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1 Introduction
Let {Xn,j, j = , , . . . ,n;n = , , . . .} be a row-wise triangular array of independent integer-
valued random variables with success probabilities P(Xn,j = ) = pn,j; P(Xn,j = ) =  – pn,j –
qn,j; pn,j,qn,j ∈ (, ); pn,j + qn,j ∈ (, ); j = , , . . . ,n; n = , , . . . . Set Sn =

∑n
j=Xn,j and λn =

E(Sn) =
∑n

j= pn,j. Suppose that limn→∞ λn = λ ( < λ < +∞). We will denote by Zλ the
Poisson random variable with mean λ. It has long been known that in the case of all qn,j =
 (j = , , . . . ,n; n = , , . . .), the partial sum Sn is said to be a Poisson-binomial random
variable, and the probability distributions of Sn, n = , , . . . , are usually approximated by
the distribution of Zλ. Specially, under the assumptions that limn→∞ max≤j≤n pn,j = , the
well-known Poisson approximation theorem states that

Sn
d−→ Zλ as n→ ∞. ()

Here, and from now on, the notation d−→ means the convergence in distribution. It is to
be noticed that, for the information on the quality of the Poisson approximation, Le Cam
() [] established the remarkable inequality

∞∑
k=

∣∣P(Sn = k) – P(Zλ = k)
∣∣ ≤ 

n∑
j=

pn,j. ()

It is to be noticed that another inequality in Poisson approximation is usually expressed
in terms of the total variation distance dTV (Sn,Zλ)

dTV (Sn,Zλ) ≤
n∑
j=

pn,j, ()
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where for the distributions P and Q on Z+ = {, , , . . .}, the total variation distance be-
tween P and Q will be defined as follows:

dTV (P,Q) :=



∑
x∈Z+

∣∣P(x) –Q(x)
∣∣. ()

(For other surveys, see [–], and [].)
In recent years many powerful tools for establishing the Le Cam’s inequality for a wide

class of discrete independent random variables have been demonstrated, like the coupling
technique, the Stein-Chen method, the semi-group method, the operator method, etc.
Results of this nature may be found in [–], and [].
Themain aim of this paper is to establish the bounds of the Le Cam-style inequalities for

independent discrete integer-valued random variables using the Trotter-Renyi distance
based on Trotter-Renyi operator (see [, ], for more details). It is to be noticed that
during the last several decades the Trotter-operator method has been used in many areas
of probability theory and related fields. For a deeper discussion of Trotter’s operator we
refer the reader to [–], and [].
The results obtained in this paper are extensions of known results in [, , –], and

[]. The present paper is also a continuation of [].
This paper is organized as follows. The second section deals with the definition and

properties of Trotter-Renyi distance, based onTrotter’s operator andRenyi’s operator. Sec-
tion  gives some results on Le Cam’s inequalities, based on the Trotter-Renyi distance, for
independent integer-valued distributed random variables. The random versions of these
results are also given in this section.

2 Preliminaries
In the sequel we shall recall some properties of Trotter-Renyi operator, which has been
used for a long time in various studies of classical limit theorems for sums of indepen-
dent random variables (see [–, , ], and [], for the complete bibliography). Based
on Renyi’s definition ([], Chapter , Section , p.), we redefine the Trotter-Renyi
operator as follows.

Definition . The operator AX associated with a discrete random variable X is called
the Trotter-Renyi operator, defined by

(AXf )(x) = E
(
f (X + x)

)
=

∞∑
k=

f (x + k)P(X = k), ∀f ∈K,∀x ∈ Z+, ()

where by K is denoted the class of all real-valued bounded functions f on the set of all
non-negative integers Z+ := {, , , . . .}. The norm of the function f ∈ K is defined by
‖f ‖= supx∈Z+ |f (x)|.

