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Abstract
Under the assumption that μ is a non-doubling measure on R

d satisfying the growth
condition, the authors prove that the fractional type Marcinkiewicz integralM is
bounded from the Hardy space H1,∞,0

fin (μ) to the Lebesgue space Lq(μ) for 1
q = 1 – α

n

with kernel satisfying a certain Hörmander-type condition. In addition, the authors
show that for p = n

α
,M is bounded from the Morrey spaceMp

q(μ) to the space
RBMO(μ) and from the Lebesgue space L

n
α (μ) to the space RBMO(μ).
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1 Introduction
Let μ be a nonnegative Radon measure on R

d which satisfies the following growth condi-
tion: for all x ∈R

d and all r > ,

μ
(
B(x, r)

) ≤ Crn, (.)

where C and n are positive constants and n ∈ (,d], B(x, r) is the open ball centered at x
and having radius r. So μ is claimed to be non-doubling measure. If there exists a positive
constant C such that for any x ∈ supp(μ) and r > , μ(B(x, r)) ≤ Cμ(B(x, r)), the μ is
said to be doubling measure. It is well known that the doubling condition on underlying
measures is a key assumption in the classical theory of harmonic analysis. Especially, in
recent years,many classical results concerning the theory ofCalderón-Zygmundoperators
and function spaces have been proved still valid if the underlyingmeasure is a nonnegative
Radonmeasure onR

d which only satisfies (.) (see [–]). The motivation for developing
the analysis with non-doubling measures and some examples of non-doubling measures
can be found in [].Weonly point out that the analysiswith non-doublingmeasures played
a striking role in solving the long-standing open Painlevé’s problem by Tolsa in [].
Let K(x, y) be a μ-locally integrable function on R

d × R
d \ {(x, y) : x = y}. Assume that

there exists a positive constant C such that for any x, y ∈R
d with x �= y,

∣∣K(x, y)
∣∣ ≤ C|x – y|–(n–), (.)
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and for any x, y, y′ ∈R
d ,

∫
|x–y|≥|y–y′|

[∣∣K(x, y) –K
(
x, y′)∣∣ + ∣∣K(y,x) –K

(
y′,x

)∣∣] 
|x – y| dμ(x)≤ C. (.)

The fractional typeMarcinkiewicz integralM associated to the above kernelK(x, y) and
the measure μ as in (.) is defined by

M(f )(x) =
(∫ ∞



∣∣∣∣
∫

|x–y|≤t

K(x, y)
|x – y|–α

f (y)dμ(y)
∣∣∣∣
 dt
t

) 

, x ∈R

d,  < α < n. (.)

If μ is the d-dimensional Lebesgue measure in R
d , and

K(x, y) =
�(x – y)
|x – y|n– , (.)

with � homogeneous of degree zero and � ∈ Lipγ (Sd–) for some γ ∈ (, ], then K satis-
fies (.) and (.). Under these conditions,M in (.) is introduced by Si et al. in []. As
a special case, by letting α = , we recapture the classical Marcinkiewicz integral opera-
tors that Stein introduced in  (see []). Since then, many works have appeared about
Marcinkiewicz type integral operators. A nice survey has been given by Lu in [].
In , the Hörmander-type condition was introduced by Hu et al. in [], which was

slightly stronger than (.) and was defined as follows:

sup
�>,y,y′∈Rd

|y–y′|≤�

∞∑
k=

k
∫
k�<|x–y|≤k+�

[∣∣K(x, y) –K
(
x, y′)∣∣

+
∣∣K(y,x) –K

(
y′,x

)∣∣] 
|x – y| dμ(x) ≤ C. (.)

However, in this paper, we discover that the kernel should satisfy some other kind of
smoothness condition to replace (.).

Definition . Let  ≤ s < ∞,  < ε < . The kernel K is said to satisfy a Hörmander-type
condition if there exist cs >  and Cs >  such that for any x ∈R

d and � > cs|x|,

sup
�>,y,y′∈Rd

|y–y′|≤�

∞∑
k=

kε
(
k�

)n( 
(k�)n

∫
k�<|x–y|≤k+�

[(∣∣K(x, y) –K
(
x, y′)∣∣

+
∣∣K(y,x) –K

(
y′,x

)∣∣) 
|x – y|

]s
dμ(x)

) 
s ≤ Cs. (.)

