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Abstract
The stability and stabilizability concepts for means in two variables have been
introduced in (Raïssouli in Appl. Math. E-Notes 11:159-174, 2011). It has been proved
that the arithmetic, geometric, and harmonic means are stable, while the logarithmic
and identric means are stabilizable. In the present paper, we introduce new concepts,
the so-called sub-stabilizability and super-stabilizability, and we apply them to some
standard means.
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1 Introduction
In this section, we recall some basic notions about means in two variables that will be
needed later. Throughout the following, we understand by a (bivariate) mean a binary
mapm between positive real numbers satisfying the following statement:

∀a,b > , min(a,b)≤m(a,b)≤max(a,b).

Every mean satisfies m(a,a) = a for each a > . The maps (a,b) �−→ min(a,b) and
(a,b) �−→ max(a,b) are (trivial) means, which will be denoted by min and max, respec-
tively. The standard examples of means are given in the following (see [] for instance and
the related references cited therein):

A := A(a,b) =
a + b


; G :=G(a,b) =
√
ab; H :=H(a,b) =

ab
a + b

;

L := L(a,b) =
b – a

lnb – lna
, L(a,a) = a;

I := I(a,b) = e–
(
bb

aa

)/(b–a)

, I(a,a) = a

and are known as the arithmetic, geometric, harmonic, logarithmic, and identric means,
respectively.
There are more means of interest known in the literature. For instance, the following:

P := P(a,b) =
b – a

 arctan
√
b/a – π

=
b – a

 arcsin b–a
b+a

, P(a,a) = a;
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T := T(a,b) =
b – a

 arctan b–a
b+a

, T(a,a) = a;

M :=M(a,b) =
b – a

 arcsinh b–a
b+a

, M(a,a) = a;

are known as the first Seiffert mean [], the second Seiffert mean [] and the Neuman-
Sándor mean [], respectively.
A mean m is symmetric if m(a,b) = m(b,a) for all a,b > , and monotone if (a,b) �−→

m(a,b) is increasing in a and in b, that is, if a ≤ a (resp. b ≤ b) thenm(a,b) ≤m(a,b)
(resp.m(a,b) ≤m(a,b)). For more details as regards monotone means, see [].
For two means m and m we write m ≤ m if and only if m(a,b) ≤ m(a,b) for ev-

ery a,b >  and, m <m if and only if m(a,b) <m(a,b) for all a,b >  with a �= b. Two
means m and m are comparable if m ≤ m or m ≤ m, and we say that m is between
two comparable meansm andm if inf(m,m) ≤m ≤ sup(m,m). If the above inequal-
ities are strict then we say that m is strictly between m and m. The above means are all
comparable with the well-known chain of inequalities

min <H <G < L < P < I < A <M < T <max .

For a given meanm, we setm∗(a,b) = (m(a–,b–))–, and it is easy to see thatm∗ is also
a mean, called the dual mean ofm. Every meanm satisfiesm∗∗ := (m∗)∗ =m, and ifm and
m are two means such thatm <m thenm∗

 >m∗
. Further, the arithmetic and harmonic

means are mutually dual (i.e. A∗ = H , H∗ = A) and the geometric mean is self-dual (i.e.
G∗ =G).
Let p be a real number. The next means are of interest.
• The power (binomial) mean:

{
Bp := Bp(a,b) :=Gp,(a,b) = ( ap+bp )/p,
B– =H , B =G, B = A, B :=Q.

• The power logarithmic mean:

{
Lp := Lp(a,b) = ( ap–bp

p(lna–lnb) )
/p, Lp(a,a) = a,

L– = L∗, L =G, L = L, L = (AL)/.

We end this section by recalling the next result which will be needed in the sequel.

Theorem . The following mean-inequalities hold:

L < P < B/, L <M < B/, L < T < B/.

Further these inequalities are the best possible i.e. L, L, L are the best power logarithmic
means lower bounds of P,M, T , while B/, B/, B/ are the best power (binomial)means
upper bounds of P, M, T , respectively. Otherwise, there is no p >  such that P, M or T is
strictly less that Lp.