It is to be noticed that Renyi’s operator defined in [] actually is a discrete form of
Trotter’s operator (we refer the readers to [, , –], and [], for a more general and
detailed discussion of Trotter’s operator).
We shall need in the sequence the following main properties of Trotter-Renyi operator,

for all functions f , g ∈K and for α ∈ R:
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. AX(f + g) = AX(f ) +AX(g).
. AX(αf ) = αAX(f ).
. ‖AX(f )‖ ≤ ‖f ‖.
. ‖AX(f ) +AY (f )‖ ≤ ‖AX(f )‖ + ‖AY (f )‖.
. Suppose that AX , AY are operators associated with two independent random

variables X and Y . Then, for all f ∈K,

AX+Y (f ) = AXAY (f ) = AYAX(f ).

In fact, for all x ∈ Z+

AX+Y f (x) =
∞∑
l=

f (x + l)P(X + Y = l) =
∞∑

r,k=

f (x + k + r)P(Y = k)P(X = r)

= AX
(
AY f (x)

)
= AXAY f (x).

. Suppose that AX ,AX , . . . ,AXn are the operators associated with the independent
random variables X,X, . . . ,Xn. Then, for all f ∈K, ASn (f ) = AXAX · · ·AXn (f ) is the
operator associated with the partial sum Sn = X +X + · · · +Xn.

. Suppose that AX ,AX , . . . ,AXn and AY ,AY , . . . ,AYn are operators associated with
independent random variables X,X, . . . ,Xn and Y,Y, . . . ,Yn. Moreover, assume
that all Xi and Yj are independent for i, j = , , . . . ,n. Then, for every f ∈K,

∥∥A∑n
k= Xk (f ) –A∑n

k= Yk (f )
∥∥ ≤

n∑
k=

∥∥AXk (f ) –AYk (f )
∥∥. ()

Clearly,

AXAX · · ·AXn –AYAY · · ·AYn

=
n∑
k=

AXAX · · ·AXk– (AXk –AYk )AYk+ · · ·AYn .

Accordingly,

∥∥A∑n
k= Xk

(f ) –A∑n
k= Yk

(f )
∥∥ ≤

n∑
k=

∥∥AX . . .AXk– (AXk –AYk )AYk+ · · ·AYn (f )
∥∥

≤
n∑
k=

∥∥AYk+ · · ·AYn (AXk –AYk )(f )
∥∥

≤
n∑
k=

∥∥AXk (f ) –AYk (f )
∥∥.

. ‖An
X(f ) –An

Y (f )‖ ≤ n‖AX(f ) –AY (f )‖.

Lemma . The equation AXf (x) = AY f (x) for f ∈K, x ∈ Z+ shows that X and Y are iden-
tically distributed random variables.
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Let AX ,AX , . . . ,AXn , . . . be a sequence of Trotter-Renyi’s operators associated with the
independent discrete random variables X,X, . . . ,Xn, . . . , and assume that AX is a Trotter-
Renyi operator associated with the discrete random variable X. The following lemma
states one of the most important properties of the Trotter-Renyi operator.

Lemma . A sufficient condition for a sequence of random variables X,X, . . . ,Xn, . . . to
converge in distribution to a random variable X is that

lim
n→∞

∥∥AXn (f ) –AX(f )
∥∥ = , for all f ∈K.

Proof Since limn→∞ ‖AXn (f ) –AX(f )‖ = , for all f ∈K, we conclude that

lim
n→∞

∣∣∣∣∣
∞∑
k=

f (x + k)
(
P(Xn = k) – P(X = k)

)∣∣∣∣∣ = , for all f ∈K and for all x ∈ Z+.

Taking

f (x) =

⎧⎨
⎩, if  ≤ x≤ t,

, if x > t,

then we recover

lim
n→∞

∣∣∣∣∣
t∑

k=

(
P(Xn = k) – P(X = k)

)∣∣∣∣∣ = .

It follows that P(Xn ≤ t) – P(X ≤ t) →  as n → +∞. We infer that Xn
d−→ X as n → +∞.

�

Before stating the definition of the Trotter-Renyi distance we firstly need the definition
of a probability metric. Let (�,A,P) be a probability space and let Z(�,A) be a space of
real-valued A-measurable random variables X :� →R.

