Chu et al. Journal of Inequalities and Applications 2014, 2014:299 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2014/1/299 a SpringerOpen Journal

RESEARCH Open Access

Sharp bounds for the Neuman mean in terms
of the quadratic and second Seiffert means

Yu-Ming Chu'", Hua Wang? and Tie-Hong Zhao?

“Correspondence:
chuyuming2005@126.com
'School of Mathematics and
Computation Science, Hunan City
University, Yiyang, 413000, China
Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, we prove thatae =0and B = % =0.29758- - - are the best

possible constants such that the double inequality
a@Q(a,6) + (1 - a)T(a,b) < Scala, b) < BQla,b) + (1 - B)T(a, b)
holds for all a,b > 0 with a # b, where Q(a, b) = +/(a@? + b2)/2,

a-b)v/3(a? + b2)+2ab
Seala,b) = ( JRVAL )

. =1, (a-b)a/3(a%+b%)+2ab
2(a+ bysinh™! (LN

and T(a,b) = (a - b)/[2 arctan((a - b)/(a + b))] are the quadratic, Neuman and second
Seiffert means of a and b, respectively.
MSC: 26E60

Keywords: Neuman mean; quadratic mean; second Seiffert mean

1 Introduction

For a,b > 0 with a # b, the Neuman mean Sca(a,b) [1, 2] derived from the Schwab-
Borchardt mean [3, 4], the quadratic mean Q(a, b) and the second Seiffert mean T'(a, b)
[5] are given by

(a—b)y/3(a? + b?) + 2ab

o ’ (L1)
ca 2(a + b) sinh™1 (&2 8) 2ab
(a+b)?

a’ + b?

e 2 (1.2)
and

-b

- aib (1.3)
2 arctan( %)

respectively, where sinh™ (x) = log(x + +/1 + x2) is the inverse hyperbolic sine function. Re-
cently, the Neuman, quadratic and second Seiffert means have been the subject of intensive
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research. In particular, many remarkable inequalities for these means can be found in the
literature [1-4, 6-15].

Let A(a,b) = (a + b)/2 and C(a,b) = (a® + b*)/(a + b) be the arithmetic and contrahar-
monic means of a and b, respectively. Then Neuman [1] proved that the inequalities

A(a,b) < T(a,b) < Scala,b) < Qa,b) < C(a, b) (1.4)

hold for any a,b > 0 with a # b.

In [1, 2], Neuman found that a; = [v/3 —1og(2 + +/3)]/10g(2 + +/3) = 0.315- - -, B; = 1/3,
oy =1/3, By = [log3 — 2log(log(2 + +/3))]/(2log2) = 0.395- - -, a3 = 2log(2 + +/3)/3 =1 =
0.520--- and B3 = 2/3 are the best possible constants such that the double inequalities

a1C(a,b) + (1 - a1)A(a, b) < Scala, b) < f1C(a, b) + (1 - B1)A(a, b),
C*(a,b)A*2(a, b) < Scala,b) < CP(a, b)A 2 (a, b)

and

az +1—063< 1 < B3 +1—ﬁ3
A(a,b) Cl(a,b) Scala,b) A(a,b) C(a,b)

hold for any a,b > 0 with a # b.

He et al. [16] proved that « =1/2 + \/\/§/ log(2 + +/3) —=1/2 and B = 1/2 + +/3/6 are the
best possible constants in [1/2,1] such that the double inequality

C[aa +(1-a)b,ab+(1- a)a] <Scala,b) < C[ﬂa +(1-8)b,Bb+(1- ﬁ)a]

holds for any a,b > 0 with a # b.
In [17, 18], the authors proved that the double inequalities

o E Cla,b) + %A(ﬂ, b)} +(1-a)C"(a,b)A*?(a, b)
<Scala,b)< B [%C(a, b) + gA(a, b):| +(1- B)C"(a,b)A*?(a, b)
and
MA(a,b) + (1= 2)Q(a,b) < Sca(a, b) < nA(a, b) + (1 - 1)Q(a, b)

