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1 Introduction

Let {X,.j,j=1,2,...,m;n=1,2,...} be a row-wise triangular array of independent integer-
valued random variables with success probabilities P(X,,; = 1) = p,j; P(X,,; =0) =1-p,,; —
Gnjs Prjr@nj € (0,1); puj+ qnj € (0,1);j=1,2,...,m;n=12,....Set S, = 31 Xyjand 4, =
ES,) = 27=1Pn,1‘- Suppose that lim, 00 Ay = A (0 < A < +00). We will denote by Z, the
Poisson random variable with mean A. It has long been known that in the case of all g,,; =
0(G=L2,...,m;n=12,...), the partial sum S, is said to be a Poisson-binomial random
variable, and the probability distributions of S,,, n = 1,2,..., are usually approximated by
the distribution of Z; . Specially, under the assumptions that lim,,_, .o max;<j<, p; = 0, the
well-known Poisson approximation theorem states that

S, % 7, asn— oo. 1)

d
Here, and from now on, the notation — means the convergence in distribution. It is to
be noticed that, for the information on the quality of the Poisson approximation, Le Cam
(1960) [1] established the remarkable inequality

Y IPS, =k Pz, = k)| <2 ph 2)
k=0 j=1

It is to be noticed that another inequality in Poisson approximation is usually expressed
in terms of the total variation distance d7v(S,, Z;)

n
dry(Sp,Z,) < ZP%,,,'; (3)
-1
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where for the distributions P and Q on Z, = {0,1,2,...}, the total variation distance be-
tween P and Q will be defined as follows:

drv(P,Q) = = 3 Plx) - Q). @)
2

X€ZLy

(For other surveys, see [1-4], and [5].)

In recent years many powerful tools for establishing the Le Cam’s inequality for a wide
class of discrete independent random variables have been demonstrated, like the coupling
technique, the Stein-Chen method, the semi-group method, the operator method, etc.
Results of this nature may be found in [1-11], and [12].

The main aim of this paper is to establish the bounds of the Le Cam-style inequalities for
independent discrete integer-valued random variables using the Trotter-Renyi distance
based on Trotter-Renyi operator (see [13, 14], for more details). It is to be noticed that
during the last several decades the Trotter-operator method has been used in many areas
of probability theory and related fields. For a deeper discussion of Trotter’s operator we
refer the reader to [12—-20], and [21].

The results obtained in this paper are extensions of known results in [1, 5, 9-11], and
[4]. The present paper is also a continuation of [12].

This paper is organized as follows. The second section deals with the definition and
properties of Trotter-Renyi distance, based on Trotter’s operator and Renyi’s operator. Sec-
tion 3 gives some results on Le Cam’s inequalities, based on the Trotter-Renyi distance, for
independent integer-valued distributed random variables. The random versions of these
results are also given in this section.

2 Preliminaries

In the sequel we shall recall some properties of Trotter-Renyi operator, which has been
used for a long time in various studies of classical limit theorems for sums of indepen-
dent random variables (see [13-15, 18, 19], and [20], for the complete bibliography). Based
on Renyi’s definition ([14], Chapter 8, Section 12, p.523), we redefine the Trotter-Renyi
operator as follows.

Definition 2.1 The operator Ay associated with a discrete random variable X is called
the Trotter-Renyi operator, defined by

Ax)®) =E(fX +x)) =Y flx+kP(X=k), VfeKVxel, ©)

k=0

where by K is denoted the class of all real-valued bounded functions f on the set of all
non-negative integers Z, := {0,1,2,...}. The norm of the function f € K is defined by

fll= sup,ez, [f ().

It is to be noticed that Renyi’s operator defined in [14] actually is a discrete form of
Trotter’s operator (we refer the readers to [13, 15, 17-19], and [20], for a more general and
detailed discussion of Trotter’s operator).

We shall need in the sequence the following main properties of Trotter-Renyi operator,
for all functions f,g € K and for « € R:
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M e

8.

Ax(f +g) = Ax(f) + Ax(g).

Ax(af) = aAx(f).

