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Abstract
In this paper, we first give a description of some sets of sequences generated by
difference operators and defined by Orlicz functions. Then their algebraic duals such
as the α-, β-, γ - and null-duals are computed.
MSC: 46A45; 47N40; 65J99; 46A20

Keywords: difference sequences; Orlicz function; algebraic duals

1 Introduction
Let w denote the space of all scalar sequences, and any subspace of w is called a sequence
space. Let �∞, c and c be the linear spaces of bounded, convergent and null sequences
x = (xk) with complex terms, respectively, normed by ‖x‖∞ = supk |xk|, where k ∈ N =
{, , . . .}, the set of positive integers.
Lindenstrauss and Tzafriri [] used the Orlicz function and introduced the sequence

space �M as follows:

�M =

{
(xk) ∈ w :

∞∑
k=

M
( |xk|

ρ

)
< ∞ for some ρ > 

}
.

They proved that �M is a Banach space normed by

∥∥(xk)∥∥ = inf

{
ρ >  :

∞∑
k=

M
( |xk|

ρ

)
≤ 

}
.

Throughout this section X will denote one of the sequence spaces �∞, c and c.
The notion of difference sequence spaces was introduced by Kizmaz []. For some other

works on difference sequences, Orlicz functions and related literature, we refer to [–].
Let v = (vk) be any fixed sequence of non-zero complex numbers. Et and Esi [] generalized
the above sequence spaces to the following sequence spaces:

X
(
�m

v
)
=

{
x = (xk) :

(
�m

v xk
) ∈ X

}
for X = �∞, c and c.
In this paper, for an Orlicz function M, we can have the following spaces in the line of

the spaces studied by Mursaleen et al. []:

X
(
M,�m

v
)
=

{
x = (xk) :

(
�m

v xk
) ∈ X(M)

}
.
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In fact, we get the following spaces:

�∞
(
M,�m

v
)
=

{
x = (xk) : sup

k
M

( |�m
v xk|
ρ

)
< ∞ for some ρ > 

}
,

c
(
M,�m

v
)
=

{
x = (xk) : lim

k→∞
M

( |�m
v xk – L|

ρ

)
=  for some L and ρ > 

}
,

c
(
M,�m

v
)
=

{
x = (xk) : lim

k→∞
M

( |�m
v xk|
ρ

)
=  for some ρ > 

}
,

where �m
v xk =�m–

v xk –�m–
v xk+, �m

v xk =
∑m

i=(–)i
(m
i
)
vk+ixk+i for all k ∈N .

Bektaş et al. [] introduced the difference operator �
(m)
v and defined it as follows:

�(m)
v xk =

m∑
i=

(–)i
(
m
i

)
vk–ixk–i for all k ∈N .

Using this difference operator, we can construct the following sequence space:

X
(
M,�(m)

v
)
=

{
x = (xk) :

(
�(m)

v xk
) ∈ X(M)

}
.

The operator

�(m) : w→ w

is defined by

�()xk =
k∑
j=

xj (k = , , . . .), �(m) =�()o�(m–) (m ≥ )

and

�(m)o�(m) = �(m)o�(m) = id, the identity on w (see [, ]).

Now, for subsequent use, we slightly generalize the above definition as follows.
We define

�(m)
v : w→ w

by

�()
v xk =

k∑
j=

vjxj (k = , , . . .), �(m)
v =�(m)

v o�(m–)
v (m ≥ )

and

v–�(m)
v o�(m)

v = v–�(m)
v o�(m)

v = id, the identity on w and v– =
(
v–k

)
.
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Now, for x ∈ X(M,�m
v ), let us define

‖x‖� =
m∑
i=

|vixi| + inf

{
ρ >  : sup

k
M

( |�m
v xk|
ρ

)
≤ 

}
.

It can be shown that (X(M,�m
v ),‖ · ‖�) is a BK-space.