We denote byHs the class of kernels satisfying this condition. It is clear that these classes
are nested,

Hs ⊂Hs ⊂H,  < s < s < ∞.

We should point out thatH is not condition (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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The purpose of this paper is to get some estimates for the fractional typeMarcinkiewicz
integral M with kernel K satisfying (.) and (.) on the Hardy-type space and the
RBMO(μ) space. To be precise, we establish the boundedness of M in H,∞,

fin (μ) for

q = – α

n in Section . In Section , we prove thatM is bounded from the spaceRBMO(μ)
to the Morrey space Mp

q(μ), from the space RBMO(μ) to the Lebesgue space L n
α (μ) for

p = n
α
.

Before stating our results, we need to recall some necessary notation and definitions.
For a cubeQ⊂ R

d , we mean a closed cube whose sides are parallel to the coordinate axes.
We denote its center and its side length by xQ and �(Q), respectively. Let η > , ηQ denote
the cube with the same center as Q and �(ηQ) = η�(Q). Given two cubes Q ⊂ R in R

d , set

SQ,R =  +
NQ,R∑
k=

μ(kQ)
[�(kQ)]n

,

whereNQ,R is the smallest positive integer k such that �(kQ)≥ �(R). The concept SQ,R was
introduced in [], where some useful properties of SQ,R can be found.

Lemma . For a function b ∈ Lloc(μ),  < β ≤ , conditions (i) and (ii) below are equiva-
lent.

(i) There exist some constant C and a collection of numbers bQ such that these two
properties hold: for any cube Q,


μ(Q)

∫
Q

∣∣b(x) – b(y)
∣∣dμ(x)≤ C�(Q)β , (.)

and for any cube R such that Q ⊂ R and �(R)≤ �(Q),

|bQ – bR| ≤ C�(Q)β . (.)

(ii) For any given p,  ≤ p≤ ∞, there is a constant C(p) ≥  such that for every cube Q,
then

[


μ(Q)

∫
Q

∣∣b(x) –mQ(b)
∣∣p dμ(x)

] 
p

≤ C(p)�(Q)β , (.)

where

mQ(b) =


μ(Q)

∫
Q
b(y)dμ(y),

and also for any cube R such that Q⊂ R and �(R)≤ �(Q),

∣∣mQ(b) –mR(b)
∣∣ ≤ C(p)�(Q)β .

Remark . Lemma . is a slight variant of Theorem . in []. To be precise, if we
replace all balls in Theorem . of [] by cubes, we then obtain Lemma ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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Remark . For  < β ≤ , (.) is equivalent to

|bQ – bR| ≤ CSQ,R�(R)β (.)

for any two cubes Q⊂ R with �(R)≤ �(Q) (see Remark . in []).

Lemma . Let  < α < n,  < p < n
α
, 
r =


p – α

n and q ≥ n
n–α

. Then the fractional integral
operator Iα defined by

Iαf (x) =
∫
Rd

f (y)
|x – y|n–α

dy

is bounded from Lp(μ) to Lr(μ) (see []).

Lemma . Let  < α < n,  < p < n
α
, 
q =


p –

α
n . Suppose that K(x, y) satisfies (.) and (.)

and M is as in (.). Then there exists a positive constant C >  such that for all bounded
functions f with compact support,

∥∥M(f )
∥∥
Lq(μ) ≤ C‖f ‖Lp(μ).

Proof of Lemma . By Minkowski’s inequality, we have

M(f )(x) =
(∫ ∞



∣∣∣∣
∫

|x–y|≤t

K(x, y)
|x – y|–α

f (y)dμ(y)
∣∣∣∣
 dt
t

)/

≤
∫
Rd

|K(x, y)|
|x – y|–α

∣∣f (y)∣∣(∫ ∞

|x–y|
dt
t

) 

dμ(y)

≤ C
∫
Rd


|x – y|n–α–

∣∣f (y)∣∣ 
|x – y| dμ(y)

≤ C
∫
Rd

|f (y)|
|x – y|n–α

dμ(y)

≤ CIα
(|f |)(x).