IAx (O < Il

lAx(F) + Ay (DIl < 1A (O + Ay (Il

Suppose that Ay, Ay are operators associated with two independent random
variables X and Y. Then, for all f € K,

Axiy(f) = AxAy(f) = AyAx(f).

In fact, for all x € Z,

Axf@) =) fle+DPX+Y=0)=> flx+k+rP(Y =k)P(X =7)
1=0 r,k=0

=Ax(Ayf(x)) = AxAyf(%).
Suppose that Ax,,Ay,,...,Ax, are the operators associated with the independent
random variables Xj, X,...,X,. Then, for all f € K, Ag, (f) = Ax,Ax, - - - Ax, (f) is the
operator associated with the partial sum S, =X + Xo + - - - + X,.
Suppose that Ax,,Ax,,...,Ax, and Ay,,Ay,,..., Ay, are operators associated with

independent random variables X3, X5, ..., X, and Y3, Y>,...,Y,. Moreover, assume
that all X; and Y are independent for i,j = 1,2,..., n. Then, for every f € K,

lAsy ) = Asy n O = 3 14 () - Ax ()] (©)

k=1

Clearly,
AxAx, - Ax, — Ay Ay, --- Ay,
=Y AxAx, - Ax (Ax - Ay Ay, Ay,
k=1
Accordingly,
n
HAZZﬂXk ) _Azln(:l Yk(f) H = Z ”AXI . ‘AX/H (AXk _AYk)AYk+1 -+ Ay, (f) “
k=1
= 2 MAv - An A - A0
k=1

= > [Ax -4 |-
k=1

1A% (F) = A (DIl < nllAx(f) = Ay (Pl

Lemma 2.1 The equation Axf(x) = Ayf(x) for f € K, x € Z, shows that X and Y are iden-
tically distributed random variables.
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Let Ax,,Ax,,...,Ax,,... be a sequence of Trotter-Renyi’s operators associated with the
independent discrete random variables X3, X, ..., X}, ..., and assume that Ay is a Trotter-
Renyi operator associated with the discrete random variable X. The following lemma
states one of the most important properties of the Trotter-Renyi operator.

Lemma 2.2 A sufficient condition for a sequence of random variables X1,Xs,...,Xy,... to

converge in distribution to a random variable X is that
lim [Ax,(f) - Ax(f)| =0, forallf eK.
n—00

Proof Since lim,_. [|Ax, (f) = Ax(f)| = 0, for all f € K, we conclude that

o0
lim Zf(x + k)(P(X,, =k)-P(X = k)) =0, forallfeKandforallxeZ,.
k=0

Taking

1, if0o<x<¢
flx) =

0, ifx>t,

then we recover

t

lim >~ (PO, = k) - PX = K))| = 0.
k=0

It follows that P(X,, < t) — P(X <t) — 0 as n — +0o. We infer that X, 2 X asn— +00.
O

Before stating the definition of the Trotter-Renyi distance we firstly need the definition
of a probability metric. Let (2, A,[P) be a probability space and let Z(£2, A) be a space of
real-valued A-measurable random variables X : Q — R.

Definition 2.2 A functional d(X, Y) : Z(2, A) x Z(£2, A) — [0, 0c0) is said to be a probabil-
ity metricin Z(2, A) if it possesses for the random variables X, Y, Z € Z(2, A) the following
properties (see [2, 22] and [18] for more details):

L. PX=Y)=1=d(X,Y)=0;

2. dX,Y)=d(Y,X);

3. dX,Y)<d(X,Z)+d(Z,Y).

We now return to the definition of a probability distance based on the Trotter-Renyi
operator (see [18, 19], and [21]).

Definition 2.3 The Trotter-Renyi distance drz(X, Y;f) of two random variables X and YV
with respect to the function f € K is defined by

drr(X, Y;f) = |Axf — Ayfll = sup |Ef (X +x) — Ef (Y +x)|. (7)

X€Ly
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Based on the properties of the Trotter-Renyi operator, some properties of the Trotter-

Renyi distance are summarized in the following (see [13, 14, 18, 19], and [21] for more

details) and we shall omit the proofs.