Again for x ∈ X(M,�(m)
v ), let us define

‖x‖�′ = inf

{
ρ >  : sup

k
M

( |�(m)
v xk|
ρ

)
≤ 

}
.

It can be shown that (X(M,�(m)
v ),‖ · ‖�′ ) is a BK-space.

It is trivial that (�m
v xk) ∈ X(M) if and only if (�(m)

v xk) ∈ X(M). Also the norms ‖ · ‖� and
‖ · ‖�′ are equivalent.
Let us define the operator

D : X
(
M,�m

v
) → X

(
M,�m

v
)

byDx = (, , . . . ,xm+,xm+, . . .), where x = (x,x, . . . ,xm, . . .). It is trivial thatD is a bounded
linear operator on X(M,�m

v ), X = �∞, c and c. Furthermore, the set

D
[
X

(
M,�m

v
)]

=DX
(
M,�m

v
)
=

{
x = (xk) : x ∈ X

(
M,�m

v
)
,x = x = · · · = xm = 

}

is a subspace of X(M,�m
v ) and normed by

‖x‖� = inf

{
ρ >  : sup

k
M

( |�m
v xk|
ρ

)
≤ 

}
in DX

(
M,�m

v
)
.

DX(M,�m
v ) and X(M) are equivalent as topological spaces since

�m
v :DX

(
M,�m

v
) → X(M),

defined by

�m
v x = y =

(
�m

v xk
)
, (.)

is a linear homeomorphism.
Moreover, obviously

�(m)
v : X

(
M,�(m)

v
) → X(M), �(m)

v x = y =
(
�(m)

v xk
)
,

�(m)
v : X(M) → X

(
M,�(m)

v
)
, �(m)

v x = y =
(
�(m)

v xk
)

are isometric isomorphisms for X = �∞, c and c.
Hence �∞(M,�m

v ), c(M,�m
v ) and c(M,�m

v ) are isometrically isomorphic to �∞(M),
c(M) and c(M), respectively.
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Moreover, X(M,�i
v) ⊂ X(M,�m

v ) for i = , , . . . ,m– , which follows from the following
inequality and convexity ofM:

M
( |�m

v xk|
ρ

)
≤ 


M

( |�m–
v xk|
ρ

)
+


M

( |�m–
v xk+|

ρ

)
.

Investigation of spaces is often combined with that of duals. The algebraic dual space is
defined for all vector spaces. When defined for a topological vector space, there is a sub-
space of this dual space, corresponding to continuous linear functionals, which constitutes
a continuous dual space. For any finite-dimensional normed vector space or topological
vector space, such as Euclidean n-space, the continuous dual and the algebraic dual coin-
cide. This is, however, false for any infinite-dimensional normed space. For some related
literature on duality relevant to this paper, we refer to [, , , ]. Our results of this pa-
per will generalize few existing results as well as generate some new results in the literature
of algebraic duality within the field of functional analysis.

2 Computation of algebraic duals
In this section we compute the α-, β-, γ - and N-duals of the spaces �∞(M,�m

v ), c(M,�m
v )

and c(M,�m
v ).

Definition . [] Let X be a sequence space and define

Xα =

{
a = (ak) :

∞∑
k=

|akxk| < ∞,∀x ∈ X

}
,

Xβ =

{
a = (ak) :

∞∑
k=

akxk is convergent,∀x ∈ X

}
,

Xγ =

{
a = (ak) : sup

n

∣∣∣∣∣
n∑
k=

akxk

∣∣∣∣∣ < ∞,∀x ∈ X

}
,

XN =
{
a = (ak) : lim

k
akxk = ,∀x ∈ X

}
,

then Xα , Xβ , Xγ and XN are called the α-, β-, γ - and N-(or null) duals of X, respectively.
It is known that if X ⊂ Y , then Y η ⊂ Xη for η = α,β ,γ and N .