By Lemma . then

∥∥M(f )
∥∥
Lq(μ) ≤ C‖f ‖Lp(μ). �

Throughout this paper, we use the constantC with subscripts to indicate its dependence
on the parameters. For a μ-measurable set E, χE denotes its characteristic function. For
any p ∈ [,∞], we denote by p′ its conjugate index, namely 

p +

p′ = .

2 Boundedness ofM in Hardy spaces
This section is devoted to the behavior ofM in Hardy spaces. In order to define the Hardy
space H(μ), Tolsa introduced the grand maximal operatorMφ in [].

Definition . Given f ∈ Lloc(μ),Mφ f is defined as

Mφ f (x) = sup
ϕ∼x

∣∣∣∣
∫
Rd

f ϕ dμ

∣∣∣∣,

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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where the notation ϕ ∼ xmeans that ϕ ∈ L(μ)∩C(Rd) and satisfies
() ‖ϕ‖L(μ) ≤ ,
()  ≤ ϕ(y) ≤ 

|x–y|n for all y ∈R
d ,

() |ϕ′(y)| ≤ 
|x–y|n+ for all y ∈ R

d .

Based on Theorem . in [], we can define the Hardy spaceH(μ) as follows (see []).

Definition . The Hardy space H(μ) is the set of all functions f ∈ L(μ) satisfying that∫
Rd f dμ =  andMφ f ∈ L(μ). Moreover, the norm of f ∈H(μ) is defined by

‖f ‖H(μ) = ‖f ‖L(μ) + ‖Mφ f ‖L(μ).

We recall the atomic Hardy space H,∞,
atb (μ) as follows.

Definition . Let ρ > . A function h ∈ Lloc(μ) is called an atomic block if
() there exists some cube R such that supph ⊂ R,
()

∫
Rd h(x)dμ(x) = ,

() for i = , , there are functions ai supported on cubes Qi ⊂ R and numbers λi ∈ R

such that h = λa + λa, and

‖ai‖L∞(μ) ≤
[
μ(ρQi)SQi ,R

]–.
Then define

|h|H,∞,
atb (μ) = |λ| + |λ|.

Define H,∞,
atb (μ) and H,∞,

fin (μ) as follows:

‖f ‖H,∞,
atb (μ) = inf

{ ∞∑
j

|hj|H,∞,
atb (μ) : f =

∞∑
j=

hj, {hj}j∈N are (,∞, )-atoms

}

and

‖f ‖H,∞,
fin (μ) = inf

{ k∑
j

|hj|H,∞,
atb (μ) : f =

k∑
j=

hj, {hj}kj= are (,∞, )-atoms

}
,

where the infimum is taken over all possible decompositions of f in atomic blocks,
H,∞,

fin (μ) is the set of all finite linear combinations of (,∞, )-atoms.

Remark . It was proved in [] that for each ρ > , the atomic Hardy space H,∞,
atb (μ) is

independent of the choice of ρ .

Applying the theory of Meda et al. in [], we easily get the result as follows.

Theorem . Let  < α < n, 
q =  – α

n . Suppose that K satisfies (.) and theHq condition
and f ∈ H,∞,

fin (μ). Then M is bounded from the Hardy space into the Lebesgue space,

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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namely there exists a positive constant C such that

∥∥M(f )
∥∥
Lq(μ) ≤ C‖f ‖H,∞,

fin (μ).

Proof of Theorem . Without loss of generality, we may assume that ρ =  and f =
∑

h as
a finite of atomic blocks defined inDefinition .. It is easy to see thatwe only need to prove
the theorem for one atomic block h. Let R be a cube such that supph⊂ R,

∫
Rd h(x)dμ(x) =

, and

h(x) = λa(x) + λa(x), (.)

where λi for i = ,  is a real number, |hi|H,∞,
atb (μ) = λ + λ, ai for i = ,  is a bounded

function supported on some cubes Qi ⊂ R and it satisfies

‖ai‖L∞(μ) ≤
[
μ(Qi)SQi ,R

]–. (.)

