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Abstract
In this paper we introduce the (I, J) similar method for incompressible
two-dimensional Euler equations, and obtain a series of explicit (I, J) similar solutions
to the incompressible two-dimensional Euler equations. These solutions include all of
the twin wave solutions, some new singularity solutions, and some global smooth
solutions with a finite energy. We also reveal that the twin wave solution and an affine
solution to the two-dimensional incompressible Euler equations are, respectively, a
plane wave and constant vector. We prove that the initial boundary value problem of
the incompressible two-dimensional Euler equations admits a unique solution and
discuss the stability of the solution. Finally, we supply some explicit piecewise smooth
solutions to the incompressible three-dimensional Euler case and an example of the
incompressible three-dimensional Navier-Stokes equations which indicates that the
viscosity limit of a solution to the Navier-Stokes equations does not need to be a
solution to the Euler equations.
MSC: 35Q30; 76D05; 76D10
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1 Introduction
In this paper we consider the Euler equations (σ = ) or the Navier-Stokes equations be-
low:

⎧⎨
⎩

∂u
∂t + (u · ∇)u +∇p = σ�u, in � × (,∞),

divu = , in � × [,∞),n = , ,
(.)

where � ⊂ Rn
+ = {x ∈ Rn|xn > }; u = u(x, t) = (u(x,x, t),u(x,x, t)) and p = p(x,x, t)

denote the velocity and pressure, respectively. Though there is a large amount of physics
and mathematics literature on the Euler and Navier-Stokes equations, many basic ques-
tions remain open.
There are various open problems in fluid physics. The Navier-Stokes equation has been

recognized as the basic equation and the very starting point of all problems in fluid physics
(see []). One of the most significant developments related to the above problem may be
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the discovery of Lax pairs of the two-dimensional and three-dimensional Euler equations
(see [])

ωt + [ψ ,ω] = , ω =ψxx +ψxx , (.)

where the velocity u = (u,u) is determined by the stream function ψ through

u = –ψx , u =ψx . (.)

Is an exact solution of the Euler equations explicitly given via solving the vortex equa-
tions (the weak Lax pair) to the Euler equations? Since the Lax pair has still only weak
meaning, one cannot get the solutions to the Euler equations from those solutions of vor-
tex equations by the Biot-Savart law. Thus whether the integrable two-dimensional Euler
equations in some stronger sense are similar to those of the three-dimensional Euler equa-
tions is still an open question. In this paper we find a so-called (I, J) similar method which
can give some explicit smooth solutions to two-dimensional incompressible Euler equa-
tions (see Section ). As applications of the (I, J) similar method, a large amount of explicit
twin wave solutions are constructed in Section .
There are various open problems in mathematics, such as: how to establish the global

existence of smooth solutions, and how to establish the blow-up solution at least when the
space dimension equals three (see []), and so on. The study of the incompressible Navier-
Stokes equations has a long history. A deeper result on the weak solution was obtained
by Caffarelli et al. in []. On the blow-up problem of the incompressible Navier-Stokes
equations, Tsai in [] proved that the Leray self-similar solutions to (.) must be zero if
they satisfy local energy estimates. So in Section  we discuss the method of determining
the nonexistence of a non-constant affine solution to the two-dimensional Euler equations,
which we can correctly obtain due to the (I, J) similar method.
The blow-up problem of the compressible Navier-Stokes equation has been established

by Xin (see []). He proved that any smooth solution to the multidimensional Navier-
Stokes equation for polytropic fluids in the absence of heat conduction will blow up in
finite time if the initial density is compactly supported (see []).
In Section , we prove that incompressible two-dimensional Euler equations under a

class of initial boundary values has a unique solution u(x, t) ∈ C∞([,∞);L(�)) for every
bounded domain �̄ ⊂ Rn

+, and we discuss the stability of solutions in Section .
Since it is very hard to solve the Navier-Stokes equations in a three-dimensional space,

we consider the two equations in the half space case. In Section , we construct some ex-
plicit smooth solutions to the incompressible three-dimensional Euler and Navier-Stokes
equations and an example of the three-dimensional Navier-Stokes equations which indi-
cates that a solution to the Navier-Stokes equations does not need to tend to a solution to
the Euler equations in the continuous function space on the half space.
For open problems of the Euler equations and the Navier-Stokes equations to the in-

compressible cases, we refer to [, ] for more information.