For some details as regards the above theorem, we refer the reader to [–].

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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2 Needed tools
For the sake of simplicity for the reader, we recall here more basic notions and results that
will be needed in the sequel, see [] for more details. We begin by the next definition.

Definition . Letm,m, andm be three given symmetricmeans. For all a,b > , define

R(m,m,m)(a,b) =m
(
m

(
a,m(a,b)

)
,m

(
m(a,b),b

))
,

called the resultant mean-map ofm,m, andm.

For the computation of R(m,m,m) when m, m, m belong to the set of the above
standard means, some examples can be found in [–]. Here we state another example
which will be of interest.

Example . It is not hard to verify that

R(A, I,G) = e–
(
AG +G



)/

exp
A +G
L

.

A study investigating the elementary properties of the resultant mean-map has been
stated in []. In particular, if m, m, and m are three symmetric monotone means then
the map (a,b) �−→R(m,m,m)(a,b) defines a mean, where we have the relationship

(
R(m,m,m)

)∗ =R
(
m∗

 ,m
∗
,m

∗

)
. (.)

We also recall the next result, see [].

Theorem . Let m, m′
, m, m′

, m, and m′
 be strict symmetric monotone means such

that

m ≤m′
, m ≤m′

 and m ≤m′
.

Then we have

R(m,m,m) ≤R
(
m′

,m
′
,m

′

)
.

If moreover there exists i = , ,  such that mi <m′
i, then one has

R(m,m,m) <R
(
m′

,m
′
,m

′

)
.

As already proved [–], the resultant mean-map’s importance stems from the fact
that it is a tool for introducing the stability and stabilizability concepts, which we recall in
the following.

Definition . A symmetric mean m is said to be:
(a) Stable ifR(m,m,m) =m.
(b) Stabilizable if there exist two nontrivial stable means m and m satisfying the

relationR(m,m,m) =m. We then say that m is (m,m)-stabilizable.

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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A developed study about the stability and stabilizability of the standard means was pre-
sented in []. In particular the next result has been proved there.

Theorem . With the above, the following assertions are met:
() The power binomial mean Bp is stable for all real number p. In particular, the

arithmetic, geometric, and harmonic means A, G, and H are stable.
() The power logarithmic mean Lp is (Bp,G)-stabilizable for all real number p.
() The logarithmic mean L is (H ,A)-stabilizable and (A,G)-stabilizable while the

identric mean I is (G,A)-stabilizable.

Remark. The symmetry character of the above involvedmean is, by definition, taken as
essential hypothesis. In fact, if we attempt to extend the above concepts to non-symmetric
means by keeping the same definitions (Definition . and Definition .), the simple
means m = A/,G/, with A/(a,b) = (/)a + (/)b, G/(a,b) = a/b/, do not satisfy
R(m,m,m) =m. In another way, the definition ofR, together with that related to the sta-
bility and stabilizability concepts, is not exactly the same as above, butmust be investigated
for non-symmetric means. We leave the details as regards the latter point to a later time.

The next definition is also needed here [].

Definition . Let m and m be two symmetric means. The tensor product of m and
m is the map, denotedm ⊗m, defined by

∀a,b, c,d > , m ⊗m(a,b, c,d) =m
(
m(a,b),m(c,d)

)
.

A symmetric mean m will be called cross mean if the map m⊗ :=m⊗m is symmetric in
its four variables.

It is proved in [] that every cross mean is stable. The reverse of the latter assertion is
still an open problem. Otherwise, it is conjectured [] that the first Seiffert mean P is not
stabilizable and such a problem is also still open. We also conjecture here that the second
Seiffert mean and the Neuman-Sándor mean are not stabilizable either.
The next result needed here has also been proved in [].

Theorem . Let m and m be two nontrivial stable symmetric monotone means such
that m ≤ m (resp. m ≤ m). Assume that m is moreover a cross mean. Then there ex-
ists one and only one (m,m)-stabilizable mean m such that m ≤ m ≤ m (resp. m ≤
m ≤m).

Recently, Raïssouli and Sándor [] introduced amean-transformation defined in the fol-
lowing way: for a given mean m (symmetric or not) they set

mπ (a,b) =
∞∏
n=

m
(
a/

n
,b/

n)
. (.)