Write

∥∥M(h)
∥∥
Lq(μ) ≤

(∫
R

∣∣M(h)(x)
∣∣q dμ(x)

) 
q
+

(∫
Rd\R

∣∣M(h)(x)
∣∣q dμ(x)

) 
q

≤
(∫

R

∣∣M(h)(x)
∣∣q dμ(x)

) 
q

+
{∫

Rd\R

(∫ |x–xR|+�(R)



∣∣∣∣
∫

|x–y|≤t

K(x, y)
|x – y|–α

h(y)dμ(y)
∣∣∣∣
 dt
t

) q

dμ(x)

} 
q

+
{∫

Rd\R

(∫ ∞

|x–xR|+�(R)

∣∣∣∣
∫

|x–y|≤t

K(x, y)
|x – y|–α

h(y)dμ(y)
∣∣∣∣
 dt
t

) q

dμ(x)

} 
q

= I + II + III.

By (.), we have

I =
(∫

R

∣∣M(h)(x)
∣∣q dμ(x)

) 
q

≤ |λ|
(∫

R

∣∣M(a)(x)
∣∣q dμ(x)

) 
q
+ |λ|

(∫
R

∣∣M(a)(x)
∣∣q dμ(x)

) 
q

= I + I.

To estimate I, we write

I ≤ |λ|
(∫

Q

∣∣M(a)(x)
∣∣q dμ(x)

) 
q
+ |λ|

(∫
R\Q

∣∣M(a)(x)
∣∣q dμ(x)

) 
q

= I + I.

Choose p and q such that  < p < n
α
,  < q < q and 

q
= 

p
– n

α
. By the Hölder inequality,

the fact that SQ,R ≥  and the (Lp (μ),Lq (μ))-boundedness of M (see Lemma .), we

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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have that

I ≤ |λ|
[∫

Q

∣∣M(a)(x)
∣∣q dμ(x)

] 
q

μ(Q)

q–


q

≤ C|λ|‖a‖Lp (μ)μ(Q)

q–


q

≤ C|λ|‖a‖L∞(μ)μ(Q)

p

+ 
q–


q

≤ C|λ|.

Denote NQ,R simply by N. Invoking the fact that ‖a‖L∞(μ) ≤ [μ(Qi)SQi ,R]–, we thus
get

I ≤ C|λ|
{N+∑

k=

∫
k+Q\kQ

[∫ ∞



∣∣∣∣
∫

|x–y|≤t

a(y)
|x – y|n–α– dμ(y)

∣∣∣∣
 dt
t

] q

dμ(x)

} 
q

≤ C|λ|
{N+∑

k=

�
(
kQ

)q(α–n)

×
∫
k+Q\kQ

[∫
Q

|a(y)|
|x – y|n––α

(∫ ∞

|x–y|
dt
t

) 

dμ(y)

]q

dμ(x)

} 
q

≤ C|λ|
{N+∑

k=

�
(
kQ

)q(α–n) ∫
k+Q\kQ

[∫
Q

∣∣a(y)∣∣dμ(y)
]q

dμ(x)

} 
q

≤ C|λ|
{N+∑

k=

�
(
kQ

)q(α–n)
μ

(
k+Q

)‖a‖qL∞(μ)μ(Q)q
} 

q

≤ C|λ|
{N+∑

k=

�
(
kQ

)q(α–n)
μ(Q)–qS

–q
Q,Rμ

(
k+Q

)‖a‖qL∞(μ)μ(Q)q
} 

q

≤ C|λ|
(
S–qQ,R

N+∑
k=

μ(kQ)
�(kQ)n

) 
q

≤ C|λ|.

Here we have used the fact that

N+∑
k=

μ(kQ)
�(kQ)n

≤ CSQ,R,

see [] for details.
The estimates for I and I give the desired estimate for I. With a similar argument,

we have

I ≤ C|λ|.

Combining the estimates for I and I yields the estimate for I.