Definition . A functional d(X,Y ) : Z(�,A)×Z(�,A)→ [,∞) is said to be a probabil-
itymetric inZ(�,A) if it possesses for the randomvariablesX,Y ,Z ∈ Z(�,A) the following
properties (see [, ] and [] for more details):
. P(X = Y ) =  ⇒ d(X,Y ) = ;
. d(X,Y ) = d(Y ,X);
. d(X,Y )≤ d(X,Z) + d(Z,Y ).

We now return to the definition of a probability distance based on the Trotter-Renyi
operator (see [, ], and []).

Definition . The Trotter-Renyi distance dTR(X,Y ; f ) of two random variables X and Y
with respect to the function f ∈K is defined by

dTR(X,Y ; f ) := ‖AXf –AY f ‖ = sup
x∈Z+

∣∣Ef (X + x) – Ef (Y + x)
∣∣. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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Based on the properties of the Trotter-Renyi operator, some properties of the Trotter-
Renyi distance are summarized in the following (see [, , , ], and [] for more
details) and we shall omit the proofs.
. It is easy to see that dTR(X,Y ; f ) is a probability metric, i.e. for the random variables

X , Y , and Z the following properties are possessed:
(a) For every f ∈K, the distance dTR(X,Y ; f ) =  if P(X = Y ) = .
(b) dTR(X,Y ; f ) = dTR(Y ,X; f ) for every f ∈ K.
(c) dTR(X,Y ; f ) ≤ dTR(X,Z; f ) + dTR(Z,Y ; f ) for every f ∈K.

. If dTR(X,Y ; f ) =  for every f ∈K, then FX ≡ FY .
. Let {Xn,n≥ } be a sequence of random variables and let X be a random variable.

The condition

lim
n→+∞dTR(Xn,X; f ) = , for all f ∈ K,

implies that Xn
d−→ X as n→ ∞.

. Suppose that X,X, . . . ,Xn; Y,Y, . . . ,Yn are independent random variables (in
each group). Then, for every f ∈K,

dTR

( n∑
j=

Xj,
n∑
j=

Yj; f

)
≤

n∑
j=

dTR(Xj,Yj; f ). ()

Moreover, if the random variables are identically (in each group), then we have

dTR

( n∑
j=

Xj,
n∑
j=

Yj; f

)
≤ ndTR(X,Y; f ).

. Suppose that X,X, . . . ,Xn; Y,Y, . . . ,Yn are independent random variables (in each
group). Let {Nn,n≥ } be a sequence of positive integer-valued random variables
that are independent of X,X, . . . ,Xn and Y,Y, . . . ,Yn. Then, for every f ∈K,

dTR

( Nn∑
j=

Xj,
Nn∑
j=

Yj; f

)
≤

∞∑
k=

P(Nn = k)
k∑
j=

dTR(Xj,Yj; f ). ()

. Suppose that X,X, . . . ,Xn; Y,Y, . . . ,Yn are independent identically distributed
random variables (in each group). Let {Nn,n≥ } be a sequence of positive
integer-valued random variables that are independent of X,X, . . . ,Xn and
Y,Y, . . . ,Yn. Moreover, suppose that E(Nn) < +∞, n≥ . Then, for every f ∈K, we
have

dTR

( Nn∑
j=

Xj,
Nn∑
j=

Yj; f

)
≤ E(Nn) · dTR(X,Y; f ).

Finally, we emphasize that the Trotter-Renyi distance in () and the total variation dis-
tance in () have a close relationship if the function f is chosen as an indicator function of

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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a set A ∈ Z+, namely

f (x) = χA(x) =

⎧⎨
⎩, if x ∈ A,

, if x /∈ A.

Then

dTR(X,Y ,χA) = dTV (X,Y ),

where we denote by dTV (X,Y ) the total variation distance between two integer-valued
random variables X and Y , defined as follows:

dTV (X,Y ) = sup
A⊆Z+

∣∣P(X ∈ A) – P(Y ∈ A)
∣∣ = 


∑
k∈Z+

∣∣P(X = k) – P(Y = k)
∣∣.