1.

It is easy to see that drx(X, Y;f) is a probability metric, i.e. for the random variables
X, Y, and Z the following properties are possessed:

(a) For every f € K, the distance d7z(X,Y;f) =0if P(X =Y) =1.

(b) drr(X,Y;f) =dr(Y,X;f) for every f € K.

() dr(X,Y;f) <drmr(X, Z;f) + drr(Z, Y;f) for every f € K.

Ifdrr(X,Y;f) = 0 for every f € K, then Fx = Fy.

Let {X,,n > 1} be a sequence of random variables and let X be a random variable.

The condition

lim drr(X,X;f) =0, forallf ek,
n—+00

implies that X, 4 Xasn— .
Suppose that X7, Xs,..., Xy; Y1,Y2,..., Y, are independent random variables (in
each group). Then, for every f € K,

drr (Z X,y Y f) <Y dr(X;, Vif). ®)
j=1 j=1 j=1

Moreover, if the random variables are identically (in each group), then we have

n

dTR (ZX, Z }/},f) < ndTR(le Yl’f)

[

Suppose that X3, Xs,...,X,; Y1, Ys,..., Y, are independent random variables (in each
group). Let {N,,,n > 1} be a sequence of positive integer-valued random variables
that are independent of X7, X3,...,X, and Y1, Ys,..., Y,. Then, for every f € K,

Ny Ny 0 k
dre (Z X, )Y f) < kZP(Nn =) ) dre(X;, Yif). )
=1 j=1

[

Suppose that X, Xy,..., Xy 11, Ys,..., Y, are independent identically distributed
random variables (in each group). Let {N,,,n > 1} be a sequence of positive
integer-valued random variables that are independent of X3, X>,..., X}, and
Y1,Y,,...,Y,. Moreover, suppose that E(N,,) < +00, n > 1. Then, for every f € K, we

have

Ny Ny
drz (ZX, Z Yl’f> < E(N,) - drr(Xy, Yl;f)'
j=1 =l

Finally, we emphasize that the Trotter-Renyi distance in (7) and the total variation dis-

tance in (4) have a close relationship if the function f is chosen as an indicator function of
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aset A € Z,, namely

1, ifxeA,

f#x) = xalx) = .
0, ifxéeA.

Then
dTR(Xy Y, XA) = dTV(X» Y);

where we denote by dry (X, Y) the total variation distance between two integer-valued
random variables X and Y, defined as follows:

drv(X,Y) = sup |[P(X € A)-P(Y € A)| = Z |P(X =k) - P(Y = k)|.
ACZ, keZ+

For a deeper discussion of the total variation distance, we refer the reader to [1-4], and

[5].

3 Main results
Let{Ax,;,j=1,2,...,m;n=1,2,...} be a sequence of operators associated with the integer-
valued random variables X,,;, j = 1,2,...,n; n = 1,2,..., and let {AZPnJ’j =1,2,...,mn =
1,2,...} be a sequence of operators associated with the Poisson random variables with pa-
rameters p,,;,j=1,2,...,msn=1,2,....Since Z,\n is a Poisson random variable with positive
parameter A, = Y .

j
dependent Poisson random variables with positive parameters p,,1, 942, --,Puy, and the

1 Pnj» We can write 7, = Z/ 1Zp,;» where Z, \,Z,, ..., Zp,, are in-

. d . e
notation = denotes coincidence of distributions.

Theorem 3.1 Let {X,j,j =1,2,...,m;n =1,2,...} be a row-wise triangular array of in-
dependent, integer-valued random variables with probabilities P(X,,; = 1) = p,j, P(X,,; =
0) =1 —puj— qujs Pnjrqnj € (0,1); pnj+qnj € (0,1); j=1,2,...,m;n=1,2,.... Let us write
S, = Z;’zl Xjand A, = Z}il Pnj- We will denote by Z,,, the Poisson random variable with
parameter L. Then, for all functions f € K,

arr(Sn, Z3,:1) = 2|f |l Z(Pn; + qnj)-

j=1

Proof Applying (8), we have

Arr(Sns Zo,of) < ) drr(Xonjs Z, 3 f)—ZHAxn,(f) - Az, (-

j=1 k=1

Moreover, for all f € K, for all x € Z, and r € {0,1,..., n} we conclude that

Ax,f(x) = Az, f(x) = Z S+ 1) (PXy=1) = P(Z,, =)

e Pnj
Zf(x+r)(P(X}—r) p”’)
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=f @) (1= puj— qnj—€P™)

