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Abstract
The purpose of this paper is by using the viscosity approximation method to study
the strong convergence problem for two one-parameter continuous semigroups of
nonexpansive mappings in CAT(0) spaces. Under suitable conditions, some strong
convergence theorems for the proposed implicit and explicit iterative schemes to
converge to a common fixed point of two one-parameter continuous semigroups of
nonexpansive mappings are proved, which is also a unique solution of some kind of
variational inequalities. The results presented in this paper extend and improve the
corresponding results of some others.
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1 Introduction
Throughout this paper, we assume that X is a CAT() space, N is the set of positive in-
tegers, R is the set of real numbers, R+ is the set of nonnegative real numbers and C is a
nonempty closed and convex subset of a complete CAT() space X.
A family of mappings T := {T(t) : t ∈ R

+} : C → C is called a one-parameter continuous
semigroup of nonexpansive mappings if the following conditions are satisfied:

(i) for each t ∈ R
+, T(t) is a nonexpansive mapping on C, i.e.,

d
(
T(t)x,T(t)y

) ≤ d(x, y), ∀x, y ∈ C;

(ii) T(s + t) = T(t) ◦ T(s) for all t, s ∈ R
+;

(iii) for each x ∈ X , the mapping T(·)x from R
+ into C is continuous.

A family of mappings T := {T(t) : t ∈ R
+} is called a one-parameter strongly continuous

semigroup of nonexpansive mappings if conditions (i), (ii), (iii) and the following condition
are satisfied:
(iv) T()x = x for all x ∈ C.
In the sequel, we shall denote by F the common fixed point set of T , that is,

F := F(T ) =
{
x ∈ C : T(t)x = x, t ∈ R

+} = ⋂
t∈R+

F
(
T(t)

)
.

It is well known that one classical way to study nonexpansive mappings is to use the
contractions to approximate nonexpansive mappings. More precisely, take t ∈ (, ) and
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define a contraction Tt : C → C by

Tt = tu + ( – t)Tx, ∀x ∈ C, (.)

where u ∈ C is an arbitrary fixed element. In the case ofT having a fixed point, Browder []
proved that xt converged strongly to a fixed point ofT that is nearest to u in the framework
of Hilbert spaces. Reich [] extended Browder’s result to the setting of a uniformly smooth
Banach space and proved that xt converged strongly to a fixed point of T .
Halpern [] introduced the following explicit iterative scheme (.) for a nonexpansive

mapping T on a subset C of a Hilbert space:

xn+ = αnu + ( – αn)Txn. (.)

He proved that the sequence {xn} converged to a fixed point of T . In [], Shioji and Taka-
hashi introduced the following implicit iteration in a Hilbert space:

xn = αnu + ( – αn)

tn

∫ tn


T(t)xn dt. (.)

Under suitable conditions, they proved strong convergence of {xn} to a member of F .
Later, Suzuki [] introduced in a Hilbert space the following iteration process:

xn+ = αnu + ( – αn)T(tn)xn, ∀n≥ , (.)

where {T(t) : t ≥ } is a strongly continuous semigroup of nonexpansive mappings on C
such that F �= ∅. Under suitable conditions he proved that {xn} converged strongly to the
element of F nearest to u. Using Moudafi’s viscosity approximation methods, Song and
Xu [], Cho and Kang [] introduced the following iteration process:

xn = αnf (xn) + ( – αn)T(tn)xn, ∀n≥ , (.)

and

xn+ = αnf (xn) + ( – αn)T(tn)xn, ∀n≥ . (.)

They proved that {xn} defined by (.) and (.) both converged to the same point of F in
a reflexive strictly convex Banach space with a uniformly Gâteaux differentiable norm.
In a similar way, Dhompongsa et al. [] extended Browder’s implicit iteration to a

strongly continuous semigroup of nonexpansive mappings {T(t) : t ≥ } in a complete
CAT() space X. Under suitable conditions he proved that the sequence converged
strongly to the element of F nearest to u. Using Moudafi’s viscosity approximation meth-
ods, Shi and Chen [] studied the convergence theorems of the following Moudafi’s vis-
cosity iterations for a nonexpansive mapping T :

xt = tf (xt)⊕ ( – t)Txt , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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and

xn+ = αnf (xn)⊕ ( – αn)Txn. (.)