; ; ; 3[¥2log(2+v3)-v3] _
hold for any a,b > 0 with a # b if and only if o < 6 -t10e0e /3 " 0.7528---, B > 4/5,

V2l0g(2+/3)-v3 _
A>1/3and u < 3D 0g2+v8) = 0.2390---.
The main purpose of this paper is to present the best possible constants & and 8 such

that the double inequality
aQ(a,b) + (1 - a)T(a,b) < Scala,b) < BQ(a, b) + (1 - B)T(a, b)

holds for any a, b > 0 with a # b. All numerical computations are carried out using MATH-
EMATICA software.
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2 Lemmas
In order to prove our main results, we need several lemmas, which we present in this
section.

Lemma 2.1 The double inequality

2x  16x°  2x° x 1 2% 16a°
— t—-—x< - <—— +— (2.1)
3 45 7  (1+x2)arctan’x arctanx 3 45
holds for x € (0,0.6).
Proof Let
2x  16x®  2x°
¢1(x) = x — (1 +4%) arctanx + x_ oL (1 +4?) arctan’ x, (2.2)
3 45 7
2x  16x°
¢2(x) = x — (1 +x%) arctanx + <?x - 4—:) (1 +?) arctan® x. (2.3)
Then we only need to show that ¢ (x) > 0 and ¢, (x) < 0 for x € (0,0.6).
Taking the differentiation of ¢ (x) yields
#1(0) =0, (2.4)
2 arctanx
(x) = ——— @ (%), 2.5
¢;(x) 315 #7 (x) (2.5)
where
¢; (%) = (105 + 147x* — 55x* + 315x°) arctanx — x(105 + 112x* — 90x*), (2.6)
#1(0)=0, (2.7)
*/ X K3k
" (x) = m@ (%), (2.8)
where
() = 2(147 + 374> + 835x* + 945x°) arctan x — (294 — 59x> - 765x*). (2.9)
It is well known that the inequality
%3
arctanx > x — — (2.10)
holds for all x € (0,1).
Equation (2.9) and inequality (2.10) lead to the conclusion that
%3
(%) > 2(147 + 37x% + 835%™ + 9454°) (x - g) - x(294 - 59x% — 765x")
e
=3 [105 + 7,231x% + 2,110x* +1,890x* (1 - 5%) ] > 0 (2.11)

for x € (0,0.6).
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Therefore, ¢, (x) > 0 for x € (0, 0.6) follows easily from (2.4)-(2.8) and (2.11).
Differentiating ¢ (x) leads to

$2(0) =0, (2.12)
, 2arctanx
$y(x) = _T({bz ), (2.13)
where
¢35 (x) = (15x + 16x%) — (15 + 21x” — 40x*) arctan x. (2.14)

It is well known that the inequality

x x°
arctanx <x — — + — (2.15)
3 5
holds for all x € (0,1).

Equation (2.14) and inequality (2.15) lead to the conclusion that

3 5
$3(x) > (15x + 16x%) — (15 + 21x> — 40x") (x - %)

5
= f—5(660 -263x* +120x*) > 0 (2.16)

for x € (0,0.6).
Therefore, ¢,(x) < 0 for x € (0,0.6) follows from (2.12) and (2.13) together with (2.16).
O

Lemma 2.2 The double inequality

x x 1 x %

x
+ - > —
JV1+a2 (@ +x?)arctan?x arctanx 3 6

(2.17)

holds for x € (0,0.6).

Proof A simple computation leads to

=1—’16—;[8<§ +x> (? —x) +2x4+x4(1—x2)] <1

x >x—x— +x_ (2.18)

V1 +x2 2 4

for x € (0,0.6).

Page 4 of 14
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From Lemma 2.1 and (2.18) we clearly see that

X x 1
+ p—
J1+x2 (1 +«x%)arctan?x  arctanx

x &P 2 16x°  24°
sla-+ )+ -= + — - =
2 4 3 45 7

x

for x € (0,0.6).

