinuous in [γ , +∞).
Consequently SL(A(N ,M)) is relatively compact. Thus Lemma . implies that SL pos-
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sesses a fixed point x ∈ A(N ,M), that is,

x(t) = L +


(n – )!

∞∑
a=

∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds, t ≥ T + τ

and

x(t – τ ) = L +


(n – )!

∞∑
a=

∫ +∞

t+(a–)τ

(
s – t – (a – )τ

)n–( m∑
i=

qi(s)x
(
αi(s)

)
+ (–)nr(s)

+ f
(
s,x

(
β(s)

)
, . . . ,x

(
βl(s)

)))
ds, t ≥ T + τ ,

which imply that

dn

dtn
[
x(t) – x(t – τ )

]
+ (–)n+

m∑
i=

qi(t)x
(
αi(t)

)

+ (–)n+f
(
t,x

(
β(t)

)
, . . . ,x

(
βl(t)

))
= r(t), t ≥ T + τ ,

which together with (.) means that x is a bounded nonoscillatory solution of (.) in
A(N ,M).
Let L and L be two different numbers in (N ,M). Similar to the above proof, we in-

fer that there exist constants T, T and mappings SL ,SL : A(N ,M) → CB([t, +∞),R)
defined by (.), where L, T , and SL are replaced by Lk , Tk , and SLk , respectively, and
Tk > τ + |t| + |c| + |γ | + |t|

τ
+ n for k ∈ {, }, such that SL and SL have, respectively,

fixed points z and z ∈ A(N ,M), which are bounded nonoscillatory solutions of (.) in
A(N ,M), that is,

zk(t) = Lk +


(n – )!

∞∑
a=

∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

qi(s)zk
(
αi(s)

)
+ (–)nr(s)

+ f
(
s, zk

(
β(s)

)
, . . . , zk

(
βl(s)

)))
ds, t ≥ Tk . (.)

Note that (.) ensures that there exists T >max{T,T} satisfying


τ (n – )!

∫ +∞

T
snmax

{ m∑
i=

∣∣qi(s)∣∣,h(s)
}
ds <min

{
,

|L – L|


}
. (.)

Combining (.), (.), and (.), we deduce that for any t ≥ T

∣∣z(t) – z(t)
∣∣

≥ |L – L| – 
(n – )!

∞∑
a=

[∫ +∞

t+aτ
(s – t – aτ )n–

( m∑
i=

∣∣qi(s)∣∣∣∣z(αi(s)
)
– z

(
αi(s)

)∣∣
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+
∣∣f (s, z(β(s)

)
, . . . , z

(
βl(s)

))
– f

(
s, z

(
β(s)

)
, . . . , z

(
βl(s)

))∣∣)ds

]

≥ |L – L| – 
(n – )!

∞∑
a=

∫ +∞

t+aτ
sn–

( m∑
i=

∣∣qi(s)∣∣‖z – z‖ + h(s)

)
ds

≥ |L – L| – 
τ (n – )!

∫ +∞

t+τ

sn
( m∑

i=

∣∣qi(s)∣∣‖z – z‖ + h(s)

)
ds

≥ |L – L| – ‖z – z‖
τ (n – )!

∫ +∞

T
sn

m∑
i=

∣∣qi(s)∣∣ds – 
τ (n – )!

∫ +∞

T
snh(s)ds

> |L – L| – ‖z – z‖ – |L – L|


=
|L – L|


– ‖z – z‖,

which implies that

‖z – z‖ > |L – L|


> ,

that is, z �= z. Consequently, (.) has uncountably bounded nonoscillatory solutions in
A(N ,M). This completes the proof. �

Remark . Theorems .-. extend, improve, and unify the theorem in [], Theorems 
and  in [], Theorems - in [], Theorems - in [], and Theorems - in [].

3 Examples and applications
Now we construct six nontrivial examples to show the superiority and applications of the
results presented in the second section.