They proved that {xt} defined by (.) and {xn} defined by (.) converged strongly to a
fixed point of T in the framework of CAT() spaces.
Very recently, Wangkeeree and Preechasilp [] extended the results of [] to a one-

parameter continuous semigroup of nonexpansive mappings T := {T(t) : t ∈ R
+} in

CAT() spaces. Under suitable conditions they proved that the iterative schemes {xn} both
converged strongly to the same point x̃ such that x̃ = PF f (x̃), which is the unique solution
of the variational inequality

〈––→x̃f x̃, –→xx̃〉 ≥ , ∀x ∈ F . (.)

Motivated and inspired by the research going on in this direction, especially inspired by
Wangkeeree and Preechasilp [], in this paper we study the strong convergence theorems
of Moudafi’s viscosity approximation methods for two one-parameter continuous semi-
groups of nonexpansive mappings in CAT() spaces. We prove that the implicit and ex-
plicit iteration algorithms both converge strongly to the same point x̃ such that x̃ = PF f (x̃),
which is the unique solution of the variational inequality (.) where F is the set of com-
mon fixed points of the two semigroups of nonexpansive mappings.

2 Preliminaries and lemmas
In this paper, we write ( – t)x⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(x, z) = td(x, y), d(y, z) = ( – t)d(x, y). (.)

Lemma . [] A geodesic space X is a CAT() space if and only if the following inequality

d(( – t)x⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

is satisfied for all x, y, z ∈ X and t ∈ [, ]. In particular, if x, y, z are points in a CAT()
space and t ∈ [, ], then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z). (.)

Lemma . [] Let X be a CAT() space, p,q, r, s ∈ X and λ ∈ [, ]. Then

d
(
λp⊕ ( – λ)q,λr ⊕ ( – λ)s

) ≤ λd(p, r) + ( – λ)d(q, s).

By induction, we write

n⊕
m=

λmxm := ( – λn)
(

λ

 – λn
x ⊕ λ

 – λn
x ⊕ · · · ⊕ λn–

 – λn
xn–

)
⊕ λnxn. (.)
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Lemma . Let X be a CAT() space, then, for any sequence {λm}nm= in [, ] satisfying∑n
m= λm =  and for any {xm}nm= ⊂ X, the following conclusions hold:

d

( n⊕
m=

λmxm,x

)
≤

n∑
m=

λmd(xm,x), x ∈ X; (.)

and

d

( n⊕
m=

λmxm,x

)
≤

n∑
m=

λmd(xm,x) – λλd(x,x), x ∈ X. (.)

Proof It is obvious that (.) holds for n = . Suppose that (.) holds for some n≥ . From
(.) and (.) we have

d

( n+⊕
m=

λmxm,x

)

= d
(
( – λn+)

(
λ

 – λn+
x ⊕ λ

 – λn+
x ⊕ · · · ⊕ λn

 – λn+
xn

)
⊕ λn+xn+,x

)

≤ ( – λn+)d
(

λ

 – λn+
x ⊕ λ

 – λn+
x ⊕ · · · ⊕ λn

 – λn+
xn,x

)
+ λn+d(xn+,x)

≤ λd(x,x) + λd(x,x) + · · · + λnd(xn,x) + λn+d(xn+,x)

=
n+∑
m=

λmd(xm,x).

This implies that (.) holds.
Next, we prove that (.) holds.
Indeed, it is obvious that (.) holds for n = . Suppose that (.) holds for some n ≥ .

Next we prove that (.) is also true for n + .
In fact, we have

d

( n+⊕
m=

λmxm,x

)
= d

( n⊕
m=

λmxm ⊕ λn+xn+,x

)
.

From (.) and (.) and the assumption of induction, we have

d

( n+⊕
m=

λmxm,x

)

= d

( n⊕
m=

λmxm ⊕ λn+xn+,x

)

= d

(
( – λn+)

n⊕
m=

λm

 – λn+
xm ⊕ λn+xn+,x

)

≤ ( – λn+)d

( n⊕
m=

λm

 – λn+
xm,x

)
+ λn+d(xn+,x)
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≤ ( – λn+)
n∑

m=

λm

 – λn+
d(xm,x) – λλd(x,x) + λn+d(xn+,x)

=
n+∑
m=

λmd(xm,x) – λλd(x,x).