2 (I, J) similar method in solving the Euler equations
We first have the following definition.

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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Definition . Apiecewise smooth solution u(x, t) to (.) is called a (I, J) similar solution,
if

u(x, t) =
I∑
i=

αi(t)vi

( J∑
j=

βj(t)Mj(x)

)
, (.)

where αi(t) and βj(t) are smooth functions on [,∞),Mj(x) = (Mj(x),Mj(x), . . . ,Mjn(x)) is
a n-dimensional smooth vector function independent of t, and vi(y, y, . . . , yn) is a piece-
wise smooth vector function from Rn to Rn.

Here a vector valued function f (t) is called piecewise smooth on [,∞), if there ex-
ist  < t < t < · · · < tk < +∞ such that f (t) is a smooth function on (, t), (ti, ti+),
i = , , . . . ,k –  and (tk ,∞), respectively. Similarly we call a vector valued function u(x, t)
piecewise smooth onRn if there exist  < r < r < · · · < rk < +∞ such that u(x, t) is a smooth
function on {x| < |x| < r}, {x|ri < |x| < ri+}, i = , , . . . ,k – , and {x|rk < |x| < ∞}, respec-
tively. We rewrite

( J∑
j=

βj(t)Mj(x)

)
=

( J∑
j=

βj(t)Mj(x),
J∑
j=

βj(t)Mj(x), . . . ,
J∑
j=

βj(t)Mjn(x)

)

=: (y, y, . . . , yn).

By inserting (.) into (.), we have

I∑
i=

αitvi +
I∑
i=

J∑
j=

n∑
k=

βjtMjkviyk +
I∑

i,i=

J∑
j=

n∑
k=

αiαiβjMjkxk vikviyk +∇p

=
I∑
i=

J∑
j,j=

n∑
k,l,m,s=

αiβjβjMjmxkMjsxk viykyl +
I∑
i=

J∑
j=

n∑
k,l=

αiβjviylMjlxkxk ,

I∑
i=

J∑
j=

n∑
k,l=

αiβjviylMjlxk = .

(.)

For the incompressible Euler equations, we take n = , I = , J = , α = c(t), β = β = ,
v(y, y) = (y, y), and we also set

M(x) =
(
x
r
, –

x
r

)
, M(x) =

(
h(r)x, –h(r)x

)
, (.)

where r =
√
x + x. Then u and pmust satisfy the following equation:

c′(t)
r

(x, –x) –
(
c(t)
r

+ h(r)
)

(x,x) +∇p = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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So the incompressible Euler equations (.) below in Theorem . have a family of (I, J)
similar solutions,

u =
((

c(t)
r

+ h(r)
)
x, –

(
c(t)
r

+ h(r)
)
x

)
,

p = –c′(t) arctan
x
x

+ F(r, t), x �= ,
(.)

where F(r, t) =
∫
r( c(t)r + h(r)) dr, c is an arbitrary smooth function of t, h is an arbitrary

smooth function of r.
Thus we have the following result.

Theorem . Equation (.) is a family of (I, J) similar solutions to the incompressible
Euler equations,

⎧⎨
⎩

∂u
∂t + (u · ∇)u +∇p = , in R × (,∞),

divu = , in R × (,∞).
(.)

Remark. To the best of our knowledge, there is little knownof exact solutions to vortex
equations, but they are not solutions to the two-dimensional Euler equations (.) except
for the zero solution and they did not bring about any solution to the two-dimensional
Euler equations (.) by the Biot-Savart law as they have a singularity (see [, ]), as seen
by using VIM (see []), and by a Bäcklund transformation (see []) method. Notice that
(.) correctly is a family of exact solutions to the two-dimensional Euler equations (.).

Remark . It is interesting to get many properties by choosing c(t), h(r).

Example . According to [], we see that

u =
((

c(t)
|x –Ct| + h

(|x –Ct|))x + c, –
(

c(t)
|x –Ct| + h

(|x –Ct|))x + c
)
,

p = –c′(t) arctan
x – ct
x – ct

+ F
(|x –Ct|, t),

F(r, t) =
∫

r
(
c(t)
r

+ h(r)
)

dr

(.)

is also a solution pair for any constant vectors C ∈ R. w =QTu(Qx, t), p̄ = p(Qx, t) is also
a solution pair for any rotation matrices Q.