Example . Consider the higher-order neutral delay differential equation:

dn

dtn

[
x(t) +

 – t

 + t
x(t – τ )

]
+ (–)n+

[
ln( + t)
 + tn+

x
(
t

)
–

 – t

 + tn+
x(

√
t + )

]

+
(–)n+tx(t) + (–)n(t + )x(t)

 + tn+ + tx(t – )
=
 – t + t

 + tn+
, t ≥ , (.)

where τ >  is a constant. Let t = , c = ,m = , l = ,M = , N = , p = – 
 ,

p(t) =
 – t

 + t
, α(t) = t, α(t) =

√
t + ,

β(t) = t, β(t) = t, β(t) = t – , r(t) =
 – t + t

 + tn+
,

q(t) =
ln( + t)
 + tn+

, q(t) = –
 – t

 + tn+
, h(t) =

M(Mt + t + )
 + tn+ + tN ,

f (t,u, v,w) =
tu – (t + )v

 + tn+ + tw , ∀(t,u, v,w) ∈ [t, +∞)×R
.
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It is easy to verify that (.)-(.) are fulfilled. Thus Theorem . ensures that (.) has
uncountably many bounded nonoscillatory solutions in A(N ,M). But the theorem in [],
Theorems  and  in [], Theorems - in [], Theorems - in [], and Theorems -
in [] are invalid for (.).

Example . Consider the higher-order neutral delay differential equation:

dn

dtn

[
x(t) +

t

 + t
x(t – τ )

]
+ (–)n+

[
 – t

 + tn+
x
(
t

)
+
( – t) ln( + t)

 + tn+
x
(
t

)]

+ (–)n+
[
 – tx(t – )x(t – ) – t ln( + tx(t – ))

 + tn+ + t|( – t)x(t – t + )|
]

=
√
t – t

 + tn+
, t ≥ , (.)

where τ >  is a constant, t = c = ,m = , l = ,M = , N = , p = 
 ,

p(t) =
t

 + t
, α(t) = t, α(t) = t, β(t) = t – ,

β(t) = t – , β(t) = t – , β(t) = t – t + , r(t) =
√
t – t

 + tn+
,

q(t) =
 – t

 + tn+
, q(t) =

( – t) ln( + t)
 + tn+

, h(t) =
 + Mt + t ln( + tM)

 + tn+ +Nt| – t| ,

f (t,u, v,w, z) =
 – tuv – t ln( + tz)

 + tn+ + t|( – t)w| , ∀(t,u, v,w, z) ∈ [t, +∞)×R
.

Obviously, (.), (.), and (.) hold. It follows fromTheorem . that (.) has uncount-
ably many bounded nonoscillatory solutions in A(N ,M). However, the theorem in [],
Theorems  and  in [], Theorems - in [], Theorems - in [], and Theorems -
in [] are unapplicable for (.).

Example . Consider the higher-order neutral delay differential equation:

dn

dtn

[
x(t) +

(
 +


t

)t

x(t – τ )
]
+

( – t)x(t –
√
t)

( + t)(tn +
√
 + sin t)

+
( + t)x(t – ln( + t))

 + tx(t – ln( + t)) + tn+
=

 – (t + )n + tn√
 + cos(t – ) + tn+

, t ≥ , (.)

where τ >  is a constant. Let t = c =m = l = ,M = , N = , p = , p = ,

p(t) =
(
 +


t

)t

, α(t) = t –
√
t, β(t) = t – ln

(
 + t

)
,

r(t) =
 – (t + )n + tn√

 + cos(t – ) + tn+
, q(t) =

(–)n+( – t)
( + t)(tn +

√
 + sin t)

,

h(t) =
M( + t)

 +Nt + tn+
, f (t,u) =

(–)n+( + t)u

 + tu + tn+
, ∀(t,u) ∈ [t, +∞)×R.

It is easy to verify that (.), (.), and (.) are fulfilled. ConsequentlyTheorem.means
that (.) has uncountably many bounded nonoscillatory solutions in A(N ,M). But the
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theorem in [], Theorems  and  in [], Theorems - in [], Theorems - in [], and
Theorems - in [] are not applicable for (.).