This completes the proof of (.). �

The concept of �-convergence introduced by Lim [] in  was shown by Kirk and
Panyanak [] in CAT() spaces to be very similar to the weak convergence in the Banach
space setting (see also []). Now, we give the concept of �-convergence.
Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

x∈X
{
r
(
x, {xn}

)}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
It is known from Proposition  of [] that in a complete CAT() space, A({xn}) consists
of exactly one point. A sequence {xn} ⊂ X is said to �-converge to x ∈ X if A({xnk }) = {x}
for every subsequence {xnk } of {xn}.
The uniqueness of an asymptotic center implies that a CAT() space X satisfies Opial’s

property, i.e., for given {xn} ⊂ X such that {xn} �-converges to x and given y ∈ X with y �= x,

lim sup
n→∞

d(xn,x) < lim sup
n→∞

d(xn, y).

Lemma . [] Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.
Berg and Nikolaev [] introduced the concept of quasilinearization as follows. Let us

denote a pair (a,b) ∈ X × X by
–→
ab and call it a vector. Then quasilinearization is defined

as a map 〈·, ·〉 : (X ×X)× (X ×X)→R defined by

〈–→ab, –→cd〉 = 

(
d(a,d) + d(b, c) – d(a, c) – d(b,d)

)
(a,b, c,d ∈ X). (.)

It is easily seen that 〈–→ab, –→cd〉 = 〈–→cd, –→ab〉, 〈–→ab, –→cd〉 = –〈–→ba, –→cd〉 and 〈–→ax, –→cd〉+ 〈–→xb, –→cd〉 = 〈–→ab, –→cd〉
for all a,b, c,d ∈ X.We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→cd〉 ≤ d(a,b)d(c,d) (.)

for all a,b, c,d ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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Recently, Dehghan and Rooin [] presented a characterization of metric projection in
CAT() spaces as follows.

Lemma . Let C be a nonempty convex subset of a complete CAT() space X, x ∈ X and
u ∈ C. Then u = PCx if and only if

〈–→yu, –→ux〉 ≤ , ∀y ∈ C. (.)

Lemma . [] Let X be a complete CAT() space, {xn} be a sequence in X and x ∈ X.
Then {xn} �-converges to x if and only if lim supn→∞〈––→xxn, –→xy〉 ≤  for all y ∈ X.

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the property
an+ ≤ ( – αn)an + αnβn, n≥ , where {αn} ⊂ (, ) and {βn} ⊂R such that

(i)
∑∞

n= αn =∞;
(ii) lim supn→∞ βn ≤  or

∑∞
n= |αnβn| <∞.

Then {an} converges to zero as n→ ∞.

3 Viscosity approximation iteration algorithms
In this section, we present the strong convergence theorems ofMoudafi’s viscosity approx-
imation implicit and explicit iteration algorithms for two one-parameter continuous semi-
groups of nonexpansive mappings T := {T(t) : t ∈ R

+} and S := {S(s) : s ∈ R
+} in CAT()

spaces.
Before proving main results, we need the following two vital lemmas.

Lemma. [, ] Let X be a completeCAT() space.Then, for all u,x, y ∈ X, the following
inequality holds:

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉.

Lemma . Let X be a complete CAT() space. For any u, v,w ∈ X and r, s, t ∈ [, ],
r + s + t = , let z = ru ⊕ sv ⊕ tw. Then, for any x, y ∈ X, the following inequality
holds:

〈–→zx, –→zy〉 ≤ r〈–→ux, –→zy〉 + s〈–→vx, –→zy〉 + t〈–→wx, –→zy〉 + rtd(u,w) + std(v,w).

Proof It follows from (.) and (.) that

d(u, z) = d
(
u, ru⊕ ( – r)

(
s

 – r
v⊕ t

 – r
w

))

= ( – r)d
(
u,

s
 – r

v⊕ t
 – r

w
)

≤ ( – r)
(

s
 – r

d(u, v) +
t

 – r
d(u,w) –

s
 – r

· t
 – r

d(v,w)
)

= ( – r)sd(u, v) + ( – r)td(u,w) – std(v,w).

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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Similarly, we can obtain d(v, z) ≤ (–s)rd(v,u)+(–s)td(v,w)–rtd(u,w) and d(w, z) ≤
( – t)rd(w,u) + ( – t)sd(w, v) – rsd(u, v). Therefore, we have

rd(u, z) + sd(v, z) + td(w, z)

≤ ( – r)rsd(u, v) + ( – r)rtd(u,w) – rstd(v,w)

+ ( – s)srd(v,u) + ( – s)std(v,w) – rstd(u,w)

+ ( – t)trd(w,u) + ( – t)tsd(w, v) – rstd(u, v)

= rsd(u, v) + rtd(u,w) + std(v,w). (.)