This allowed them to construct a lot of new means and to obtain good relationships be-
tween some standard means. In particular, they obtained Gπ = G, Aπ = L, Sπ = I , Cπ = A

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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and Bπ
p = Lp for every real number p, where S and C refer, respectively, to the weighted

geometric mean and contra-harmonic mean defined by

S := S(a,b) =
(
aabb

)/(a+b), C := C(a,b) =
a + b

a + b
.

3 Two special subsets of means
LetMs be the set of all symmetric means. For fixedm,m ∈Ms, we set

E–(m,m) =
{
m ∈Ms,R(m,m,m) ≤m

}
,

E+(m,m) =
{
m ∈Ms,m ≤R(m,m,m)

}
.

It is clear that max ∈ E–(m,m) and min ∈ E+(m,m), that is, these sets are nonempty.
Moreover, by equation (.) the relationship

m ∈ E–(m,m) ⇐⇒ m∗ ∈ E+(m∗
 ,m

∗

)

is obvious. By virtue of this equivalence, it will be sufficient to study the properties of one
the sets E–(m,m) and E+(m,m) and to deduce that of the other by duality.

Example . With the help of Theorem ., it is simple to see that G < R(G,G,A) and
A > R(G,A,A). So G ∈ E+(G,A) and A ∈ E–(G,A). We can also verify that T ∈ E–(A,G)
andM ∈ E–(A,G). Other more interesting examples will be seen later.

The next result is of interest.

Proposition . Let m, m be two nontrivial monotone (symmetric) stable means where
m is a cross mean. Then the intersection between E–(m,m) and E+(m,m) is reduced to
the unique mean m which is the (m,m)-stabilizable mean.

Proof Following Theorem ., let m be the unique (m,m)-stabilizable mean. Then
R(m,m,m) = m and so m ∈ E–(m,m) and m ∈ E+(m,m). Inversely, let m ∈ E–(m,
m) ∩ E+(m,m); then R(m,m,m) = m and so m is the unique (m,m)-stabilizable
mean. �

Now, we are in a position to state the next result ensuring the existence of a maximal
super-stabilizable (resp. minimal sub-stabilizable) mean.

Theorem . Let m,m be two symmetric monotone means. Then the set E+(m,m) has
at least a maximal element.

Before giving the proof of the last theorem we state the next corollary, which is imme-
diate from the above.

Corollary . Let m,m be as in the above theorem. Then the set E–(m,m) has at least
a minimal element.

Proof For proving the theorem, we will show that the set E+(m,m) is (nonempty) induc-
tively ordered. Let us equip E+(m,m) with the point-wise order induced by that of the set

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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of all means. Let E ⊂ E+(m,m) be a nonempty total ordered set and we get E = (mi)i∈J .
Then, supi∈J mi is amean. Clearly, supi∈J mi is an upper bound of E andwewish to establish
that supi∈J mi ∈ E+(m,m). Indeed, for all i ∈ J , we have

mi ∈ E �⇒ mi ∈ E+(m,m) �⇒ mi ≤R(m,mi,m).

Since m and m are monotone, we deduce by Theorem ., mi ≤ R(m, supi∈J mi,m)
for all i ∈ J and so supi∈J mi ≤ R(m, supi∈J mi,m), that is, supi∈J mi ∈ E+(m,m). It fol-
lows that every nonempty totally ordered subset of E+(m,m) has an upper bound in
E+(m,m), that is, E+(m,m) is inductive. We can then apply the classical Zorn lemma
to conclude and the proof of the theorem is complete. �

Remark . A question arises from the above: Let m and m be two given symmetric
means. Is it true that

E+(m,m)∪ E–(m,m) =Ms?

Proposition . For all given symmetric mean m, we have:
() The sets E–(A,m) and E+(A,m) are (linearly) convex.
() The sets E–(G,m) and E+(G,m) are geometrically convex.