Example . Consider the higher-order neutral delay differential equation:

dn

dtn

[
x(t) –

 + t

 + t
x(t – τ )

]
+
(–)n+( – t)

tn( + t  )
x
(
t – 

√
t +  + 

)

+
( – t)x(t – )

( + t)( + tn) + tx(t – )
=

 – t + t

tn+ + ln( +
√
 + t)

, t ≥ , (.)

where τ >  is a constant. Let t = , c = ,m = l = ,M = , N = , p = –
 , p = –

 ,

p(t) = –
 + t

 + t
, α(t) = t – 

√
t +  + ,

β(t) = t – , r(t) =
 – t + t

tn+ + ln( +
√
 + t)

,

q(t) =
(–)n+( – t)

tn( + t  )
, h(t) =

( + t)M

( + t)( + tn) + tN ,

f (t,u) =
(–)n+( – t)u

( + t)( + tn) + tu
, ∀(t,u) ∈ [t, +∞)×R.

Obviously, (.), (.), and (.) hold. Consequently Theorem . shows that (.) has
uncountably many bounded nonoscillatory solutions in A(N ,M). But the theorem in [],
Theorems  and  in [], Theorems - in [], Theorems - in [], and Theorems -
in [] are useless for (.).

Example . Consider the higher-order neutral delay differential equation:

dn

dtn
[
x(t) + x(t – τ )

]
+
(t – 

t ) sin
√
t – 

( + t)(tn + )
x
(
t – 

)

+
( + t sin( – t))x(t – )

( + t)tn+ + tx(t – ) + t
√
 + tx(t)

=
 – t

t( + tn)
, t ≥ , (.)

where τ >  is a constant. Let t = , c = ,m = , l = ,M = , N = ,

p(t) = , α(t) = t – , β(t) = t – , β(t) = t, r(t) =
 – t

t( + tn)
,

q(t) =
(–)n+(t – 

t ) sin
√
t – 

( + t)(tn + )
, h(t) =

( + t)M

( + t)tn+ + tN + t
√
 + tN

,

f (t,u, v) =
(–)n+( + t sin( – t))u

( + t)tn+ + tu + t
√
 + tv

, ∀(t,u, v) ∈ [t, +∞)×R
.

It is clear that (.), (.), and (.) hold. Consequently Theorems . and . ensure
that (.) has uncountably many bounded nonoscillatory solutions in A(N ,M). But the
theorem in [], Theorems  and  in [], Theorems - in [], Theorems - in [], and
Theorems - in [] are null for (.).
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Example . Consider the higher-order neutral delay differential equation:

dn

dtn
[
x(t) – x(t – τ )

]
+

 – t – t

( + t)( + tn+ 
 )
x
(
t – 

)

+
(t – ( + t)

√
t – )

√
 + tx(t – )

( + t)( + tn– + tnx(t – ))

=
 – t ln( +

√
 + t + t)

( + t)( + t + tn)
, t ≥ , (.)

where τ >  is a constant. Let t = , c = ,m = l = ,M = , N = ,

p(t) = –, α(t) = t – , β(t) = t – ,

r(t) =
 – t ln( +

√
 + t + t)

( + t)( + t + tn)
, q(t) =

(–)n+( – t – t)
( + t)( + tn+ 

 )
,

h(t) =
(t – ( + t)

√
t – )

√
 + tM

( + t)( + tn– + tnN)
,

f (t,u) =
(–)n+(t – ( + t)

√
t – )

√
 + tu

( + t)( + tn– + tnu)
, ∀(t,u) ∈ [t, +∞)×R.

It is clear that (.), (.), and (.) hold. Consequently Theorem . shows that (.) has
uncountably many bounded nonoscillatory solutions in A(N ,M). But the theorem in [],
Theorems  and  in [], Theorems - in [], Theorems - in [], and Theorems -
in [] are void for (.).
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