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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For i = , , y ∈ Qi ⊂ R, x ∈ R
d \ (R), we have |x – y| ∼ |x – xR| ∼ |x – xR| + �(R), by

Minkowski’s inequality, we get

II ≤
{∫

Rd\(R)

[∫
R

h(y)
|x – y|n––α

(∫ |x–xR|+�(R)

|x–y|
dt
t

) 

]q

dμ(x)
} 

q

≤ C
∫
R

{∫
Rd\(R)

[∣∣∣∣ 
(|x – xR| + �(R))

–


|x – y|
∣∣∣∣

 |h(y)|
|x – y|n––α

]q

dμ(x)
} 

q
dμ(y)

≤ C
∫
R

{∫
Rd\(R)

(
�(R) 

|x – y| 
· |h(y)|
|x – y|n––α

)q

dμ(x)
} 

q
dμ(y)

≤ C
∫
R

{ ∞∑
k=

∫
k+R\(kR)

(
�(R) 

|x – y|n–α+ 


)q

dμ(x)

} 
q ∣∣h(y)∣∣dμ(y)

≤ C

( ∑
j=

|λj|‖aj‖L(μ)
){ ∞∑

k=

�(R)

 �

(
kR

)–n+α– 
 μ

(
k+R

) 
q

}

≤ C

( ∑
j=

|λj|
)
.

For any y ∈ R, we have |x – y| ≤ |x – xR| + |y – xR| ≤ |x – xR| + �(R)≤ t. It follows that

III ≤
{∫

Rd\R

(∫ ∞

|x–xR|+�(R)

∣∣∣∣
∫

|x–y|≤t

[
K(x, y)

|x – y|–α
–

K(x,xR)
|x – xR|–α

]
h(y)dμ(y)

∣∣∣∣
 dt
t

) q

dμ(x)

} 
q

≤
{∫

Rd\R

[∫
R

∣∣∣∣ K(x, y)
|x – y|–α

–
K(x,xR)

|x – xR|–α

∣∣∣∣
(∫ ∞

|x–xR|+�(R)
dt
t

) 
 ∣∣h(y)∣∣dμ(y)

]q

dμ(x)
} 

q

≤ C
∫
R

∞∑
k=

{∫
k+R\kR

[∣∣∣∣ K(x, y)
|x – y|–α

–
K(x,xR)

|x – xR|–α

∣∣∣∣ · 
|x – y|

]q

dμ(x)
} 

q ∣∣h(y)∣∣dμ(y)

≤ C
∫
R

∞∑
k=

{∫
k+R\kR

[∣∣∣∣ K(x, y)
|x – y|–α

–
K(x, y)

|x – xR|–α

+
K(x, y)

|x – xR|–α
–

K(x,xR)
|x – xR|–α

∣∣∣∣ · 
|x – y|

]q
dμ(x)

} 
q ∣∣h(y)∣∣dμ(y)

≤ C
∫
R

∞∑
k=

{∫
k+R\kR

[∣∣∣∣ K(x, y)
|x – y|–α

–
K(x, y)

|x – xR|–α

∣∣∣∣ · 
|x – y|

]q

dμ(x)
} 

q ∣∣h(y)∣∣dμ(y)

+C
∫
R

∞∑
k=

{∫
k+R\kR

[∣∣∣∣ K(x, y)
|x – xR|–α

–
K(x,xR)

|x – xR|–α

∣∣∣∣ · 
|x – y|

]q

dμ(x)
} 

q ∣∣h(y)∣∣dμ(y)

≤ C
∫
R

∞∑
k=

�(R)
{∫

k+R\kR


|x – y|q(n–α+) dμ(x)
} 

q ∣∣h(y)∣∣dμ(y)

+
∫
R

∞∑
k=

(∫
k+R\kR

[
�
(
kR

)α |K(x, y) –K(x,xR)|
|x – y|

]q

dμ(x)
) 

q ∣∣h(y)∣∣dμ(y)

≤ C

( ∑
j=

|λj|
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/285
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Here we have used the fact that 
q =  – α

n .
Combining the estimates for I, II and III yields that

∥∥M(h)
∥∥
Lq(μ) ≤ C|h|H,∞,

atb (μ),

and this is the result of Theorem .. �

3 Boundedness ofM in RBMO(μ) spaces
In this section, we discuss the boundedness for M as in (.) in the space RBMO(μ) for
f ∈Mq

p(μ) and f ∈ L n
α (μ), respectively.

Firstly, we need to recall the definition of Morrey space with non-doubling measure
denoted by Mp

q(μ), which was introduced by Sawano and Tanaka in [].