From (.) and (.), we have that

〈–→zx, –→zy〉 = d(z, y) + d(x, z) – d(x, y)

≤ rd(u, y) + sd(v, y) + td(w, y) – rsd(u, v) + rd(x, z)

+ sd(x, z) + td(x, z) – rd(x, y) – sd(x, y) – td(x, y)

= r〈–→ux, –→zy〉 + s〈–→vx, –→zy〉 + t〈–→wx, –→zy〉 – rsd(u, v)

+ rd(u, z) + sd(v, z) + td(w, z)

≤ r〈–→ux, –→zy〉 + s〈–→vx, –→zy〉 + t〈–→wx, –→zy〉 + rtd(u,w) + std(v,w),

which is the desired result. �

Now we are in a position to state and prove our main results.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let
{T(t)} and {S(s)} be two one-parameter continuous semigroups of nonexpansivemappings
on C satisfying F := F(T )∩ F(S) �= ∅ and both uniformly asymptotically regular (in short,
u.a.r.) on C, that is, for all h,k ≥  and any bounded subset B of C,

lim
t→∞ sup

x∈B
d
(
T(h)

(
T(t)x

)
,T(t)x

)
= , lim

s→∞ sup
x∈B

d
(
S(k)

(
S(s)x

)
,S(s)x

)
= .

Let f be a contraction on C with coefficient α ∈ (, ). Suppose that the sequence {xn} is
given by

xn = αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn (.)

for all n ≥ , where {αn}, {βn}, {γn} ⊂ (, ) and tn, sn ∈ [,∞) satisfy the following condi-
tions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = , γn = o(αn);
(iii) limn→∞ tn =∞, limn→∞ sn =∞;
(iv) for any bounded subset B of C, limn→∞ supx∈B〈T(tn)x,S(sn)x〉 = .
Then {xn} converges strongly to x̃ such that x̃ = PF f (x̃), which is equivalent to the fol-

lowing variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , ∀x ∈F . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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Proof We shall divide the proof of Theorem . into five steps.
Step . The sequence {xn} defined by (.) is well defined for all n ≥ .
In fact, let us define mappings G,M : C → C by

Gn(x) := αnf (x)⊕ βnT(tn)x⊕ γnS(sn)x, x ∈ C

and

Mn(x) :=
βn

 – αn
T(tn)x⊕ γn

 – αn
S(sn)x, x ∈ C,

respectively. For any x, y ∈ C, from Lemma ., we have

d
(
Mn(x),Mn(y)

)
= d

(
βn

 – αn
T(tn)x⊕ γn

 – αn
S(sn)x,

βn

 – αn
T(tn)y⊕ γn

 – αn
S(sn)y

)

≤ βn

 – αn
d
(
T(tn)x,T(tn)y

)
+

γn

 – αn
d
(
S(sn)x,S(sn)y

)
≤ βn

 – αn
d(x, y) +

γn

 – αn
d(x, y) = d(x, y).

Therefore we have that

d
(
Gn(x),Gn(y)

)
= d

(
αnf (x)⊕ ( – αn)Mn(x),αnf (y)⊕ ( – αn)Mn(y)

)
≤ αnd

(
f (x), f (y)

)
+ ( – αn)d

(
Mn(x),Mn(y)

)
≤ αnαd(x, y) + ( – αn)d(x, y)

=
(
 – αn( – α)

)
d(x, y).

This implies that Gn is a contraction mapping. Hence, the sequence {xn} is well defined
for all n ≥ .
Step . The sequence {xn} is bounded.
For any p ∈F , from Lemma ., we have that

d(xn,p) = d
(
αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn,p

)
≤ αnd

(
f (xn),p

)
+ βnd

(
T(tn)xn,p

)
+ γnd

(
S(sn)xn,p

)
≤ αnd

(
f (xn),p

)
+ βnd(xn,p) + γnd(xn,p)

= αnd
(
f (xn),p

)
+ ( – αn)d(xn,p). (.)

Then

d(xn,p) ≤ d
(
f (xn),p

) ≤ d
(
f (xn), f (p)

)
+ d

(
f (p),p

) ≤ αd(xn,p) + d
(
f (p),p

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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This implies that

d(xn,p) ≤ 
 – α

d
(
f (p),p

)
.