For a deeper discussion of the total variation distance, we refer the reader to [–], and
[].

3 Main results
Let {AXn,j , j = , , . . . ,n;n = , , . . .} be a sequence of operators associated with the integer-
valued random variables Xn,j, j = , , . . . ,n; n = , , . . . , and let {AZpn,j , j = , , . . . ,n;n =
, , . . .} be a sequence of operators associated with the Poisson random variables with pa-
rameters pn,j, j = , , . . . ,n; n = , , . . . . SinceZλn is a Poisson randomvariable with positive
parameter λn =

∑n
j= pn,j, we can write Zλn

d=
∑n

j= Zpn,j , where Zpn, ,Zpn, , . . . ,Zpn,n are in-
dependent Poisson random variables with positive parameters pn,,pn,, . . . ,pn,n, and the
notation d= denotes coincidence of distributions.

Theorem . Let {Xn,j, j = , , . . . ,n;n = , , . . .} be a row-wise triangular array of in-
dependent, integer-valued random variables with probabilities P(Xn,j = ) = pn,j, P(Xn,j =
) =  – pn,j – qn,j; pn,j,qn,j ∈ (, ); pn,j + qn,j ∈ (, ); j = , , . . . ,n; n = , , . . . . Let us write
Sn =

∑n
j=Xn,j and λn =

∑n
j= pn,j. We will denote by Zλn the Poisson random variable with

parameter λn. Then, for all functions f ∈K,

dTR(Sn,Zλn ; f ) ≤ ‖f ‖
n∑
j=

(
pn,j + qn,j

)
.

Proof Applying (), we have

dTR(Sn,Zλn , f ) ≤
n∑
j=

dTR(Xn,j,Zpn,j ; f ) =
n∑
k=

∥∥AXn,j (f ) –AZpn,j (f )
∥∥.

Moreover, for all f ∈K, for all x ∈ Z+ and r ∈ {, , . . . ,n} we conclude that

AXnj f (x) –AZpn,j f (x) =
∞∑
r=

f (x + r)
(
P(Xnj = r) – P(Zλpn,j

= r)
)

=
∞∑
r=

f (x + r)
(
P(Xnj = r) –

e–pn,j prn,j
r!

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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= f (x)
(
 – pn,j – qn,j – e–pn,j

)
+ f (x + )

(
pn,j – pn,je–pn,j

)
+

∞∑
r=

f (x + r)
(
P(Xn,j = r) –

e–pn,j prn,j
r!

)
.

Therefore, for all functions f ∈ K , and for all x ∈ Z+, we have

∣∣AXn,j f (x) –AZpn,j f (x)
∣∣

=

∣∣∣∣∣f (x)( – pn,j – qn,j – e–pn,j
)
+ f (x + )

(
pn,j – pn,je–pn,j

)

+
∞∑
r=

f (x + r)
(
P(Xn,j = r) –

e–pn,j prn,j
r!

)∣∣∣∣∣
=

∣∣f (x)( – pn,j – qn,j – e–pn,j
)∣∣ + ∣∣f (x + )

(
pn,j – pn,je–pn,j

)∣∣
+

∣∣∣∣∣
∞∑
r=

f (x + r)
(
P(Xn,j = r) –

e–pn,j prn,j
r!

)∣∣∣∣∣
≤ ∣∣f (x)( – pn,j – qn,j – e–pn,j

)∣∣ + ∣∣f (x + )
(
pn,j – pn,je–pn,j

)∣∣
+

∣∣∣∣∣
∞∑
r=

f (x + r)P(Xn,j = r)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
r=

f (x + r)
e–pn,j prn,j

r!

∣∣∣∣∣
≤ (

e–pn,j + pn,j + qn,j – 
)
sup
x∈Z+

∣∣f (x)∣∣ + (
pn,j – pn,je–pn,j

)
sup
x∈Z+

∣∣f (x)∣∣

+ sup
x∈Z+

∣∣f (x)∣∣
∣∣∣∣∣

∞∑
r=

P(Xn,k = r)

∣∣∣∣∣ + sup
x∈Z+

∣∣f (x)∣∣
∣∣∣∣∣

∞∑
r=

e–pn,j prn,j
r!