Definition . Let ν >  and  ≤ q ≤ p < ∞. The Morrey spaceMp
q(μ) is defined by

Mp
q(μ) =

{
f ∈ Lqloc(μ) : ‖f ‖Mp

q (μ) < ∞}
,

where the norm ‖f ‖Mp
q (μ) is given by

‖f ‖Mp
q (μ) = sup

Q
μ(νQ)


p–


q

(∫
Q

∣∣f (x)∣∣q dμ(x)
) 

q
.

We should note that the parameter ν >  appearing in the definition does not affect the
definition of the space Mp

q(μ), and Mp
q(μ) is a Banach space with its norms (see []). By

using the Hölder inequality to (.), it is easy to see that for all ≤ q ≤ q ≤ p, then

Lp(μ) =Mp
p(μ)⊂Mp

q (μ) ⊂Mp
q (μ).

Theorem . Let  < α < n,  ≤ q < p = n
α
. Suppose that K(x, y) satisfies (.) and the Hp′

condition,M is defined as in (.). Then there exists a positive constant C such that for all
f ∈Mp

q(μ),

∥∥M(f )
∥∥
RBMO(μ) ≤ C‖f ‖Mp

q (μ).

Theorem . Let  < α < n and p = n
α
. Suppose that K(x, y) satisfies (.) and the H n

n–α

condition,M is defined as in (.). Then there exists a positive constant C such that for all
bounded functions f with compact support,

∥∥M(f )
∥∥
RBMO(μ) ≤ C‖f ‖L n

α (μ).

Remark . As a special condition, we take p = q = n
α
, Theorem . can be deduced with

a similar method of Theorem ..

Proof of Theorem . For any cubes Q and R in R
d such that Q ⊂ R satisfies �(R)≤ �(Q),

let

aQ =mQ
[
M(f χ

Rd\ 
Q
)
]
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and

aR =mR
[
M(f χ

Rd\ 
R
)
]
.

It is easy to see that aQ and aR are real numbers. By Lemma ., we need to show that
for some fixed r > q, there exists a constant C >  such that

(


μ(Q)

∫
Q

∣∣M(f )(x) – aQ
∣∣r dμ(x)

) 
r
≤ C‖f ‖Mp

q (μ) (.)

and

|aQ – aR| ≤ C‖f ‖Mp
q (μ). (.)

Let us first prove estimate (.). For a fixed cube Q and x ∈ Q, decompose f = f + f,
where f = fχ 

Q
and f = f – f. Write that


μ(Q)

∫
Q

∣∣M(f )(x) – aQ
∣∣r dμ(x)

=


μ(Q)

∫
Q

∣∣M(f + f)(x) – aQ
∣∣r dμ(x)

≤ 
μ(Q)

∫
Q

∣∣M(f)(x)
∣∣r dμ(x) +


μ(Q)

∫
Q

∣∣M(f)(x) – aQ
∣∣r dμ(x)

= I + I.

For 
r =


q –

α
n and p = α

n , it follows that

I =


μ(Q)

∫
Q

∣∣M(f)(x)
∣∣r dμ(x)

≤ C


μ(Q)

(∫

Q

∣∣f (x)∣∣q dμ(x)
) r

q

≤ C


μ(Q)

(
μ(Q)


p–


q

∫

Q

∣∣f (x)∣∣q dμ(x)
) r

q
μ(Q)r(


q–


p )

≤ C‖f ‖rMp
q (μ)

μ(Q)r(

q–


p )–

≤ C‖f ‖rMp
q (μ)

.