Lemma 2.3 The inequality

x 1+a2 x 23 &P

[sinh ' (xv2 + x2)]2 V2 +a2sinh ' (xv/2+42) 3 45 63

holds for x € (0,1).
Proof Let

o) =xvV2 + 52 - (1 + xz) sinh™* (x«/2 + xz)
I 2
+ <— -+ —)[smh (xm)] No

Then we only need to show that ¢(x) > 0 for x € (0,1).
Differentiating (2.20) leads to

¢(0) =0,
) 2x sinh ™ (/2 + &2) )
x) = x),
¢ 35(1+42)
where

@1(x) = —105 — 133x% — 18x* + 10x°

sinh™ (xv/2 + x2)
w2+a2

+3(35 +56x% +20x" + 4x° + 5x8)

We claim that

sinh™(xv/2 + 22) ) x2 2wt 2a°
— - " +
22 + x2 3 15 35

for x € (0,1). Indeed, let

2 2xt 246
—sinh (W2 +02) —av2 e a2 (1- 2 s o ),
w(x) = sinh™ (xv2 + &%) —xvV2 +x BT

Page 5 of 14
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then w(x) > 0 for x € (0,1) follows from the fact that

1648
w(0)=0, @x)=—m" 0.

35v2 + x?

It follows from (2.23) and (2.24) that

@1(x) > -105 — 133x? — 18x* + 10x°

+3(35+56x2+20x4+4x6+5x8)(1——+—_—

6

- §—5[644 +90x +162° + (1 - 42) (2394 + 30x%)] > 0

forx € (0,1).

(2.25)

Therefore, ¢(x) > 0 for x € (0,1) follows from (2.21) and (2.22) together with (2.25).

Lemma 2.4 The inequality

7 x-1 2x-1)% 7 3kx-1)
arctanx > — + —— — ———— > — 4 — "~
4 2 7 4 4

holds for x € [0.55,1).
Proof Let

2(x—1)% :|

T x-1
v(x) = arctanx — [ — + — —
4 2 7

Then simple computations lead to

v(0.55) = 0.00030219 - - - , v(l) =0,
’ _ V1 (x)
Vi) = 141 + x2)’

v (x) = —1 + 8x — 15x% + 843,

11(0.55) = 01935, (1) =0,
v (x) = 24<x - %) (x— M)

24

O

(2.26)

(2.27)

(2.28)
(2.29)

(2.30)

(2.31)

(2.32)

From (2.32) and (15 — +/33)/24 = 0.385643--- < 0.55 together with 0.55 < (15 +
V/33)/24 = 0.864357 - - - < 1, we clearly see that v (x) is strictly decreasing on [0.55, (15 +
+/33)/24] and strictly increasing on [(15 + V/33)/24,1). This in conjunction with (2.31) im-
plies that there exists x; € (0.55,1) such that v;(x) > 0 for x € [0.55,%;) and v;(x) < O for

x € (x1,1). Then equation (2.29) leads to the conclusion that v(x) is strictly increasing on

[0.55,x;] and strictly decreasing on [x;,1].
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Therefore, v(x) > 0 for x € [0.55,1) follows from (2.28) and the piecewise monotonicity
of v(x). Moreover, the second inequality in (2.26) follows from

x-1 2@x-1)% 3x-1) (1—x)(8x—1)>3(x—1)

