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Abstract
In this paper, we present some new inequalities for unitarily invariant norms involving
Heron and Heinz means for matrices, which generalize the result of Theorem 2.1 (Fu
and He in J. Math. Inequal. 7(4):727-737, 2013) and refine the inequality of Theorem 6
(Zhan in SIAM J. Matrix Anal. Appl. 20: 466-470, 1998). Our results are a refinement and
a generalization of some existing inequalities.
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1 Introduction
Throughout, letMm,n be the space ofm× n complex matrices andMn =Mn,n.
A norm ‖ · ‖ is called unitarily invariant norm if ‖UAV‖ = ‖A‖ for all A ∈ Mn and for

all unitary matrices U ,V ∈ Mn. Two classes of unitarily invariant norms are especially
important. The first is the class of the Ky Fan k-norm ‖ · ‖(k), defined as

‖A‖(k) =
k∑
j=

sj(A), k = , . . . ,n,

where si(A) (i = , . . . ,n) are the singular values of A with s(A) ≥ · · · ≥ sn(A), which are
the eigenvalues of the positive semidefinite matrix |A| = (A∗A)  , arranged in decreasing
order and repeated according to multiplicity. The second is the class of the Schatten p-
norm ‖ · ‖(p), defined as

‖A‖p =
( n∑

j=

spj (A)

) 
p

=
(
tr |A|p) 

p ,  ≤ p < ∞.

For two nonnegative real numbers a and b, the Heinz mean and Heron mean in the
parameter v,  ≤ v ≤ , are defined, respectively, as

Hv(a,b) =
avb–v + a–vbv


,

Fα(a,b) = ( – α)
√
ab + α

a + b


.
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Note that H(a,b) =H(a,b) = a+b
 (the arithmetic mean of a and b) and H 


(a,b) =

√
ab

(the geometric mean of a and b). It is easy to see that as a function of v, Hv(a,b) is convex,
attains its minimum at v = 

 , and attains its maximum at v =  and v = .
The operator version of the Heinz mean [] asserts that if A, B and X are operators on

a complex separable Hilbert space such that A and B are positive, then for every unitarily
invariant norm ‖ · ‖, the function g(v) = ‖AvXB–v + A–vXBv‖ is convex on [, ], attains
its minimum at v = 

 , and attains its maximum at v =  and v = . Moreover, the operator
version of the Heron mean [] asserts that f (α) = ‖( – α)A 

XB 
 + α(AX+XB )‖.

LetA,B,X ∈Mn,A, B are positive definite, Kaur and Singh [] have proved the following
inequalities for any unitarily invariant norm ‖ · ‖:



∥∥AvXB–v +A–vXBv∥∥ ≤

∥∥∥∥( – α)A

XB


 + α

(
AX +XB



)∥∥∥∥ (.)

and

∥∥A 
XB



∥∥ ≤ 


∥∥A 

XB

 +A


XB



∥∥ ≤ 

 + t
∥∥AX + tA


XB


 +XB

∥∥, (.)

where 
 ≤ v≤ 

 , α ∈ [  ,∞) and t ∈ (–, ].
Replacing A, B by A, B in (.) and (.), then putting u = v, the following inequalities

hold:



∥∥AuXB–u +A–uXBu∥∥ ≤

∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ (.)

and

‖AXB‖ ≤ 

∥∥A 

XB

 +A


XB



∥∥ ≤ 

t + 
∥∥AX + tAXB +XB∥∥, (.)

where 
 ≤ u≤ 

 , α ∈ [  ,∞) and t ∈ (–, ].
Zhan proved in [] that if A,B,X ∈Mn, such that A, B are positive semidefinite, then

∥∥AuXB–u +A–uXBu∥∥ ≤ 
t + 

∥∥AX + tAXB +XB∥∥ (.)

for 
 ≤ u ≤ 

 and t ∈ (–, ].
Let A,B,X ∈ Mn, such that A, B are positive semidefinite, for 

 ≤ u ≤ 
 and t ∈ (–, ];

Fu et al. in [] proved that

‖AXB‖ + 
(∫ 






∥∥ArXB–r +A–rXBr∥∥dr – ‖AXB‖
)

≤ 
t + 

∥∥AX + tAXB +XB∥∥. (.)

Recently, Kaur et al. [], He et al. [] and Bakherad et al. [] have studied similar topics.
For the sake of convenience, we set

g(u) =
∥∥∥∥AuXB–u +A–uXBu



∥∥∥∥.
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In Section , we will generalize and refine some existing inequalities for unitarily invari-
ant norms involving Heron and Heinz means for matrices and present some new refine-
ments of the inequalities above.

2 Main results
In this section, we firstly utilize the convexity of the function g(u) to obtain a unitarily
invariant norms inequality that leads to another version of the inequality (.), which is
also the refinement of the inequality (.).
To obtain the results, we need the following lemma on convex functions [, ].

Lemma . Let f be a real valued continuous convex function on an interval [a,b] which
contains (x,x). Then for x ≤ x ≤ x, we have

f (x)≤ f (x) – f (x)
x – x

x –
xf (x) – xf (x)

x – x
.

Theorem . Let A,B,X ∈Mn, such that A, B are positive semidefinite. Then for any uni-
tarily invariant norm ‖ · ‖, 

 ≤ u≤ 
 and α ∈ [  ,∞),

∥∥AuXB–u +A–uXBu∥∥ ≤ (r – )‖AXB‖

+ ( – r)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥, (.)

where r =min[ u ,  –
u
 ].