Lemma . [] Let m be a positive integer. Then there exist positive constants C and C

such that

Ckm ≤
(
m + k
k

)
≤ Ckm, k = , , , . . . .

Lemma . x ∈ �∞(M,�m
v ) implies supk M( |k–�m–

v xk |
ρ

) < ∞ for some ρ > .

Proof Let x ∈ �∞(M,�m
v ), then

sup
k

M
( |�m–

v xk –�m–
v xk+|

ρ

)
< ∞ for some ρ > .
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Then there exists U >  such that

M
( |�m–

v xk –�m–
v xk+|

ρ

)
<U for all k ∈N .

Taking η = kρ , for an arbitrary fixed positive integer k, by the subadditivity of modulus,
the monotonicity and convexity ofM:

M
( |�m–

v x –�m–
v xk+|

η

)
≤ 

k

k∑
l=

M
( |�m–

v xl –�m–
v xl+|

ρ

)
<U .

Then the above inequality, the inequality

|�m–
v xk+|

(k + )ρ
≤ 

k + 

( |�m–
v x|
ρ

+ k
|�m–

v x –�m–
v xk+|

kρ

)

and the convexity ofM imply

M
( |�m–

v xk+|
(k + )ρ

)
≤ 

k + 

(
M

( |�m–
v x|
ρ

)
+ kM

( |�m–
v x –�m–

v xk+|
kρ

))

≤ max

{
M

( |�m–
v x|
ρ

)
,U

}
< ∞.

Hence we have the desired result. �

Hence we have the following lemma.

Lemma .
(i) x ∈ �∞(M,�m

v ) implies supk M( |k–mvkxk |
ρ

) < ∞ for some ρ > ,
(ii) x ∈ �∞(M,�m

v ) implies supk k–m|vkxk| < ∞.

Theorem . Let M be an Orlicz function. Then
(i) [c(M,�m

v )]α = [c(M,�m
v )]α = [�∞(M,�m

v )]α =D,
(ii) Dα

 =D,
where

D =

{
a = (ak) :

∞∑
k=

km
∣∣v–k ak

∣∣ < ∞
}
,

D =
{
b = (bk) : sup

k
k–m|vkbk| <∞

}
.

Proof (i) Let a ∈ D, then
∑∞

k= km|v–k ak| < ∞. Now, for any x ∈ �∞(M,�m
v ), we have

supk k–m|vkxk| <∞. Then we have

∞∑
k=

|akxk| ≤ sup
k

k–m|vkxk|
∞∑
k=

km
∣∣akv–k ∣∣ <∞.

Hence a ∈ [�∞(M,�m
v )]α .
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Conversely, suppose that a ∈ [X(M,�m
v )]α for X = c and �∞. Then

∑∞
k= |akxk| < ∞ for

each x ∈ X(M,�m
v ). So we can take

xk = kmv–k , k ≥ .

Then

∞∑
k=

km
∣∣v–k ak

∣∣ = ∞∑
k=

|akxk| < ∞.

This implies that a ∈D.
Again suppose that a ∈ [c(M,�m

v )]α and a /∈ D. Then there exists a strictly increasing
sequence (ni) of positive integers ni with n < n < · · · such that

ni+∑
k=ni+

km
∣∣v–k ak

∣∣ > i.

Define x ∈ c(M,�m
v ) by

xk =

{
,  ≤ k ≤ n,
kmvk sgnak/i, ni < k ≤ ni+.

Then we have

∞∑
k=

|akxk| =
n∑

k=n+

|akxk| + · · · +
ni+∑

k=ni+

|akxk| + · · ·

=
n∑

k=n+

km
∣∣v–k ak

∣∣ + · · · + 
i

ni+∑
k=ni+

km
∣∣v–k ak

∣∣ + · · ·

>  +  + · · · =∞.

This contradicts a ∈ [c(M,�m
v )]α . Hence a ∈D. This completes the proof of (i).