- > + O
2 7 4 28 4
Lemma 2.5 The inequality
7 2
x — arctanx < %x arctan” x (2.33)
holds for x € [0.55,1).
Proof Let
7 2
u(x) = x —arctanx — %x arctan” x. (2.34)
Then it suffices to show w(x) < 0 for x € [0.55,1).
Differentiating 1(x) yields
’ Ml(x)
X) = —————, 2.35
W (x) 2001+ 22) (2.35)
where
11 (x) = 20x% — 14x arctanx — 7 arctan® x — 742 arctan? x. (2.36)
It is well known that
8 X W
arctanx >x — — + — — — (2.37)
3 5 7
forx € (0,1).
For x € [0.55,0.7], it follows from (2.36) and (2.37) that
x X X B x5 K\
i) <206 —1dw( - =+ = - = | -7[x-Z+ = - =
3 5 7 3 5 7
B x5 K 2 X2
Y AL *(x2), 2.38
x<x 35 7) 575/ () (238)
where
w(x) = =1,575 + 3,675x — 2,695x% + 2,135x3
+3,129x* — 861x° + 405x° — 22547, (2.39)
©*(0.49) = —=9.99966 - - - . (2.40)
Differentiating p*(x) yields
w* () = (3,675 — 5,390x + 6,405x%) + (12,516x° — 4,305x")
+(2,430%° - 1,575x°) > 0 (2.41)

for x € [0.3025,0.49].
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Therefore, u*(x) < 0 for x € [0.3025,0.49] follows from (2.40) and (2.41). This in con-
junction with (2.35) and (2.38) implies that w(x) is strictly decreasing on [0.55,0.7]. There-
fore, we get u(x) < ©(0.55) = —0.00151709 - - - < 0 for x € [0.55,0.7].

It follows from Lemma 2.4 that

wix) <x— [% + 9%1 - 2(%_1)2} - %[% + x;1 _ 2(";1)2]2 _ Z;(:()) (2.42)
for x € (0.7,1), where

pa(x) = (1,760 — 5607) + (3087 — 497 — 644)x

+ (1,960 — 4207)x* + (11277 — 1,252)x + 480x* — 644°. (2.43)

Differentiating . (x) yields

12(0.7) = -1.68877 - -, wa(1) = —2.9025-- -, (2.44)
[y (x) = (~644 + 3087 — 497%) + (3,920 — 8407 )x + (3367 — 3,756)x"

+1,9204% — 320x%, (2.45)
wh(0.7) = —4.73674 - - -, wh(1) =20.6372-- -, (2.46)
w5 (x) = 8(490 — 1057 — 939 + 84mx + 720x” — 160x°), (2.47)
©y(0.7) = -116.173 - - -, wy(1) =360.212- -, (2.48)
sy (x) = 24(287 — 313 + 480x — 160x”)

>24(287 — 313 + 480 x 0.7 - 160 x (0.7)*) = 781.55--- > 0. (2.49)

It follows from (2.48) and (2.49) that there exists x; € (0.7,1) such that w;(x) is strictly
decreasing on (0.7,x;] and strictly increasing on [x3,1). This in conjunction with (2.46)
implies that there exists x3 € (0.7,1) such that u,(x) is strictly decreasing on (0.7, x3] and
strictly increasing on [x3,1). From (2.44) and the piecewise monotonicity of w(x), we
know that u,(x) < 0 for x € (0.7,1); this in conjunction with (2.42) implies u(x) < 0 for
x€(0.7,1). O

Lemma 2.6 The function

/1 + x2 arctan® x — 2(x — arctan x)
(1 + x2)2 arctan3 x

o(x) =

is strictly decreasing on [0.55,1). Moreover, o (x) < 0.236 for x € [0.55,1).
Proof Differentiating o (x) yields

o1(x)

, 2.
(1 +«2)3 arctan* x (250)

o'(x) =

o1(x) = 6(x — arctanx) + 6x° arctanx — 8x arctan® x — 3xv/1 + x2 arctan® . (2.51)

Page 8 of 14
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From Lemma 2.5 and (2.51) we clearly see that

2 59 2 4
o1(x) < 6x” arctanx — Ex arctan” x — 3x arctan” x = x arctan xo» (x)
for x € [0.55,1), where
59 3
09(x) = 6x — 0 arctanx — 3 arctan” x.