Example. There are someuwith finite energy only at somepoints, such as t = . Taking
c(t) = t, h(r) = – 

r

u =
((

t
r

–

r

)
x, –

(
t
r

–

r

)
x

)
,

p = – arctan
x
x

–

r

(t – ).
(.)

Then u(x, ) ∈ L+ε(R\Bδ), however, for every ε >  and δ > , we have u(x, t) ∈ L+ε(R\
Bδ) but u(x, t) /∈ L(R\Bδ), where Bδ = {x ∈ R||x| < δ}.
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Example . There are some explicit solutions u with singularities only at some points.
Taking c(t) = 

T–t , h(r) = – 
r ,

u =
((


r(T – t)

–

r

)
x, –

(


r(T – t)
–


r

)
x

)
,

p = –


(T – t)
arctan

x
x

–

r

(


T – t
– 

)

.
(.)

Then u is singular at r =  and blows up at t = T .

3 Twin wave solutions
In this section we give more explicit nonzero solutions by considering explicit twin wave
solutions to the two-dimensional Euler equations. Here a twin wave solution has the form
of u = u(x – ct,x – ct). The twin wave solution is a (I, J) similar solution. In fact, if we
take I = , J = , β = , β = –ct, β = –ct,M = (x,x),M = (, ),M = (, ), v(y, y) =
u(y, y), then u = u(x – ct,x – ct). Inserting them into (.), we have the following
theorem.

Theorem . If the pressure is independent of x, all twin wave solutions to the two-
dimensional Euler equations u = u(x – ct,x – ct) will be given by u(x, t) = (v(cx – x –
(cc – c)t)+ c, cv(cx –x – (cc – c)t)+ c),where v is any function of cx –x – (cc –
c)t, and c, c, c are arbitrary constants.

Proof Inserting u = u(x – ct,x – ct) and p(x, t) = p(x,x, t) into (.),

⎧⎪⎪⎨
⎪⎪⎩
(–c + u)ux + (–c + u)ux + px = ,

(–c + u)ux + (–c + u)ux + px = ,

ux + ux = .

(.)

Then (.) is rewritten as

⎧⎪⎪⎨
⎪⎪⎩
(u – c)(u – c)x + (u – c)(u – c)x + px = ,

(u – c)(u – c)x + (u – c)(u – c)x + px = ,

(u – c)x + (u – c)x = .

(.)

Let us take y = x – ct, y = x – ct, v(y, y) = u – c, v(y, y) = u – c. By (.), we
have

⎧⎪⎪⎨
⎪⎪⎩
vvy + vvy + px = ,

vvy + vvy + px = ,

vy + vy = .

(.)

If p≡ p(t), this may be interpreted as the equations in v(y, y), v(y, y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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We now consider the following equations:

⎧⎪⎪⎨
⎪⎪⎩
vvy = vvy ,

vvy = vvy ,

vy + vy = .

(.)

So

⎧⎪⎪⎨
⎪⎪⎩
v = f (y)v,

v = g(y)v,

vy + vy = ,

(.)

where f (y), g(y) are determinate functions. Hence, we have

f (y) = g(y) = c.

Further let

⎧⎨
⎩v = v(cy – y),

v = cv(cy – y).
(.)

Therefore,

⎧⎨
⎩u = v(cx – x – (cc – c)t) + c,

u = cv(cx – x – (cc – c)t) + c,
(.)

where v is any function of cx – x – (cc – c)t, and c, c, c are arbitrary constants. �

Example . By taking c(t) = , h(r) = – 
r +


(+r) in Example ., we have

u =
(


( + |x –Ct|) x + c, –


( + |x –Ct|) x + c

)
,

p = –


( + |x –Ct|) .
(.)

These are a global smooth twin wave solutions pair for any constant vectors C ∈ R.
w =QTu(Qx, t), p̄ = p(Qx, t) are also a twin wave solutions pair for any rotationmatricesQ.