∣∣∣∣∣
= sup

x∈Z+

∣∣f (x)∣∣(e–pn,j + pn,j + qn,j –  + pn,j – pn,je–pn,j + qn,j +  – e–pn,j – pn,je–pn,j
)

= ‖f ‖(pn,j – pn,je–pn,j + qn,j
)

≤ ‖f ‖(pn,j + qn,j
)
.

One infers that

∀f ∈ K ,
∥∥AXn,j (f ) –AZpn,j (f )

∥∥ ≤ ‖f ‖(pn,j + qn,j
)
.

Therefore, applying (), we can assert that

dTR(Sn,Zλn ; f ) ≤ ‖f ‖
n∑
j=

(
pn,j + qn,j

)
.

This completes the proof. �

Corollary . Under the assumptions of Theorem ., let r ∈ {, , . . . ,n}, we have

∣∣P(Sn = r) – P(Zλn = r)
∣∣ ≤ 

n∑
j=

(
pn,j + qn,k

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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Remark . We consider Corollary . and assume that the following conditions are sat-
isfied:

(i) lim
n→∞

n∑
j=

qn,j = ,

(ii) lim
n→∞ max

≤k≤n
pn,j = ,

(iii) lim
n→∞λn = lim

n→∞

n∑
j=

pn,j = λ ( < λ < +∞).

Then Sn
d→ Zλ as n→ ∞.

Theorem . Let {Xn,j, j = , , . . . ,n;n = , , . . .} be a row-wise triangular array of inde-
pendent, integer-valued random variables with probabilities P(Xn,j = ) = pn,j, P(Xn,j = ) =
 – pn,j – qn,j; pn,j,qn,j ∈ (, ); pn,j + qn,j ∈ (, ); j = , , . . . ,n; n = , , . . . .Moreover, we sup-
pose that Nn, n = , , . . . are positive integer-valued random variables, independent of all
Xn,j, j = , , . . . ,n; n = , , . . . . Let us write SNn =

∑Nn
j=Xn,j and λNn =

∑Nn
j= pn,j. We will de-

note by ZλNn the Poisson randomvariablewith parameter λNn .Then, for all functions f ∈ K,

dTR(SNn ,ZλNn ; f ) ≤ ‖f ‖E
( Nn∑

j=

(
pNn ,j + qNn ,j

))
.

Proof According to Theorem . and (), for all functions f ∈ K, and for all x ∈ Z+, we
have

dTR(SNn ,ZλNn ; f ) ≤
∞∑
m=

P(Nn =m)dTR(Sm,Zλm ; f )

≤
∞∑
m=

P(Nn =m)‖f ‖
m∑
j=

(
pNn ,j + qNn ,j

)

= ‖f ‖
∞∑
m=

[
P(Nn =m)

m∑
j=

(
pNn ,j + qNn ,j

)]

= ‖f ‖E
( Nn∑

j=

(
pNn ,j + qNn ,j

))
.

Therefore,

dTR(SNn ,ZλNn ; f ) ≤ ‖f ‖E
( Nn∑

j=

(
pNn ,j + qNn ,j

))
.

The proof is complete. �

Corollary . According to Theorem ., let r ∈ {, , . . . ,n}, we have

∣∣P(SNn = r) – P(ZλNn = r)
∣∣ ≤ E

( Nn∑
j=

(
pNn ,j + qNn ,j

))
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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Theorem . Let {Xk,j} (k = , , . . . ; j = , , . . .) be a double array of independent integer-
valued random variables with probabilities P(Xk,j = ) = pk,j, P(Xk,j = ) =  – pk,j – qk,j,
pn,k ∈ (, ); k = , , . . . ; j = , , . . . . Assume that for every k = , , . . . the random variables
Xk,,Xk,, . . . , are independent, and for every j = , , . . . the random variables X,j,X,j, . . . are
independent. Set Snm =

∑n
k=

∑m
j=Xk,j. Let us denote by Zδn,m the Poisson random variable

with mean δn,m =
∑n

k=
∑m

j= pk,j. Then, for all f ∈K,

dTR(Snm,Zδn,m , f ) ≤ ‖f ‖
n∑
k=

m∑
j=

(
pk,j + qk,j

)
.