Differentiating o (x) leads to

55(0.55) = —0.0482086---, (1) = —0.0872684 - - - ,
FrN 03(x)
0@ = i)

o3(x) =1 + 60x? — 90 arctan® x,

03(0.55) = -3.60662 - - -, o03(1) =5.48348 - - -,
/( ) 600’4(96)

o, \X)=—""—7,
3 1+x2

oa(x) = 2x + 2x° — 3arctanx,

04(0.55) = -0.0757796 - - -, 04(1) =1.64381-- -,
() —1+8x2 + 6x* 0

o/(x) = ———— > 0.
4 1+x2

(2.52)

(2.53)

(2.54)
(2.55)

(2.56)
(2.57)

(2.58)

(2.59)
(2.60)

(2.61)

It follows from (2.58)-(2.61) that there exists x4 € (0.55,1) such that o3(x) is strictly de-
creasing on (0.55,x4] and strictly increasing on [x4,1). This in conjunction with (2.55)-

(2.57) implies that there exists x5 € (0.55,1) such that oy(x) is strictly decreasing on

(0.55,x5] and strictly increasing on [xs5,1). Then from (2.54) we clearly see that oy(x) <0

for x € (0.55,1).

Therefore, it follows from (2.50) and (2.52) that o (x) is strictly decreasing on [0.55,1).

Moreover, o (x) < ¢(0.55) = 0.235477 - -- < 0.236 for x € [0.55,1).

Lemma 2.7 The function

2(4 + 3x%) sinh 1 (xv/2 + x2) — 8xv/2 + &2
(2 + 42)[sinh ™ (xv/2 + x2)]3

k(x) =

is strictly decreasing on [0.55,1). Moreover, k (x) < 0.771 for x € [0.55,1).

Proof Simple computations lead to

«(0.55) = 0.770758 - - - ,
811 (x)
(2 + x2)2[sinh ™ (xv/2 + 22)]*

K'(x) =

where

k(%) = 6x(2 +2%) - 3(2 + x2)3/2 sinh™ (xv/2 + 22) + x[sinh™ (xv/2 + x2)]2.

|

(2.62)

(2.63)

(2.64)

Page 9 of 14
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We claim that
3
Vox— 6’67 < sinh™ (xv/2 +42) < V2% (2.65)

for x € (0,1). Indeed, let

3

m(x) = sinh™ (xv/2 +42) — /2% + 6x—\/§’ (2.66)
M2(x) = sinh™ (xv2 + x2) — V2x. (2.67)

Then we clearly see that

n(0) =12(0) =0, (2.68)
n ) = ﬁ + gxz -2, (2.69)
A 2 2<0 2.70
My (x) = \/ﬁ - <0, (2.70)
n1(0) =0, (2.71)

" 1 2
m (x) = x(ﬁ - m) > 0. (272)

Therefore, the double inequality (2.65) follows easily from (2.68)-(2.72).
Equation (2.64) and inequality (2.65) imply that

K1(x) < 6x(2 + xz) - 3(2 + x2)3/2 («/ix - 6x—;§> +x(v/2x)? = zxz(x), (2.73)
where

(%) = 16(3 + 24%) = v/2(12 - 22) (2 +2%) . (2.74)
Let u = /2 + 2, then x2 = 42 — 2, v/2 < u < +/3 and k»(x) becomes

() = —16 + 320 - 14v2u° + V2u°. (2.75)
Equation (2.75) leads to

#(v2) =0, (2.76)

K'(u) = u(64 —42v2u + 5x/§u3) = uk1(u), (2.77)

‘(w) =64 —42v2u +5v24°,  ©(vV2)=0,  &(v/3)=-21362---, (2.78)

i|(u) =154/2 (u - \/g) (u + %) (2.79)

From (2.79) we clearly see that «{(x) < 0 for u € (+v/2,4/14/5) and ki{(u) > 0 for u
(v/14/5,+/3). This in conjunction with (2.77) implies that '(u) is strictly decreasing on

Page 10 of 14
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(v/2,+/14/5] and strictly increasing on [+/14/5,+/3). Thus &'(u) < 0 for u € (v/2,+/3) fol-
lows from (2.78) and the piecewise monotonicity of £’ ().