Remark . These solutions in (.) are symmetric only in some domains. In particular,
if c = c, they are symmetry solutions for all t ≥ , and if c �= c they are not symmetric
for all t �=  and symmetric only at t = . These examples show that the difference between
the velocity of flow and its wave speed u–C has a finite energy over R, i.e. u–C ∈ L(R).

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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Example . There are some forms of symmetric solutions u only in some domains; for
example, taking v(ξ ) = 

|ξ+T(c–c)| , c = ,

⎧⎪⎪⎨
⎪⎪⎩
u = 

|x–x+(c–c)(T–t)| + c,

u = 
|x–x+(c–c)(T–t)| + c,

p = p(t)

(.)

are some twin wave solutions to (.), and they form a symmetry only at t = T , or they are
static.

Example . Take v(ξ ) = 
(+|ξ |) – c, c = . Then we find that

⎧⎪⎪⎨
⎪⎪⎩
u = 

(+|x–x–(c–c)t|) ,

u = 
(+|x–x–(c–c)t|) + c – c,

p = p(t)

(.)

are global smooth twin wave solutions to the Euler equations (.) with finite energy in
any bounded domain, but u – C with infinite energy over R except for the static case. If
the components of the wave speed are equal, then the system is static.

Example . If we take v(ξ ) = 
|ξ | , c = , then

⎧⎪⎪⎨
⎪⎪⎩
u = 

|x–x–(c–c)t| + c,

u = 
|x–x–(c–c)t| + c,

p = p(t)

(.)

are some twin wave solutions with singularity to the Euler equations (.).

Remark . These solutions in (.) have a singularity on the line {(x,x)|x – x = (c –
c)t} for every t ≥ . In particular, we have the following result:
For every given time t ≥  and arbitrary line {(x,x)|Ax – Bx = C,A + B �= }, there

exist some solutions with singularity over the line {(x,x)|Ax – Bx = C,A + B �= }.

Example . According to [], w = u(x –Ct, t) +C, p̄ = p(x –Ct, t) is also a solution pair
for any constant vectors C ∈ R. w =QTu(Qx, t), p̄ = p(Qx, t), is also a solution pair for any
rotation matrices Q. w = λ

τ
( x
λ
, t

τ
), p̄ = λ

τ
( x
λ
, t

τ
) is also a solution pair.

4 Nonexistence
In this section we consider the explicit affine solution to the two-dimensional Euler equa-
tions. Here a solution u(x, t) is called an affine solution, if the u(x, t) is denoted by u(x, t) =
(v( x–ctx–ct

), v( x–ctx–ct
)), c �= . The affine solution indeed is a (I, J) similar solution. In fact,

this is the case: β = , β = –ct, β = , β = –ct, M = (x, ), M = (, ), M = (,x),
M = (, ), z = βM + βM, z = βM + βM, w(z, z) = v( zz ). We have the following
result.

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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Theorem . All affine solutions must be twin wave solutions. Affine solutions to the two-
dimensional Euler equations are constant vectors. That is to say there does not exist a non-
constant affine solution to the two-dimensional Euler equations.

Proof Since we are concerned with an affine solution here, let

u(x, t) =
(
v

(
x – ct
x – ct

)
, v

(
x – ct
x – ct

))
, c �= ,

by using (.), and letting ξ = x–ct
x–ct

, a straightforward calculation shows that

⎧⎨
⎩


x–ct

vξ – x–ct
(x–ct)

vξ = ,

vξ ( –c
x–ct

+ c(x–ct)
(x–c)

) + 
x–ct

vvξ – x–ct
(x–ct)

vvξ +∇p = ,
(.)

⎧⎨
⎩vξ (–cξ + cξ  + ξv – ξ v) + (x – ct)∇p = ,

vξ = ξvξ ,
(.)

⎧⎪⎪⎨
⎪⎪⎩
vξ (–cξ + cξ  + ξv – ξ v) + (x – ct)px = ,

vξ (–cξ + cξ  + ξv – ξ v) + (x – ct)px = ,

vξ = ξvξ ,

(.)

⎧⎪⎪⎨
⎪⎪⎩
vξ (–cξ + cξ  + ξv – ξ v) + ξpξ = ,

vξ (–cξ + cξ  + ξv – ξ v) – ξ pξ = ,

vξ = ξvξ ,

(.)

