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Abstract

This paper studies a coupled Cahn-Hilliard-Boussinesq system with zero viscosity. We
prove a regularity criterion in terms of vorticity in the homogeneous Besov space
B o
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1 Introduction
In this paper, we study the following Cahn-Hilliard-Boussinesq system with zero viscos-

ity [1]:

Qe+ (- V)u+ Vi = uVe + Oes, (1.1)
divu =0, (1.2)
96 +u- VO = A6, (1.3)
dp+u-Vo=Apu, (14)
~A¢ +f' (@) = 1, (1.5)
(1,6, 9)(x,0) = (uo, 60, o) (%), x€R?, (1.6)

with u the fluid velocity field, 6 the temperature, ¢ the order parameter, and 7 the pressure,
are the unknowns. e3 := (0,0,1)". u is the chemical potential. f(¢) := %(qﬁ2 —1)? is the double
well potential.
When 0 = ¢ =0, (1.1) and (1.2) are the well-known Euler system; Kozono, Ogawa and
Taniuchi [2] proved the following regularity criterion:
w :=curlu € LY(0, T;Bgom). 1.7)
Here Bgo,oo denotes the homogeneous Besov space.
When ¢ =0, (1.1), (1.2), and (1.3) are the well-known Boussinesq system with zero vis-

cosity; Fan and Zhou [3] also showed the regularity criterion (1.7).
When u =0, (1.4) and (1.5) are the well-known Cahn-Hilliard system.
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It is easy to show that the problem (1.1)-(1.6) has a unique local smooth solution, thus
we omit the details here. However, the global regularity is still open. The aim of this paper
is to study the blow up criterion. We will prove the following.

Theorem 1.1 Let T > 0 and uy € H?, 6y € H?, ¢ € H® with div ug = 0 in R®. Suppose that
(1,0, ) is a local smooth solution to the problem (1.1)-(1.6). Then (u,0, @) is smooth up to
time T provided that (1.7) is satisfied.

We will use the following logarithmic Sobolev inequality [2]:
Vi oo < C(l + || curl u”Bgo,oo log(e + HAsuHLZ)), (1.8)

and the bilinear product and commutator estimates due to Kato and Ponce [4]:

|80 < CUIAS || o Ilzar + 1 Nlee | A% g )5 (1.9)
| a*(g) ~fAg | < CAUIV Al [ A7 g g + [ A ] o lIgllze2), (110)
with s> 0, A := (-A)"? and }7 = pil + i = pLz + é,

2 Proof of Theorem 1.1
First, it follows from (1.2), (1.3), and the maximum principle that

101l o0, 75200) < C. (2.1)

Testing (1.3) by 6, using (1.2), we see that

1d
—— [ 6%dx+ / IVO|>dx =0,
2dt
whence
101l oo, 7502y + 101l 20,7511y < C. (2.2)

Testing (1.4) by ¢, using (1.2) and (1.5), we find that

1d 5 9
5%/(]5 dx+/|A¢>| dx
= / f(¢)A¢pdx = / (¢° - ¢)Apdx
:_/3¢2|V¢|2dx—/¢A¢dx
< / b AGdx < 121 A2

=

1
1A, + Ellfblliz,

N =

which gives

ldll oo, 72y + DNl 200, 702) < C. (2.3)
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Testing (1.1) and (1.4) by u and p, respectively, using (1.2), (1.5), and (2.2), summing up

the result, we deduce that

d 1

r §|V¢|2+f(¢)+%uzdx+/|V/L|2dx

= /Qegudxi 0121zl 2 < Cllall 2,

which gives

1 Loogo,5e1y < C, (2.4)
lztll oo 0, 1502) < C, (2.5)
IV ull2e,r;02) < C. (2.6)

In the following calculations, we will use the following Gagliardo-Nirenberg inequality:

I9ll7 < CIVAl2 1 AG ]2 2.7)

It follows from (2.6), (1.5), (2.3), (2.4), and (2.7) that

/(;T/|VA¢|2dxdt _ /()T/|V(ff(¢)—,u)’2dxdt
SC/OT/IVM|2dxdt+C/()T/’Vf/(d))’zdxdt

T
<C+ cf /|v(¢3 ~¢)[* dxdt
0
T
< C+C/ /¢4|V¢|2dxdt
0
T
< C+ClIVPll (o1 / 1170 it
0
T
<C+ C/ Il dt
0
T
<C+ C/ IVoI7.11A0|17, dt
0
9 T
< Cawp|vol}, [ Iagltde=C, 28)
t 0
which yields
Vol 20,5000 < C. (2.9)
Applying A3 to (1.1), testing by A%y, using (1.2), (1.9), (1.10), and noting that

1
AGVH =D 3(0$Ve) - S VIVSL,
j
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we derive

1
—i/|A3u|2dx = —f(AB(u-Vu)—uVAsu)Asudx
2dt
—/ZA?’aj(aj(pv(p)-A3udx+/A39e3.A3udx
j

< ClIValle | A%u}, + ClIIVOlle || A% | o | A%u] 2
+Cl A%, [ A%ul
< ClIVull | A%u}, + ClIIVOI 2 || A3u] > + C| A3ul,

+e A% + e A%, (210)

foranyO<e<1.
Taking A to (1.3), testing by A6, using (1.2), (1.10), and (2.1), we obtain

1d
——/|A9|2dx+/|VA9|2dx
2dt
=_/(A(u-V9)—uVA9)A9dx

< ClIVull=[|A8172 + CIIVO | Al 4] AG]| 2

< ClIVuls | A0]7, + CIONLR I AOILT - IVl 2 IV Aul)s - | A0 2

< CIVuli=|A0]72 + C(IVallz [ AO 2 + IV Aull2) | AB |2

< Cl|Vullre | AGII72 + CIIABIZ, + CIIV Aul,. (2.11)
Here we have used the Gagliardo-Nirenberg inequalities:

IVOI7s < CllOllz< | A6 2,

[ Aull?, < ClIVall o IV Aull 2.
Taking VA to (1.4), testing by VA¢, using (1.5), (1.2), and (1.10), we have
1d 2
5%/ IVAQ|* dx + /]A5¢| dx
= —Z/(VA(uiaiq)) ~u;VAdp) VA dx + f VA - Af'(¢)- VA dx

< ClVulli= VA7, + CIVlle | Aul 2 IVAS] 2

+ / VAf (¢) - VA*p dx. (2.12)
Using (2.4), we get
/VAf’(¢)-VA2¢dx

< Cf(wmm + 0% IVAG| + 1911Vl VZ@| + IVPI®) | VA% ¢| dx
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<C(IVARl2 + 1B17IVASIl 2
+ 1@ IVPl2 | V|| oo + IVBIFwIVPlI2) [ A 2
< CIVADIZ, + ClollxIVAPIF: + Cliplls | V3| o | A%

1
+ CIVOl2 | A% 5 + Z | %2, (2.13)

Now we use the following Gagliardo-Nirenberg inequalities:

1/4

[V26 ] = CIVAGIE [ A%

L

IVol3e < ClAlL]| A% .

We obtain

/VAf/(q))-VAqudx
< CIVAYIZ, + Clolli= VAP

1
+ ClOIB2 IV A% + ClAGI | A%, + 5 |A°0] . (2.14)

Combining (2.10), (2.11), (2.12), and (2.14), taking € small enough, using (1.8), (2.5),

Gronwall’s inequality and

@1l 140,5000) < C,

we conclude that

l2ell poo 0,713y < G,
101l Lo o, 7512y + 101l 20,7513y < C,

&Nl Lo 0,753y + 1PN 120,715) < C.

This completes the proof.
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