Hence {xn} is bounded, so are {T(tn)xn}, {S(sn)xn} and {f (xn)}.
Step . For any h,k ≥ , limn→∞ d(xn,T(h)xn) =  and limn→∞ d(xn,S(k)xn) = .
From Lemma . and condition (ii), we have

d
(
xn,T(tn)xn

)
= d

(
αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn,T(tn)xn

)
≤ αnd

(
f (xn),T(tn)xn

)
+ γnd

(
S(sn)xn,T(tn)xn

) →  (n→ ∞)

and

d
(
xn,S(sn)xn

)
= d

(
αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn,S(sn)xn

)
≤ αnd

(
f (xn),S(sn)xn

)
+ βnd

(
T(tn)xn,S(sn)xn

) →  (n→ ∞).

Since {T(t)} and {S(s)} is u.a.r., we obtain that for all h,k > ,

lim
n→∞d

(
T(h)

(
T(tn)xn

)
,T(tn)xn

) ≤ lim
n→∞ sup

x∈B
d
(
T(h)

(
T(tn)x

)
,T(tn)x

)
= 

and

lim
n→∞d

(
S(k)

(
S(sn)xn

)
,S(sn)xn

) ≤ lim
n→∞ sup

x∈B
d
(
S(k)

(
S(sn)x

)
,S(sn)x

)
= ,

where B is any bounded subset of C containing {xn}. Hence, we have

d
(
xn,T(h)xn

)
≤ d

(
xn,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

))
+ d

(
T(h)

(
T(tn)xn

)
,T(h)xn

)
≤ d

(
xn,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

)) →  (n→ ∞)

and

d
(
xn,S(k)xn

)
≤ d

(
xn,S(sn)xn

)
+ d

(
S(sn)xn,S(k)

(
S(sn)xn

))
+ d

(
S(k)

(
S(sn)xn

)
,S(k)xn

)
≤ d

(
xn,S(sn)xn

)
+ d

(
S(sn)xn,S(k)

(
S(sn)xn

)) →  (n→ ∞).

Step . The sequence {xn} contains a subsequence converging strongly to x̃ such that
x̃ = PF f (x̃), which is equivalent to (.).
Since {xn} is bounded, by Lemma ., there exists a subsequence {xnj} of {xn} (without

loss of generality, we denote it by {xj}) which �-converges to a point x̃.

http://www.journalofinequalitiesandapplications.com/content/2014/1/283
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First we claim that x̃ ∈F = F(T )∩ F(S). Since every CAT() space has Opial’s property,
for any h≥ , if T(h)x̃ �= x̃, we have

lim sup
j→∞

d
(
xj,T(h)x̃

) ≤ lim sup
j→∞

(
d
(
xj,T(h)xj

)
+ d

(
T(h)xj,T(h)x̃

))
≤ lim sup

j→∞

(
d
(
xj,T(h)xj

)
+ d(xj, x̃)

)
= lim sup

j→∞
d(xj, x̃)

< lim sup
j→∞

d
(
xj,T(h)x̃

)
.

This is a contraction, and hence x̃ ∈ F(T ). Similarly, we can obtain that x̃ ∈ F(S). So we
have x̃ ∈F .
Next we prove that {xj} converges strongly to x̃. Indeed, it follows from Lemma . that

d(xj, x̃) = 〈–→xjx̃, –→xjx̃〉
≤ αj

〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ βj

〈––––––→
T(tj)xjx̃,

–→
xjx̃

〉
+ γj

〈––––––→
S(sj)xjx̃,

–→
xjx̃

〉
+ αjNj

≤ αj
〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ βjd

(
T(tj)xj, x̃

)
d(xj, x̃) + γjd

(
S(sj)xj, x̃

)
d(xj, x̃) + αjNj

≤ αj
〈––––→
f (xj)x̃,

–→
xjx̃

〉
+ ( – αj)d(xj, x̃) + αjNj,

where Nj :=
γj
αj

βjd(T(tj)xj,S(sj)xj) + γjd(f (xj),S(sj)xj). It follows that

d(xj, x̃) ≤
〈––––→
f (xj)x̃,

–→
xjx̃

〉
+Nj

=
〈–––––––→
f (xj)f (x̃),

–→
xjx̃

〉
+

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
+Nj

≤ d
(
f (xj), f (x̃)

)
d(xj, x̃) +

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
+Nj

≤ αd(xj, x̃) +
〈––––→
f (x̃)x̃,

–→
xjx̃

〉
+Nj,

and thus

d(xj, x̃) ≤ 
 – α

〈––––→
f (x̃)x̃,

–→
xjx̃

〉
+


 – α

Nj. (.)