+ @+ 1)(Pnj = puje ™)

I’n/pnl
+ Zf(x +7) (p(xn, =r)- >

r=2

Therefore, for all functions f € K, and for all x € Z,, we have
|Ax, f () ~ Az, f)

) }/(x) (1= Pnj = qnj— €7) + f (@ + 1) (Pnj = puje ™)

[e¢]

Prjp’ .
+Zf(x+r)<P(Xn,j:r)_e r'p'w)‘

r=2

= @) (1= pnj = @nj =€) | + [ G5 + D) (pnj = puje ™)

Pn]pn
+ Zf(x +7) (P(Xn, =r)— )

= @ A= puj = anj— )|+ [f @+ D(pnj = puje ™)

) e—pn,jpr'
+ E fx+7)P(X,;=71)| + E f(x+r)7‘"’1
r!
r=2

< (€ + puj + quj — 1) sup |[f(&)| + (P — Puje ") sup |f(x)

x€Zy x€Z.,

o0 o0 e—pn,ip; )

+ sup lf(x)| ZP(Xn,k =r)| + sup [f(x)| Z 7‘1
€Ly r=2 x€Zy ~

= sup lf(x) | (e_pn’j +Pnj +qnj— 1 + Pnj _pn,je_pn'j +qn; t+ 1—e?n —Pn,je_P”J)

x€ly
= 2\f11(Pnj — Prje ™™ + n))

<20fll(p2; + dny)-
One infers that
Y ek, [Ax, () -4z, O] < 21£ 1@, + qn,).

Therefore, applying (8), we can assert that

Arr(Sn Zo,if) < 20F 1Y (P%; + dny)-

j=1

This completes the proof.

Corollary 3.1 Under the assumptions of Theorem 3.1, let r € {0,1,...

|P(Sy=1) = P(Zy,, =) <2 (P} + qui)-

j-1

,n}, we have

Page 7 of 11
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Remark 3.1 We consider Corollary 3.1 and assume that the following conditions are sat-
isfied:

() lim > g=0,

j-1

(ii) lim max p,;=0,
n—oo1<k<n

n
(iii) nlingokn = n11>nolo Xl:an =1 (0<A<+00).
=

Then S, 4 Z, as n— 00.

Theorem 3.2 Let {X,j,j=1,2,...,mn =1,2,...} be a row-wise triangular array of inde-
pendent, integer-valued random variables with probabilities P(X,,; = 1) = p,j, P(X,,; = 0) =
L= puj—qnjs Pnjpdnj € (0,1); puj+ qnj € (0,1);5=1,2,...,m;n=1,2,.... Moreover, we sup-
pose that N, n=1,2,... are positive integer-valued random variables, independent of all
Xujj=12,...,m;n=12,.... Let us write Sy, = Z]]\iﬁ X, and Ay, = Zﬁﬁpnd«. We will de-
noteby Z, . the Poisson random variable with parameter A, . Then, for all functionsf € K,

Ny
ArR(SN,» Zo, i f) < 2Illflll‘?(X: (PR, + an,j)>~

j=1

Proof According to Theorem 3.1 and (9), for all functions f € K, and for all x € Z,, we
have

drr(SN,» Zi, 3 f) < ) PNy = m)drr(Sy, Z;,,:f)

NN

P(Nyy =m)2f 11 Y (PR, + ANis)

=<
m=1 j=1
=201 [P(Nn =m) Y (PR + an,;)]
m=1 j=1

Ny
= ZIVIIE(Z (PX,; + an,;))-

j-1

Therefore,

Ny
drr(SN,» Ziy, 3 f) < 2|V||E<Z (X, + an:j))’

j=1
The proof is complete. O
Corollary 3.2 According to Theorem 3.2, let r € {0,1,...,n}, we have

Ny
|P(S,, =1) = P(Zs, =1)| < 215(2 Pk, + an, ,,)).