Proof For 
 ≤ u ≤ , by the convexity of the function g(u) and Lemma ., presented

above, we have

g(u) ≤ g() – g(  )



u –

g() – g(  ))




,

which implies

g(u) ≤ ( – u)g
(



)
+ (u – )g(). (.)

By (.) and (.), we have

∥∥AuXB–u +A–uXBu∥∥ ≤ ( – u)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ + (u – )‖AXB‖.

So,

∥∥AuXB–u +A–uXBu∥∥ ≤ (r – )‖AXB‖

+ ( – r)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥. (.)
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For  ≤ u ≤ 
 , by the convexity of the function g(u) and Lemma ., presented above,

we have

g(u) ≤ g(  ) – g()



u –
g(  ) –


g()




,

which implies

g(u) ≤ ( – u)g() + (u – )g
(



)
. (.)

By (.) and (.), we have

∥∥AuXB–u +A–uXBu∥∥ ≤ ( – u)‖AXB‖

+ (u – )
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥.
So,

∥∥AuXB–u +A–uXBu∥∥ ≤ (r – )‖AXB‖

+ ( – r)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥. (.)

By (.) and (.), for 
 ≤ u ≤ 

 , α ∈ [  ,∞) and r =min[ u ,  –
u
 ], we have the following

equivalent inequality:

∥∥AuXB–u +A–uXBu∥∥ ≤ (r – )‖AXB‖

+ ( – r)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥.
The proof is completed. �

Remark . With a simple computation between the upper bounds in (.) and (.),
obviously we have

∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥
– (r – )‖AXB‖ – ( – r)

∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥
= (r – )

∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ – (r – )‖AXB‖

= (r – )
(∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ – ‖AXB‖
)

> .

Thus the inequality (.) is a refinement of the inequality (.).
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Now, we present a refinement of the inequality ‖AXB‖ ≤ ‖( – α)AXB + α(AX+XB
 )‖.

Theorem . Let A,B,X ∈Mn, such that A, B are positive semidefinite. Then for any uni-
tarily invariant norm ‖ · ‖, 

 ≤ u≤ 
 , and α ∈ [  ,∞), we have

‖AXB‖ + 
(∫ 






∥∥AuXB–u +A–uXBu∥∥du – ‖AXB‖
)

≤
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥, (.)

where r =min[ u ,  –
u
 ].

Proof For 
 ≤ u≤ , from Theorem ., we have

∥∥AuXB–u +A–uXBu∥∥ ≤ ( – u)
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥
+ (u – )‖AXB‖.

By integrating both sides of the inequality above, we have

∫ 




∥∥AuXB–u +A–uXBu∥∥du
≤ 

∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥
∫ 




( – u)du

+ ‖AXB‖
∫ 




(u – )du

=



∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ +


‖AXB‖. (.)

For  ≤ u≤ 
 , from Theorem ., we have

∥∥AuXB–u +A–uXBu∥∥ ≤ ( – u)‖AXB‖

+ (u – )
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥.
Similarly, by integrating both sides of the inequality above, we have

∫ 




∥∥AuXB–u +A–uXBu∥∥du
≤ ‖AXB‖

∫ 



( – u)du

+ 
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥
∫ 




(u – )du

=



∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ +


‖AXB‖. (.)
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It follows from (.) and (.) that

∫ 





∥∥AuXB–u +A–uXBu∥∥du≤
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥ + ‖AXB‖,

which is equivalent to

‖AXB‖ + 
(∫ 






∥∥AuXB–u +A–uXBu∥∥du – ‖AXB‖
)

≤ 
∥∥∥∥( – α)AXB + α

(
AX +XB



)∥∥∥∥.
The proof is completed. �

Remark . Obviously,

∫ 





∥∥AuXB–u +A–uXBu∥∥du – ‖AXB‖ ≥ .

Thus, the inequality (.) is a refinement of the inequality ‖AXB‖ ≤ ‖( – α)AXB +
α(AX+XB

 )‖.

Taking α = 
t+ (– < t ≤ ), the following corollaries are obtained.

Corollary . Let A,B,X ∈ Mn, such that A, B are positive semidefinite. Then for any uni-
tarily invariant norm ‖ · ‖ and 

 ≤ u≤ 
 ,

∥∥AuXB–u +A–uXBu∥∥ ≤ (r – )‖AXB‖

+
( – r)

t + 
∥∥AX + tAXB +XB∥∥, (.)

where r =min[ u ,  –
u
 ] and – < t ≤ .

Corollary . Let A,B,X ∈Mn, such that A, B are positive semidefinite. Then for any uni-
tarily invariant norm ‖ · ‖, 

 ≤ u≤ 
 ,

‖AXB‖ + 
(∫ 






∥∥AuXB–u +A–uXBu∥∥du – ‖AXB‖
)

≤ 
t + 

∥∥AX + tAXB +XB∥∥, (.)

where r =min[ u ,  –
u
 ] and – < t ≤ .

Thus, on the one hand, the inequality (.) is a refinement of the inequality ‖AXB‖ ≤


t+‖AX+ tAXB+XB‖, and also another version of the inequality (.); on the other hand,
the inequality (.) is just the inequality proved in [], so the inequality (.) presented
in Theorem . is also the generalization of the inequality proved in [].
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