Since {xj} �-converges to x̃, by Lemma . we have

lim sup
n→∞

〈––––→
f (x̃)x̃,

–→
xjx̃

〉 ≤ .

It follows from (.) and limj→∞ Nj =  that {xj} converges strongly to x̃.
Next we show that x̃ solves the variational inequality (.). Applying Lemma ., for any

q ∈F , we have

d(xj,q) = d(αjf (xj)⊕ βjT(tj)xj ⊕ γjS(sj)xj,q
)

≤ αjd(f (xj),q) + βjd(T(tj)xj,q) + γjd(S(sj)xj,q) – αjβjd(f (xj),T(tj)xj)
≤ αjd(f (xj),q) + ( – αj)d(xj,q) – αjβjd(f (xj),T(tj)xj).
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This implies that

d(xj,q) ≤ d(f (xj),q) – βj
(
d
(
f (xj),xj

)
+ d

(
xj,T(tj)xj

)).
Taking the limit through j → ∞, we can obtain

d(x̃,q) ≤ d(f (x̃),q) – d(f (x̃), x̃). (.)

On the other hand, from (.) we have

〈––––→
xf (x̃),

–→
qx̃

〉
=


[
d(x̃, x̃) + d(f (x̃),q) – d(x̃,q) – d(f (x̃), x̃)]. (.)

From (.) and (.) we have

〈––––→
xf (x̃),

–→
qx̃

〉 ≥ , ∀q ∈ F .

That is, x̃ solves inequality (.).
Step . The sequence {xn} converges strongly to x̃.
Assume that xni → x̂ as n→ ∞. By the same argument, we get that x̂ ∈F and solves the

variational inequality (.), i.e.,

〈––––→
x̃f (x̃),

–→̃
xx̂

〉 ≤  (.)

and

〈––––→
x̂f (x̂),

–→̂
xx̃

〉 ≤ . (.)

Adding up (.) and (.), we get that

 ≥ 〈––––→
x̃f (x̃),

–→̃
xx̂

〉
–

〈––––→
x̂f (x̂),

–→̃
xx̂

〉
=

〈––––→
x̃f (x̂),

–→̃
xx̂

〉
+

〈––––––→
f (x̂)f (x̃),

–→̃
xx̂

〉
– 〈–→̂xx̃, –→̃xx̂〉 – 〈––––→

x̃f (x̂),
–→̃
xx̂

〉
= 〈–→̃xx̂, –→̃xx̂〉 – 〈––––––→

f (x̂)f (x̃),
–→̂
xx̃

〉
≥ 〈–→̃xx̂, –→̃xx̂〉 – d

(
f (x̂), f (x̃)

)
d(x̂, x̃)

≥ d(x̃, x̂) – αd(x̂, x̃) = ( – α)d(x̃, x̂).

Since  < α < , we have that d(x̃, x̂) = , and so x̃ = x̂. Hence the sequence {xn} converges
strongly to x̃, which is the unique solution to the variational inequality (.).
This completes the proof. �

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let
{T(t)} and {S(s)} be two one-parameter continuous semigroups of nonexpansivemappings
on C satisfying F := F(T )∩ F(S) �= ∅ and both uniformly asymptotically regular on C. Let
f be a contraction on C with coefficient α ∈ (, ). Suppose that {xn} is given by

xn+ = αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn (.)
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Tang and Chang Journal of Inequalities and Applications 2014, 2014:283 Page 12 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/283

for all n ≥ , where {αn}, {βn}, {γn} ⊂ (, ) and tn, sn ∈ [,∞) satisfy the following condi-
tions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ,

∑∞
n= αn =∞ and γn = o(αn);

(iii) for all n≥ , αn <  – α;
(iv) limn→∞ tn =∞ and limn→∞ sn =∞;
(iv) for any bounded subset B of C, limn→∞ supx∈B d(T(tn)x,S(sn)x) = .

Then {xn} converges strongly to x̃ such that x̃ = PF f (x̃), which is equivalent to the varia-
tional inequality (.).