Now let us estimate the term I,

I =


μ(Q)

∫
Q

∣∣M(f)(x) – aQ
∣∣r dμ(x)

=


μ(Q)

∫
Q

∣∣∣∣M(f)(x) –


μ(Q)

∫
Q
M(f χ

Rd\ 
Q
)(y)dμ(y)

∣∣∣∣
r

dμ(x)

=


μ(Q)

∫
Q

∣∣∣∣ 
μ(Q)

∫
Q
M(f)(x)dμ(y) –


μ(Q)

∫
Q
M(f χ

Rd\ 
Q
)(y)dμ(y)

∣∣∣∣
r

dμ(x)

≤ 
μ(Q)


μ(Q)

∫
Q

∫
Q

∣∣M(f)(x) –M(f)(y)
∣∣r dμ(x)dμ(y).
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In order to estimate |M(f)(x) –M(f)(y)|, we write

D(x, y) =
(∫ ∞



[∫
|x–z|≤t<|y–z|

|K(x, z)|
|x – z|–α

f(z)dμ(z)
] dt

t

) 

,

D(x, y) =
(∫ ∞



[∫
|y–z|≤t<|x–z|

|K(y, z)|
|y – z|–α

f(z)dμ(z)
] dt

t

) 


and

D(x, y) =
(∫ ∞



[∫
|x–z|≤t
|y–z|≤t

∣∣∣∣ K(x, z)
|x – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣∣∣f(z)∣∣dμ(z)
] dt

t

) 

.

It is easy to get that for any x, y ∈Q,

∣∣M(f)(x) –M(f)(y)
∣∣

=
∣∣∣∣
(∫ ∞



∣∣∣∣
∫

|x–z|≤t

K(x, z)
|x – z|α dμ(z)

∣∣∣∣
 dt
t

) 

–

(∫ ∞



∣∣∣∣
∫

|y–z|≤t

K(y, z)
|y – z|α dμ(z)

∣∣∣∣
 dt
t

) 

∣∣∣∣

≤
(∫ ∞



∣∣∣∣
∫

|x–z|≤t

K(x, z)
|x – z|–α

f(z)dμ(z) –
∫

|y–z|≤t

K(y, z)
|y – z|–α

f(z)dμ(z)
∣∣∣∣
 dt
t

) 


≤
(∫ ∞



∣∣∣∣
∫

|x–z|≤t<|y–z|
K(x, z)

|x – z|–α
f(z)dμ(z) +

∫
|y–z|≤t

K(x, z)
|x – z|–α

f(z)dμ(z)

–
∫

|y–z|≤t<|x–z|
K(y, z)

|y – z|–α
f(z)dμ(z) –

∫
|x–z|≤t

K(y, z)
|y – z|–α

f(z)dμ(z)
∣∣∣∣ dtt

) 


≤
(∫ ∞



∣∣∣∣
∫

|x–z|≤t<|y–z|
K(x, z)

|x – z|–α
f(z)dμ(z)

∣∣∣∣
 dt
t

) 


+
(∫ ∞



∣∣∣∣
∫

|y–z|≤t<|x–z|
K(y, z)

|y – z|–α
f(z)dμ(z)

∣∣∣∣
 dt
t

) 


+
{∫ ∞



[∫
|x–z|≤t
|y–z|≤t

(
K(x, z)

|x – z|–α
–

K(y, z)
|y – z|–α

)
f(z)dμ(z)

] dt
t

} 


≤
∑
j=

Dj(x, y).

For D(x, y), since x, y ∈Q, z ∈ 
Q, thus we get

D(x, y) ≤ C
(∫ ∞



[∫
|x–z|≤t<|y–z|

|f(z)|
|x – z|n–α– dμ(z)

] dt
t

) 


≤ C
∫

|x–z|<|y–z|
|f(z)|

|x – z|n–α–

(∫ |y–z|

|x–z|
dt
t

) 

dμ(z)

≤ C�(Q)



∫
|x–z|<|y–z|

|f(z)|
|x – z|n–α+ 


dμ(z)
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≤ C�(Q)



∫
Rd\ 

Q

|f(z)|
|x – z|n–α+ 


dμ(z)

≤ C�(Q)



∞∑
k=

∫
k+Q\kQ

|f(z)|
|x – z|n–α+ 


dμ(z)

≤ C�(Q)



∞∑
k=


�( kQ)

n–α+ 


∫
k+Q

∣∣f(z)∣∣dμ(z)

≤ C
∞∑
k=

–
k



�( kQ)n–α

(∫
k+Q

∣∣f(z)∣∣q dμ(z)
) 

q
μ

(


kQ

)– 
q

≤ C‖f ‖Mp
q (μ)

∞∑
k=

–
k


≤ C‖f ‖Mp
q (μ).