⎧⎪⎪⎨
⎪⎪⎩
vξ (–cξ + cξ  + ξv – ξ v) + pξ = ,

vξ (–cξ + cξ  + ξv – ξ v) – ξ pξ = ,

vξ = ξvξ .

(.)

Thus

pξ = –ξ pξ

and

p = p(t). (.)

Hence
⎧⎨
⎩vξ = ,

vξ = ξvξ ,
(.)

or
⎧⎨
⎩–cξ + cξ  + ξv – ξ v = ,

vξ = ξvξ .
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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Therefore, we get

v = constant, v = constant, p = p(t). �

5 Uniqueness
In this section, we study the uniqueness of the initial boundary value problem for the Euler
equations (σ = ) below:

∂u
∂t

+ (u · ∇)u +∇p = σ�u, in Rn × (,∞),

divu = , in Rn × [,∞),n = , ,
(.)

and we have the following result.

Theorem . Assume that � ⊂ R
+ is a bounded domain and infx∈�{x} = a > . If c ∈

C∞(R
+), h(s) is an arbitrary smooth function of s satisfying |h(r)| ≤ M, |h′

r(r)| ≤ M
r for

r ≥ a > , where M,M, and a are positive constants, and r =
√
x + x. Then the following

initial boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + (u · ∇)u +∇p = , in � × (,∞),

divu = , in � × (,∞),

u(x, ) = (( cr + h(r))x, –( cr + h(r))x), in �,

p(x, ) = –c arctan x
x

+
∫ r
a s(

c
s + h(s)) ds, in �,

u(x, t) = (( c(t)r + h(r))x, –( c(t)r + h(r))x), on ∂� × [,∞),

p(x, t) = –c′(t) arctan x
x
, on ∂� × [,∞),

(.)

has a unique smooth solution u ∈ (C∞([,∞)× �)) , p ∈ C∞([,∞)× �).

Proof Notice that divu(x, ) = , infx∈�{x} = a > , c ∈ C∞[,∞), and given the assump-
tions on h(s) satisfying the initial boundary value problems in (.), the result about exis-
tence is directly derived byTheorem .. To prove the uniqueness we consider two smooth
solution pairs, say u, p and v, p. Let their difference be w = u– v, with initial value w, and
let p̃ be the difference of the corresponding pressures. Then, subtracting the equations
from each other in (.), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt + u · ∇w +w · ∇u –w · ∇w +∇p̃ = , in � × (,∞),

divu = , divw = , in � × [,∞),

w(x, ) = (, ), in �,

p̃(x, ) = , in �,

w|∂� = (, ),

p̃|∂� = .

(.)

Multiplying the first equation of (.) by w, integrating over �, and using the Gauss
formula, we obtain



d
dt

‖w‖L = –(w · ∇u,w), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/277
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since (using the Gauss formula and divu = , divw = )

(u · ∇w,w) =
∑

i,j=

∫
�

uj
∂wi

∂xj
wi dx

=
∫

∂�

|w|


u · nds

= ,

(∇p̃,w) =
∑
i=

∫
�

∂p̃
∂xi

wi dx

= –
∫

�

p̃divwdx

= ,

where n stands for the outward unit normal to �.
Similarly (w · ∇w,w) =

∫
∂�

|w|
 w · nds = .

By using u = (( c(t)r – h(r))x, –( c(t)r – h(r))x) in the term |–(w · ∇u,w)|, we obtain

∣∣–(w · ∇u,w)
∣∣ ≤ ‖w‖L‖∇u‖L∞ , (.)

|∇u| =
√[(

–
c(t)
r

+ h′
r

)]

r + 
(
c(t)
r

+ h
)

≤ ( +
√
)

|c(t)|
r

+
√
|h| + r

∣∣h′
r
∣∣, (.)

‖∇u‖L∞ ≤ ( +
√
)

|c(t)|
a

+M +M.

Inserting (.)-(.) into (.), it follows that

d
dt

‖w‖L ≤ 
(
( +

√
)

|c(t)|
a

+M +M

)
‖w‖L . (.)