Proof Applying the inequality in (), we have

dTR(Snm,Zδnm , f ) ≤
n∑
k=

dTR(Skm,Zμk,m , f )

≤
n∑
k=

m∑
j=

dTR(Sk,j,Zλk,j , f ).

According to Theorem ., for all functions f ∈K, and for all x ∈ Z+, we conclude that

dTR(Sk,j,Zλk,j , f ) ≤ ‖f ‖(pk,j + qk,j
)
.

Therefore,

dTR(Snm,Zδnm , f ) ≤ ‖f ‖
n∑
k=

m∑
j=

(
pk,j + qk,j

)
.

This completes the proof. �

Theorem . Let {Xk,j,k = , , . . . ; j = , , . . .} be a double array of independent integer-
valued random variables with P(Xk,j = ) = pk,j; P(Xk,j = ) =  – pk,j – qk,j; pk,j,qk,j ∈ (, );
pk,j + qk,j ∈ (, ); k = , , . . . ; n = , , . . . . Assume that for every k = , , . . . the ran-
dom variables Xk,,Xk,, . . . , are independent, and for every j = , , . . . the random vari-
ables X,j,X,j, . . . are independent. Set Snm =

∑n
k=

∑m
j=Xk,j. Suppose that Nn, Mm are

non-negative integer-valued random variables independent of all Xn,m, n ≥ ; m ≥ .
Let us denote by ZδNnMm the Poisson random variable with mean δNnMm = E(SNnMm ) =∑Nn

k=
∑Mm

j= pk,j. Then, for all functions f ∈K,

dTR(SNnMm ,ZδNnMm , f ) ≤ ‖f ‖E
( Nn∑

k=

Mn∑
j=

(
pk,j + qk,j

))
.

Proof According to Definition ., we have

(ASNnMm f )(x) := E
(
f (SNnMm + x)

)
=

∞∑
n=

P(Nn = n)
∞∑
m=

P(Mn =m)(ASnmf )(x)

http://www.journalofinequalitiesandapplications.com/content/2014/1/291
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and

(AZδNnMm
f )(x) := E

(
f (ZδNnMm + x)

)

=
∞∑
n=

P(Nn = n)
∞∑
m=

P(Mn =m)(AZδnm f )(x).

Therefore, for all functions f ∈K, and for all x ∈ Z+, we have

∥∥ASNnMm (f ) –AZδNnMm
(f )

∥∥
≤

∞∑
n=

P(Nn = n)
∞∑
m=

P(Mn =m)
∥∥ASnm (f ) –AZδn,m (f )

∥∥

≤ ‖f ‖
∞∑
n=

P(Nn = n)
∞∑
m=

P(Mn =m)

( n∑
k=

m∑
j=

(
pk,j + qk,j

))

= ‖f ‖
∞∑
n=

P(Nn = n)E

( n∑
k=

Mm∑
j=

(
pk,j + qk,j

))

= ‖f ‖E
( Nn∑

k=

Mm∑
j=

(
pk,j + qk,j

))
.

Thus,

dTR(SNnMm ,ZδNn ,Mm , f ) ≤ ‖f ‖E
( Nn∑

k=

Mn∑
j=

(
pk,j + qk,j

))
.

The proof is straightforward. �

Remark . In the case of all probabilities qn,j = , j = , , . . . ,n; n = , , . . . the partial
sum Sn =

∑n
j=Xn,j will become a Poisson-binomial random variable, and one concludes

that the results of Theorems ., ., ., and . are extensions of results in [] (see []
for more details).

We conclude this paper with the following comments. The Trotter-Renyi distance
method is based on the Trotter-Renyi operator and it has a big application in the Poisson
approximation. Using this method it is possible to establish some bounds in the Poisson
approximation for sums (or random sums) of independent integer-valued randomvectors.
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