Jj=1

Page80of 11
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Theorem 3.3 Let {Xy;} (k=1,2,...;j=1,2,...) be a double array of independent integer-
valued random variables with probabilities P(Xy; = 1) = prj, P(Xx; = 0) = 1 — pr;j — qk»
Pk €(0,1); k=1,2,...;7=1,2,.... Assume that for every k = 1,2,... the random variables
Xi1 Xk2, ..., are independent, and for everyj =1,2,... the random variables X, j, X, j, ... are
independent. Set Sy = 3 4y D" Xk Let us denote by Zs, ,, the Poisson random variable

with mean 8, = 3 iy D"y Prj- Then, for all f € K,

n m
A1R(Sums Zs o f) <211 YD (P + aks)-
k=1 j=1
Proof Applying the inequality in (8), we have

Arr(Sums Zsrf) < Y Arr(Stoms Zyug o)
k=1

n m
< Z Z A1R(Skj» Zig o f)-

k=1 j=1

According to Theorem 3.1, for all functions f € K, and for all x € Z,, we conclude that

drr(Skj Zag f) < 20f 1 (B2 + ax,)-

Therefore,

ATR(Sums Zor ) < 211D (PR + axj)-

k=1 j=1
This completes the proof. O

Theorem 3.4 Let {X;;,k=1,2,...;j=1,2,...} be a double array of independent integer-
valued random variables with P(Xy; = 1) = prj; P(Xxj = 0) = 1 — prj — qj; Pkj» gk, € (0,1);
Prj + qrj € (0,1); k =1,2,...; n =1,2,.... Assume that for every k = 1,2,... the ran-
dom variables Xi1,Xi2,..., are independent, and for every j = 1,2,... the random vari-
ables X1, Xa,... are independent. Set Sy = 3 iy >y Xij. Suppose that Ny, M, are
non-negative integer-valued random variables independent of all X, n > 1; m > 1.
Let us denote by Zsn,mtm the Poisson random variable with mean Sn,um,, = E(Sn,m,,) =

2[:1 Z]Af{” Prj- Then, for all functions f € K,

Ny My
ArR(SN,Myp» Zoy i, S ) < 2|V||E<Z Z(Plz,j + CIk,/)>'

k=1 j=1
Proof According to Definition 2.1, we have
(A1, /)®) := E(f (Snum,, + %))

= ZP(N =n) ZP(Mn = m)(As,,f)(x)

n=1 m=1

Page9of 11
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and
(Anganf)(x) i= E(f (Zoy, vy, +%))
= ip( = n) ZP = m)(Az,,,))).
n=1
Therefore, for all functions f € K, and for all x € Z,, we have
|45y ()~ Az, ]

< ZP(Nn = Vl) ZP(MH = m) ||A5nm (f) _Azén,m (f)”

n=1 m=1
oo oo n m
<21 PWy=m) Y PM,=m)| > > (p; +ax))
n=1 m=1 k=1 j=1
n My
=2|f| ZPW =mE( Y (i + k)
k=1 j=1
Ny My
=20FIE( DD (p2; +ax))
k=1 j=1
Thus,
Ny My
AR (SN My Zog ainy f) < 2WFNE( DD (02 + axj)
k=1 j=1
The proof is straightforward. O

Remark 3.2 In the case of all probabilities g,,; = 0, j = 1,2,...,n; n = 1,2,... the partial
sum S, = 27:1 X,,; will become a Poisson-binomial random variable, and one concludes
that the results of Theorems 3.1, 3.2, 3.3, and 3.4 are extensions of results in [12] (see [12]
for more details).

We conclude this paper with the following comments. The Trotter-Renyi distance
method is based on the Trotter-Renyi operator and it has a big application in the Poisson
approximation. Using this method it is possible to establish some bounds in the Poisson

approximation for sums (or random sums) of independent integer-valued random vectors.
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