(ii) The proof is similar to that of part (i). �

If we take vk =  for all k ∈N in Theorem ., then we obtain the following corollary.

Corollary . Let M be an Orlicz function. Then
(i) [c(M,�m)]α = [c(M,�m)]α = [�∞(M,�m)]α = E,
(ii) Eα

 = E,
where

E =

{
a = (ak) :

∞∑
k=

km|ak| < ∞
}
,

E =
{
b = (bk) : sup

k
k–m|bk| < ∞

}
.
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Theorem. LetM be anOrlicz function.Then [c(M,�m
v )]N = [�∞(M,�m

v )]N = F,where

F =
{
a = (ak) : lim

k
kmv–k ak = 

}
.

Proof The proof is immediate using Lemma .(ii). �

The following lemma will be used in the next theorem.

Lemma . [] Let (pn) be a sequence of positive numbers increasing monotonically to
infinity.

(i) If supn |∑n
v= pvav| < ∞, then supn |pn ∑∞

k=n+ ak| <∞.
(ii) If

∑
k pkak is convergent, then limn pn

∑∞
k=n+ ak = .

Theorem . Let M be an Orlicz function and c+ denote the set of all positive null se-
quences. Then

(i) [D�∞(M,�m
v )]β = [Dc(M,�m

v )]β =G,
(ii) [Dc(M,�m

v )]β =G,
(iii) [D�∞(M,�m

v )]γ = [Dc(M,�m
v )]γ =H,

(iv) [Dc(M,�m
v )]γ =H,

where

G =

{
a = (ak) :

∞∑
k=

akv–k
k–m∑
j=

(
k – j – 
m – 

)
is convergent,

∞∑
k=

∣∣∣∣∣
∞∑

j=k+

v–j aj

∣∣∣∣∣
k–m+∑
j=

(
k – j – 
m – 

)
< ∞

}
,

G =

{
a = (ak) :

∞∑
k=

akv–k
k–m∑
j=

(
k – j – 
m – 

)
uj converges and

∞∑
k=

∣∣∣∣∣
∞∑

j=k+

v–j aj

∣∣∣∣∣
k–m+∑
j=

(
k – j – 
m – 

)
uj < ∞,∀u ∈ c+

}
,

H =

{
a = (ak) : sup

n

∣∣∣∣∣
n∑
k=

akv–k
k–m∑
j=

(
k – j – 
m – 

)∣∣∣∣∣ <∞,

∞∑
k=

∣∣∣∣∣
∞∑

j=k+

v–j aj

∣∣∣∣∣
k–m+∑
j=

(
k – j – 
m – 

)
<∞

}
,

H =

{
a = (ak) : sup

n

∣∣∣∣∣
n∑
k=

akv–k
k–m∑
j=

(
k – j – 
m – 

)
uj

∣∣∣∣∣ <∞,

∞∑
k=

∣∣∣∣∣
∞∑

j=k+

v–j aj

∣∣∣∣∣
k–m+∑
j=

(
k – j – 
m – 

)
uj <∞,∀u ∈ c+

}
.

Proof We give the proof for part (i) for D�∞(M,�m
v ), and the proof of other parts follows

similarly using Lemma .. For details, one may refer to [].
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For each x ∈D�∞(M,�m
v ), there exists one and only one y = (yk) ∈ �∞(M) such that

xk = v–k
k–m∑
j=

(
k – j – 
m – 

)
yj, y–m = y–m = · · · = y = 

for sufficiently large k by (.). Let a ∈ G. Then, using the same technique as applied in
[, p.], we can show that a ∈ [D�∞(M,�m

v )]β .
Let a ∈ [D�∞(M,�m

v )]β . Again, using the same technique as applied in [, pp.-],
we can show that a ∈ G.
This completes the proof. �

3 Conclusion
Although we conclude this paper here, the following further suggestion remains open:

What is the N-dual of the space c(M,�m
v )?
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