Therefore, ky(x) = k(¢) < 0 follows from (2.76). This in conjunction with (2.63) and
(2.73) implies that « (x) is strictly decreasing on [0.55,1). Moreover, it follows from (2.62)
that «(x) < k(0.55) =0.770758 - - - < 0.771 for x € [0.55,1). O

Lemma 2.8 The function

2(x — arctan x) 2x(3 + x2)
) = _ <-0.88
(1 +x2)?arctan®x (2 + x2)3/2 sinh™ (x+/2 + 22)

forx € [0.55,1).

Proof We first prove

3

/2 + x%sinh™! (xv 2+ xz) <2x+ % (2.80)

for x € (0,1). Let
o3
e(¥) = V2 +a2sinh™ (xv2 +42) - (2x+ g)

Then &(x) < 0 follows from £(0) = 0 and the fact that

«/Zi—xz (sinh™ (xv/2 + 22) — /2 + 42) < 291 =

where the second term follows from (2.65).

(\/ﬁx—xv2+x2) <0,

&' (x) =

From Lemma 2.5 and (2.10) we clearly see that

X — arctanx 7x 21
< < (2.81)
arctanx  20arctanx 20(3 —x2)
for x € [0.55,1).
It follows from (2.80) and (2.81) that
21 6(3 +x2)
- =: 2.82
BT R T s R e e B (282)
for x € [0.55,1).
Simple computation yields
71(0.55) = -0.906585 - - -, 71(1) = -0.880357 - - -, (2.83)
3
(%) = i (%), (2.84)

5(x2 —3)2(1 + x2)3(2 + x2)%(6 + x2)2
where

F(x) = —2,880 + 2,424x% + 6,052x* + 1,468x°

—939x% — 21941 + 60412 + 20x4, (2.85)
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7(0.55) = -1,560.68---, (1) =5,986, (2.86)
7'(x) = 2x(2,424 +12,104x% + 4,404x" — 3,756x°

-1,095x° +360x" +140x'%) > 0. (2.87)

From (2.85)-(2.87) we know that there exists x¢ € (0.55,1) such that 7(x) < 0 for x €
(0.55,x¢) and T(x) > O for x € (x¢,1). This in conjunction with (2.84) implies that 7;(x) is
strictly decreasing on [0.55, %) and strictly increasing on [x6,1).

Therefore, 7(x) < 71(x) < max{t;(0.55), 7;(1)} = —0.880357--- < —0.88 follows from
(2.83) and the piecewise monotonicity of 7;(x). O

3 Main result
Theorem 3.1 The double inequality

aQa,b) + 1 -a)T(a,b) < Scala,b) < BQ(a,b) + (1 - B)T(a,b) (3.1)

. . . _ 3 —41log(2++/3) _
holds for all a,b > 0 with a # b if and only if « <0 and 8 > By = VI Dlop2iv3) ~
0.29758 - --.

Proof Since the Neuman mean Scy4(a, b), the quadratic mean Q(a, b) and the second Seif-
fert mean T'(a, b) are symmetric and homogeneous of degree 1, without loss of generality,
we assume that a > b. Let v = (a — b)/(a + b) € (0,1), then from (1.1)-(1.3) one has

W2+ 12
Sca@b) = Ala,b)—— L, (32)
sinh™ (vv/2 + v2)
T(a,b) = A(a, b)#, Q(a,b) = A(a,b)V1 + v2. (3.3)
arctan(v)
Equations (3.2) and (3.3) lead to
2412 _ v
Scala,b) — T(a,b) _ sinh~1(vv/2+12)  arctan(v) (3.4)
Q@b -T@h)  Jirvi-—r_
It is easy to find that
vW2+12 _ v
. sinh~1(vv/2+12)  arctan(v)
lim =0, (3.5)
v—0* v1+ V2 _ an(v)
/2412 _ v
sinh~L (vv/2+12 arctan(v
lim Smeved)  wewl) g (3.6)

v—>1" 1 +12—

_v
arctan(v)