By a similar argument, it follows that

D(x, y)≤ C‖f ‖Mp
q (μ).

Finally, by the conditionHP′ , which the kernel K(x, y) conditions, applying Minkowski’s
inequality, and the fact that α = n

p , we have

D(x, y) =
(∫ ∞



[∫
|x–z|≤t
|y–z|≤t

∣∣∣∣ K(x, z)
|x – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣∣∣f(z)∣∣dμ(z)
] dt

t

) 


≤ C
∫
Rd\ 

Q

∣∣∣∣ K(x, z)
|x – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣∣∣f (z)∣∣
(∫

|x–z|≤t
|y–z|≤t

dt
t

) 

dμ(z)

≤ C
∞∑
k=

∫

 k+Q\ 

 kQ

∣∣∣∣ K(x, z)
|x – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣ |f (z)|
|y – z| dμ(z)

≤ C‖f ‖Mp
q (μ)

∞∑
k=

μ
(
kQ

) 
q–


p

×
{∫


 k+Q\ 

 kQ

[


|y – z|
∣∣∣∣ K(x, z)
|x – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣
]q′

dμ(z)
} 

q′

≤ C‖f ‖Mp
q (μ)

∞∑
k=

�

(


kQ

) n
q –

n
p

×
{∫


 k+Q\ 

 kQ

[


|y – z|
∣∣∣∣ K(x, z)
|x – z|–α

–
K(x, z)
|y – z|–α

+
K(x, z)
|y – z|–α

–
K(y, z)

|y – z|–α

∣∣∣∣
]q′

dμ(z)
} 

q′

≤ C‖f ‖Mp
q (μ)

∞∑
k=

�

(


kQ

)α– n
p
�

(


kQ

)n

×
{


�( kQ)n

∫

 k+Q\ 

 kQ

[∣∣K(x, z) –K(y, z)
∣∣ 
|y – z|

]q′

dμ(z)
} 

q′
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+C‖f ‖Mp
q (μ)

∞∑
k=

�

(


kQ

) n
q –

n
p
�(Q)α

(∫

 k+Q\ 

 kQ


|y – z|nq′ dμ(z)

) 
q′

≤ C‖f ‖Mp
q (μ).

Combining these estimates, we conclude that

I ≤ C‖f ‖Mp
q (μ),

and so estimate (.) is proved.
We proceed to show (.). For any cubes Q ⊂ R with x ∈ Q, denote NQ,R+ simply by N .

Write

|aQ – aR| ≤ ∣∣mR
[
M(f χ

Rd\NQ)
]
–mQ

[
M(f χ

Rd\NR)
]∣∣

+
∣∣mQ

[
M(f χNQ\ 

Q
)
]∣∣ + ∣∣mR

[
M(f χNQ\ 

R
)
]∣∣

= E + E + E.

As in the estimate for the term I, then

E ≤ C‖f ‖Mp
q (μ).

We conclude from y ∈ R, z ∈ NQ \ 
Q that

M(f χNQ\ 
R
)(y) ≤ C

∫
NQ\ 

R

∣∣∣∣ K(y, z)
|y – z|–α

∣∣∣∣
(∫ ∞

|y–z|
dt
t

) 

dμ(z)

≤ C
∫
NQ\ 

R

|f (z)|
|y – z|n–α

dμ(z)

≤ C�(R)α–n
∫
NQ\ 

R

∣∣f (z)∣∣dμ(z)

≤ C�(R)α–n
(∫

NQ\ 
R

∣∣f (z)∣∣q dμ(z)
) 

q
μ

(
NQ

)– 
q

≤ C�(R)α–nμ
(
NQ

) 
p–


q

(∫
NQ

∣∣f (z)∣∣q dμ(z)
) 

q
μ

(
NQ

)– 
p

≤ C‖f ‖Mp
q (μ)�

(
NQ

)α– n
p

≤ C‖f ‖Mp
q (μ).

Taking mean over y ∈ R, we obtain

E ≤ C‖f ‖Mp
q (μ).

Analysis similar to that in the estimates for E shows that

E ≤ C‖f ‖Mp
q (μ).

Finally, we get (.) and this is precisely the assertion of Theorem .. �
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