Proof () follows from the linear-affine character of A with the definition of R, while ()
comes from the geometric character of G. The details are simple and omitted here. �

4 Sub-stabilizability and super-stabilizability
The next definition may be stated.

Definition. Letm,m be twonontrivial stable comparablemeans. Ameanm is called:
(a) (m,m)-sub-stabilizable ifR(m,m,m) ≤m and m is between m and m,
(b) (m,m)-super-stabilizable if m ≤R(m,m,m) and m is betweenm and m.

Following Theorem ., the above definition extends that of stabilizability in the sense
that ameanm is (m,m)-stabilizable if and only if (a) and (b) hold. It follows that the above
concepts bring something new for non-stable and non-stabilizable means. For this, we say
that m is strictly (m,m)-sub-stabilizable if R(m,m,m) <m and m is strictly (m,m)-
super-stabilizable if m < R(m,m,m), with in both cases m being strictly between m

andm.
With the notation of the above section we have

m is (m,m)-sub-stabilizable �⇒ m ∈ E–(m,m),

m is (m,m)-super-stabilizable �⇒ m ∈ E+(m,m)

and

m is (m,m)-sub-stabilizable ⇐⇒ m∗ is
(
m∗

 ,m
∗

)
-super-stabilizable.

Example . We can easily see that G is (G,A)-super-stabilizable (but not strictly) while
A is (G,A)-sub-stabilizable. However, T andM are not (G,A)-sub-stabilizable, since they

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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are not between G and A. More interesting examples, presented as main results, will be
stated in the section below.

Theorem . Let m be a continuous symmetric mean. Then the following assertions are
met:
() If there exists a symmetric meanm such that m is (m,G)-sub-stabilizable then

m ≥mπ
 .

() If there exists a symmetric meanm such that m is (m,G)-super-stabilizable then
m ≤mπ

 .

Proof () Assume thatm ism-sub-stabilizable, that is,

∀a,b > , R(m,m,G)(a,b)≤m(a,b),

or, according to the definition ofR,

∀a,b > , m(
√
a,

√
b)m(

√
a,

√
b) ≤m(a,b).

This, with a simple mathematical induction, implies that the inequality

∀a,b > ,
N∏
n=

m
(
a/

n
,b/

n)
m

(
a/

N
,b/

N ) ≤m(a,b)

holds true for each integer N ≥ . Letting N → ∞ in the latter inequality and using the
fact thatm is continuous we infer that

∞∏
n=

m
(
a/

n
,b/

n) ≤m(a,b),

which with equation (.) means thatm ≥mπ
 .

() It is similar to that the above. The details are omitted here. �

The above theorem has various consequences, which we will state in what follows.

Corollary . Let m be a continuous symmetric mean. Then the next statements hold
true:

(i) Ifm is (Bp,G)-sub-stabilizable for some p≥  then Lp ≤m≤ Bp. In particular, ifm is
(A,G)-sub-stabilizable then L ≤m ≤ A.

(ii) Ifm is (Bp,G)-super-stabilizable for some p≤  then Bp ≤m ≤ Lp. In particular, ifm
is (A,G)-super-stabilizable then G ≤m ≤ L.

Proof It is immediate by combining the above theorem with the fact that Bπ
p = Lp for each

real number p, and B = A, L = L. �

Remark . (i) The above corollary tells us that L is a minimal element of E–(A,G) and it
is a maximal element of E+(A,G): this rejoins the fact that L is (A,G)-stabilizable.
(ii) The above corollary implies that I is not (A,G)-super-stabilizable, but it is perhaps

(A,G)-sub-stabilizable. See more details as regards the latter point in the section below.

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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Corollary . Let m > G be a strictly (Bp,G)-sub-stabilizable mean. Then  < q < p < r,
where q is the greatest number such that m > Lq and r is the smallest number such that
m < Br .

Proof If m > G is strictly (Bp,G)-sub-stabilizable then, by definition, m < Bp and, by the
above corollary,m ≥ Lp. Combining these latter mean-inequalities we deduce the desired
result. �

Corollary . (i) If there exists p such that P is strictly (Bp,G)-sub-stabilizable then / <
p≤ .