We investigate the difference between the convex combination of Q(a, b), T(a, b) and
Scala, b) as follows:

pQ(ﬂ’ b) + (1 —P)T(ﬂr b) - SCA(“: b)

— v V2 + 12
=A(b) |:p L+v2+(1-p) arctan(v) sinh_l(v\/m)] 57)
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Let

v va/2 + 12
arctan(v)  sinh L (v/2 + 12)

D,(v)=pv1+v2+(1-p)

Then simple computations lead to

4\ 4 V3
D,(0%) =0, D,(17) = - — _ Dg (17) =0,
o (0) (1) p(x/— 77)+7T log(2 + v/3) w(t)
D) v v 1 v
v) = + - +
4 P V1+12 (@ +v?)arctan’v  arctanv ] (sinh M (vv/2 + v2))2
1+v? v 1

— p— + N

V2 +12sinh  (v/2 +v2) (L +v?)arctan®v  arctanv
A/1 + v2arctan® v — 2(v — arctan v)

(1 +v?)?arctan®v

2(4 + 312 sinh ' (v+/2 + v2) — 8v/2 + 12

+
(2 + v2)(sinh ™ (vv/2 +12))3
2(v — arctan v) 20(3 +12)

+ —

(1 +v2)2arctan®v (2 + y2)32 sinh ! (v/2 + v2)

D,(v)=p

=po(v) +k(v) + T(v),

where o (x), k(x) and t(x) are defined as in Lemmas 2.6, 2.7 and 2.8, respectively.
From Lemmas 2.1-2.3 and (3.10) we clearly see that

J— - — — — 4 — - ——
6

v v o2 v 2y 168
3 45 63 3 45

Dig (v) > Bo <§ -
v

=30 [210(1 + Bo) — 7(28 + 1580)v* — 10v*]

Page 13 of 14

(3.8)

(3.9)

(3.10)

(3.11)

> &[210(1 +0.29758) — 7(28 + 15 x 0.29759) x (0.55)> —10 x (0.55)*]

= %20283.--50
630

for v € (0,0.55].
It follows from Lemmas 2.6-2.8 and (3.11) that

D}QO v) = Boo(v) +k(v) + T(v) < 0.2368¢ + 0.771 — 0.88 = —0.0387709 - - -

(3.12)

(3.13)

for v € [0.55,1). Then from D};O(O.SS) =0.0139552--- and D},O (1) = -0.0650268 - -- we
know that there exists vy € (0.55,1) such that D},O (v) > 0 for v € [0.55,vp) and D;so (x) <0
for v € (vy,1). This in conjunction with (3.13) leads to the conclusion that Dg, (v) is strictly

increasing on [0.55, V9] and strictly decreasing on [v,1).

Therefore, Dg,(v) > 0 for v € (0,1) follows from (3.9) and the monotonicity of Dg, (v). In

other words, we obtain
BoQ(a,b) + (1 - Bo)T(a,b) > Scala,b)

for a,b > 0 with a # b.

(3.14)
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Obviously, if « = 0, then (1.4) gives

T(a,b) < Scal(a,b) (3.15)
fora,b>0 with a #b.
Therefore, Theorem 3.1 follows from (3.14) and (3.15) together with the following state-
ments:

o If o >0, then (3.4) and (3.5) imply that there exists §; € (0,1) such that
Scala,b) <aQ(a,b) + (1 - a)T(a,b) for all a,b > 0 with (a — b)/(a + b) € (0, 51).
o If B < Bo, then (3.4) and (3.6) imply that there exists §, € (0,1) such that
Scala,b) > BQ(a,b) + (1 - B)T (a,b) for all a,b > 0 with (a — b)/(a+b) € (1-38,,1). O
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