Proof We first show that the sequence {xn} is bounded. For any p ∈F , we have that

d(xn+,p) = d
(
αnf (xn)⊕ βnT(tn)xn ⊕ γnS(sn)xn,p

)
≤ αnd

(
f (xn),p

)
+ βnd

(
T(tn)xn,p

)
+ γnd

(
S(sn)xn,p

)
≤ αn

(
d
(
f (xn), f (p)

)
+ d

(
f (p),p

))
+ βnd(xn,p) + γnd(xn,p)

≤ (αnα +  – αn)d(xn,p) + αnd
(
f (p),p

)
=

(
 – αn( – α)

)
d(xn,p) + αn( – α) · 

 – α
d
(
f (p),p

)
≤max

{
d(xn,p),


 – α

d
(
f (p),p

)}
.

By induction, we have

d(xn,p) ≤max

{
d(x,p),


 – α

d
(
f (p),p

)}

for all n ≥ . Hence {xn} is bounded, so are {T(tn)xn}, {S(sn)xn} and {f (xn)}.
In view of condition (ii), we have

d
(
xn+,T(tn)xn

) ≤ αnd
(
f (xn),T(tn)xn

)
+ γnd

(
S(sn)xn,T(tn)xn

) →  (n→ ∞).

Since {T(t)} is u.a.r and limn→∞ tn =∞, then for all h ≥ , we obtain that

lim
n→∞d

(
T(h)

(
T(tn)xn

)
,T(tn)xn

) ≤ lim
n→∞ sup

x∈B
d
(
T(h)

(
T(tn)x

)
,T(tn)x

)
= ,

where B is any bounded subset of C containing {xn}. Hence

d
(
xn+,T(h)xn+

) ≤ d
(
xn+,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

))
+ d

(
T(h)

(
T(tn)xn

)
,T(h)xn+

)
≤ d

(
xn+,T(tn)xn

)
+ d

(
T(tn)xn,T(h)

(
T(tn)xn

))
→  (n→ ∞). (.)

Similarly, for all k ≥ , we have

lim
n→∞d

(
xn+,S(k)xn+

)
= . (.)
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Let {zm} be a sequence in C such that

zm = αmf (zm)⊕ βmT(tm)zm ⊕ γmS(sm)zm.

It follows from Theorem . that {zm} converges strongly to a fixed point x̃ ∈ F , which
solves the variational inequality (.).
Now we claim that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

Indeed, it follows from Lemma . that

d(zm,xn+) = 〈–––––→zmxn+, –––––→zmxn+〉
≤ αm

〈––––––––→
f (zm)xn+, –––––→zmxn+

〉
+ βm

〈–––––––––––→
T(tm)zmxn+, –––––→zmxn+

〉
+ γm

〈–––––––––––→
S(sm)zmxn+, –––––→zmxn+

〉
+ αmNm

= αm
〈––––––––→
f (zm)f (x̃), –––––→zmxn+

〉
+ αm

〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αm〈––→x̃zm, –––––→zmxn+〉

+ αm〈–––––→zmxn+, –––––→zmxn+〉 + βm
〈–––––––––––––––––→
T(tm)zmT(tm)xn+, –––––→zmxn+

〉
+ βm

〈–––––––––––––→
T(tm)xn+xn+, –––––→zmxn+

〉
+ γm

〈––––––––––––––––→
S(sm)zmS(sm)xn+, –––––→zmxn+

〉
+ γm

〈––––––––––––→
S(sm)xn+xn+, –––––→zmxn+

〉
+ αmNm

≤ αmαd(zm, x̃)d(zm,xn+) + αm
〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αmd(x̃, zm)d(zm,xn+)

+ αmd(zm,xn+) + βmd(zm,xn+) + βmd
(
T(tm)xn+,xn+

)
d(zm,xn+)

+ γmd(zm,xn+) + γmd
(
S(sm)xn+,xn+

)
d(zm,xn+) + αmNm

≤ αmαd(zm, x̃)M + αm
〈––––→
f (x̃)x̃, –––––→zmxn+

〉
+ αmd(x̃, zm)M + d(zm,xn+)

+ βmd
(
T(tm)xn+,xn+

)
M + γmd

(
S(sm)xn+,xn+

)
M + αmNm,

where

Nm :=
γm

αm
βmd(T(tm)zm,S(sm)zm)

+ γmd(f (zm),S(sm)zm)

and

M ≥ sup
m,n≥

{
d(zm,xn)

}
.