(ii) IfM is strictly (Bp,G)-sub-stabilizable for some p then / < p≤ .
(iii) If T is strictly (Bp,G)-sub-stabilizable then / < p≤ .
(iv) There is no p ∈R such that P,M or T is (Bp,G)-super-stabilizable.

Proof Combining the above corollary with Theorem ., we immediately deduce the as-
sertions (i), (ii), and (iii).
Assertion (iv) follows fromCorollary .(ii) with Theorem . again. Details are omitted

here. �

5 Application to some standardmeans
This sectionwill be devoted to an application of the above concepts to some knownmeans.
We begin with the next result.

Theorem . The logarithmic mean L is strictly (G,A)-super-stabilizable.

Proof First, the reader will do well to distinguish between the two next statements: ‘L is
strictly (G,A)-super-stabilizable’ to prove here and ‘L is (A,G)-stabilizable’ already shown
in []. By definition and by a simple reduction, we have to prove

(
L(a,b)

) < L
(
a,

a + b


)
L
(
a + b


,b
)

(.)

for all a,b >  with a �= b. We will present two different proofs for equation (.). By the
symmetric character of the involved means, we can assume, without loss the generality,
that a < b.

• The first method is much more natural: Since A – a = b –A = (b – a)/, we have

L(a,A)L(A,b) =
(b – a)

 ln(A/a) · ln(b/A) .

Then by the inequality

xy <
(
x + y


)

valid for all real numbers x, y with x �= y, one has

 ln(A/a) · ln(b/A) < (
ln(A/a) + ln(b/A)

) = (
ln(a/b)

).
This gives equation (.), so it completes the proof of the first method.
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• The second method is based on the fact that we can always set a = e–xG and b = exG
with x > . A simple computation leads to

L(a,b) =
shx
x

G, L
(
a,

a + b


)
=

shx
x – ln(chx)

G, L
(
a,

a + b


)
=

shx
x + ln(chx)

G.

Substituting these in equation (.) we are in a position to show that

sh x
x

<
sh x

x – (ln(chx))

for all x > , which clearly holds and inequality (.) is again proved.
In summary, we have shown that L is strictly (G,A)-super-stabilizable. �

Remark . We can also see that L is strictly (A,H)-sub-stabilizable. In fact, since L is
(A,G)-stabilizable and G >H , we obtain (with the help of Theorem .)

L =R(A,L,G) >R(A,L,H),

which, with H < L < A, means that L is strictly (A,H)-sub-stabilizable.

Theorem . The identric mean I is strictly (A,G)-sub-stabilizable.

Proof Wewill present here two different methods for proving our claim: The first is direct
and based on somemean-inequalities already stated in the literature, while the second one
is similar to above.

• First method: We have to show

I(a,G) + I(b,G) < I(a,b) (.)

for all a,b >  with a �= b. If we recall that [] the function (x, y) �−→ I(x, y) is concave upon
both variables, we immediately deduce that

I(A,G) > I(a,G) + I(b,G). (.)

Otherwise, it is well known that A+G
 < I (see [] for example) and I(a,b) < A(a,b) := a+b


for all a,b > , a �= b. We then obtain

I(A,G) <
A +G


< I,

which, when combined with equation (.), gives equation (.), so it completes the proof
of the first method.

• Second method: To show equation (.) is equivalent to proving that

A(
√
a,

√
b)I(

√
a,

√
b) < I(a,b). (.)

As previously, we can easily verify that

I(a,b) =G exp
x
thx

, A(
√
a,

√
b) =G/ ch(x/).

http://www.journalofinequalitiesandapplications.com/content/2014/1/28


Raïssouli and Sándor Journal of Inequalities and Applications 2014, 2014:28 Page 10 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/28

Substituting these in the above and using the identity

thx =
 th(x/)

 + th(x/)

valid for each x > , the desired inequality is reduced to showing that

�(x) := ln
(
ch(x/)

)
– (x/) th(x/) < 

for all x > . A simple computation leads to

�′(x) = –
x

 ch(x/)
< .