This implies that

〈––––→
f (x̃)x̃, –––––→xn+zm

〉 ≤ ( + α)Md(zm, x̃) +
d(T(tm)xn+,xn+)

αm
M

+
γm

αm
Md

(
S(sm)xn+,xn+

)
+Nm. (.)
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Taking the upper limit as n → ∞ first, and then m → ∞, from (.), (.) and
limm→∞ Nm = , we get

lim sup
m→∞

lim sup
n→∞

〈––––→
f (x̃)x̃, –––––→xn+zm

〉 ≤ . (.)

Since

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
=

〈––––→
f (x̃)x̃, –––––→xn+zm

〉
+

〈––––→
f (x̃)x̃,

––→
zmx̃

〉
≤ 〈––––→

f (x̃)x̃, –––––→xn+zm
〉
+ d

(
f (x̃), x̃

)
d(zm, x̃).

Thus, by taking the upper limit as n→ ∞ first, and thenm → ∞, it follows from zm → x̃
and (.) that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉 ≤ .

Finally, we prove that xn → x̃ as n→ ∞. In fact, for any n≥ , letting

yn = αnx̃⊕ βnT(tn)xn ⊕ γnS(sn)xn,

from Lemma . and Lemma ., we have that

d(xn+, x̃) ≤ d(yn, x̃) + 〈–––––→xn+yn,
––––→
xn+x̃〉

≤ (
βnd

(
T(tn)xn, x̃

)
+ γnd

(
S(sn)xn, x̃

)) + 
[
αn

〈––––––→
f (xn)yn,

––––→
xn+x̃

〉
+ βn

〈––––––––→
T(tn)xnyn,

––––→
xn+x̃

〉
+ γn

〈––––––––→
S(sn)xnyn,

––––→
xn+x̃

〉]
≤ ( – αn)d(xn, x̃) + 

[
α
n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αnβn

〈–––––––––––→
f (xn)T(tn)xn,

––––→
xn+x̃

〉
+ αnγn

〈–––––––––––→
f (xn)S(sn)xn,

––––→
xn+x̃

〉
+ βnαn

〈–––––––→
T(tn)xnx̃,

––––→
xn+x̃

〉
+ β

n
〈––––––––––––––→
T(tn)xnT(tn)xn,

––––→
xn+x̃

〉
+ βnγn

〈––––––––––––––→
T(tn)xnS(sn)xn,

––––→
xn+x̃

〉
+ γnαn

〈–––––––→
S(sn)xnx̃,

––––→
xn+x̃

〉
+ γnβn

〈––––––––––––––→
S(sn)xnT(tn)xn,

––––→
xn+x̃

〉
+ γ 

n
〈–––––––––––––→
S(sn)xnS(sn)xn,

––––→
xn+x̃

〉
+ αnNn

]
≤ ( – αn)d(xn, x̃) + 

[
α
n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αnβn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αnγn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ β

nd
(
T(tn)xn,T(tn)xn

)
d(xn+, x̃)

+ γ 
n d

(
S(sn)xn,S(sn)xn

)
d(xn+, x̃) + αnNn

]
= ( – αn)d(xn, x̃) + αn

(〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+Nn

)
= ( – αn)d(xn, x̃) + αn

〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉
+ αn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)
≤ ( – αn)d(xn, x̃) + αnαd(xn, x̃)d(xn+, x̃) + αn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)
≤ ( – αn)d(xn, x̃) + αnα

(
d(xn, x̃) + d(xn+, x̃)

)
+ αn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)
,
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where Nn := γn
αn

βnd(T(tn)xn,S(sn)xn) + γnd(x̃,S(sn)xn). This implies that

d(xn+, x̃) ≤  – ( – α)αn + α
n

 – ααn
d(xn, x̃) +

αn

 – ααn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)

=
(
 –

αn( – α – αn)
 – ααn

)
d(xn, x̃) +

αn

 – ααn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)
.

Then it follows that

d(xn+, x̃) ≤
(
 – α′

n
)
d(xn, x̃) + α′

nβ
′
n,

where

α′
n =

αn( – α – αn)
 – ααn

, β ′
n =


 – α – αn

(〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+Nn

)
.

Applying Lemma . and limn→∞ Nn = , we can conclude that xn → x̃ as n → ∞. This
completes the proof. �
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