It follows that � is strictly decreasing for x >  and so �(x) <�() := limt→ �(t) = . The
second method is complete. �

Remark . Another method for proving equation (.) can be stated as follows: It is
well known (and easy to verify) that I(a,b) = I(a,b)S(a,b) for all a,b > , where S :=
S(a,b) = (aabb)/(a+b) is the so-called weighted geometric mean. With this, equation (.)
is equivalent to A(

√
a,

√
b) < S(

√
a,

√
b) i.e. A < S, which is a well-known mean-inequality.

As a consequence of the above, the next result gives a double inequality refining L < I
and involving the four standard means G, L, I , and A.

Corollary . We have

eL <G(A +G) exp
A +G
L

< eI. (.)

Proof The above theoremmeans thatR(A, I,G) < I , which, with Theorem . and the fact
that L is (A,G)-stabilizable, yields

L =R(A,L,G) <R(A, I,G) < I.

This, with Example . and a simple manipulation, gives the desired result. �

Of course, the above theorems when combined with the properties of sub-super-
stabilizability imply that L∗ is, simultaneously, strictly (G,H)-sub-stabilizable and strictly
(H ,A)-super-stabilizable, while I∗ is strictly (H ,G)-super-stabilizable.
As already pointed out before, whether the first Seiffert mean P is stabilizable still is an

open problem. However, the next result may be stated.

Theorem . The first Seiffert mean P is strictly (A,G)-sub-stabilizable.

Proof Explicitly, we have to prove that

A(
√
a,

√
b)P(

√
a,

√
b) < P(a,b) (.)

holds for all a,b >  with a �= b. We also present here two different methods.

http://www.journalofinequalitiesandapplications.com/content/2014/1/28
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• First method: this method is analogous to the above. Simple computation leads to

P(a,b) =G
shx

arcsin(thx)

for each x > . After simple substitution and reduction we are in a position to show that

�(x) :=  arcsin
(
th(x/)

)
– arcsin(thx) > 

for every x > . We can easily obtain (after computation and reduction)

�′(x) =


ch(x/)
–


chx

> 

for all x > . The desired inequality follows in the same way as previously.
• Second method: this method is based on an integral form of P(a,b). It is easy to see

that, for all a,b >  (with a < b without loss the generality), we have

P(a,b) =
(


b – a

∫ √
b/a



dx
 + x

)–

. (.)

This, with a simple manipulation, yields

A(
√
a,

√
b)P(

√
a,

√
b) =

(


b – a

∫ √b/a



dx
 + x

)–

. (.)

To show equation (.) is equivalent to proving that the second side of equation (.) is
strictly smaller than that of equation (.), or again (after a simple reduction)

∫ √
b/a



dx
 + x

< 
∫ √b/a



dx
 + x

. (.)

If we use the variable of change x = t, t >  in the left integral of equation (.) our aim is
then reduced to showing that

∫ √b/a



xdx
 + x

<
∫ √b/a



dx
 + x

. (.)

It is very easy to verify that

∀x > ,x �= ,
x

 + x
<


 + x

,

from which equation (.) follows. The proof is complete. �

Remark . Another way of proving equation (.) can be followed: For all a,b > , a �= b,
we have []

P
(
a,b

)
>

(
A(a,b)

) > (
P(a,b)

).
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This gives

P
(
a,b

)
>

(
A(a,b)

) > P(a,b)A(a,b)

which is exactly equation (.).

6 Some open problems
In the above section, we have proved that P is strictly (A,G)-sub-stabilizable. The fact that
P is strictly (G,A)-super-stabilizable is not proved yet. This is equivalent to showing that

(
P(a,b)

) < P
(
a,

a + b


)
P
(
a + b


,b
)

holds for all a,b >  with a �= b. As above, and setting t = thx, x > , we are in a position to
show that

�(t) := (arcsin t) –  arcsin
t

 + t
arcsin

t
 – t

> 

for all  < t < . We then present the following.
Problem : Prove or disprove that the first Seiffert mean P is strictly (G,A)-super-

stabilizable.
Problem : Find the best real numbers p >  and q >  for which P is strictly (Bp,Bq)-

sub-stabilizable.
Problem : Are the means T andM strictly (Bp,Bq)-sub-stabilizable for some real num-

bers p > , q > ?
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