Thanks to the Gronwall inequality, we have the following:

‖w‖L ≤ exp
∫ t
 ((+

√
) |c(t)|

a
+M+M)dτ∥∥w(x, )∥∥

L

= . (.)

Therefore there exists a unique solution in the sense of L(,T ; (L(�))), ∀T > . The
denseness of C∞([,T] × �) in L(,T ; (L(�))) implies the uniqueness of the solution
in the sense of C∞([,T] × �) from w = u – v ∈ (C∞([,∞)× �)) . We can apply the
same argument on the intervals [T , T], [T , T], etc., according to the uniformGronwall
lemma since c ∈ C∞(R

+). We obtain the uniqueness of the solution.
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Let us again consider Example .. We have

–(w · ∇u,w) = –(t – )
∫

�

[
w

–xx
r

+ww
(x – x)

r
+
xx
r

w


]
dx

= –(t – )
∫

�

(
w
 –w


)xx

r
+ww

(x – x)
r

dx

= –(t – )
∫

�


r

[(
w
 –w


)
sin(θ ) + ww cos(θ )

]
dx

≤ |t – |
a

‖w‖L . (.)

Using (.) for the right-hand side of (.), we obtain

d
dt

‖w‖L ≤ |t – |
a

‖w‖L . (.)

Thanks to the Gronwall inequality again, we have the following result:

‖w‖L ≤ exp
∫ t


|t–|
a

dτ∥∥w(x, )∥∥
L

= . (.)

Thus we prove the uniqueness of the solution.
On taking amore in-depth look, such as considering� = {(x,x)|(

√
–)x ≤ x ≤ x},

we have

–(w · ∇u,w) ≤ –(t – )
∫

�

(
w

x – x – xx

r
+w


x – x + xx

r

)
dx

= –
√



(t – )
∫

�

(
w

sin(π

 – θ )
r

+w

sin(π

 + θ )
r

)
dx

≤ , ∀t ≥ . (.)

Thus we obtain

d
dt

‖w‖L ≤ . (.)

We get

‖w‖L ≤ ∥∥w(x, )∥∥
L

= , uniformly for t ≥ . (.)

It clarifies that the uniqueness of the solution is possible even as t → ∞ if the right scope
is chosen in �. �

6 Analysis of stability between the equations and its vortex equation
In this section we discuss the stability of the solution, respectively, in C(�) and L(�) for
the problem (.).
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Let v, p, and v denote the solution pair of a slight disturbance and the initial boundary
value of v. Let w = u – v be the difference of u and v, with initial value w(x) →  in the
sense of L(�) and boundary value u → v in the sense of L(∂�) ∩ L∞(∂�), ∀t ∈ (,T],
and let p̃ be the difference of the corresponding pressure. Then, subtracting one equation
from the other, if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt + u · ∇w +w · ∇u –w · ∇w +∇p̃ = ,

divu = , divw = ,

w(x, ) = w(x),

w|∂� =ψ(x, t)

(.)

for (x, t) ∈ � × (,T), and � = {r ≥ a|a > } ∩ {(x,x)|x ≥ x}. Multiplying this by w,
integrating over �, and using the Gauss formula, we obtain

d
dt

‖w‖L ≤ 
∣∣(u · ∇w,w)

∣∣ + 
∣∣–(w · ∇u,w)

∣∣ + 
∣∣(w · ∇w,w)

∣∣. (.)

Using the Gauss formula and divu = , divw = ,

(∇p̃,w) =
∑
i=

∫
�

∂p̃
∂xi

wi dx

= –
∫

�

p̃divwdx

= ,

∣∣(u · ∇w,w)
∣∣ =

∣∣∣∣∣
∑

i,j=

∫
�

uj
∂wi

∂xj
wi dx

∣∣∣∣∣
=

∣∣∣∣
∫

∂�

|w|


u · nds
∣∣∣∣

≤ 

‖u‖L∞(∂�)‖w‖L(∂�),

where n stands for the outward unit normal to �.
Similarly,

∣∣–(w · ∇u,w)
∣∣ ≤

(
( +

√
)

|c(t)|
a

+M +M

)
‖w‖L ,

∣∣(w · ∇w,w)
∣∣ = ∣∣∣∣

∫
∂�

|w|


w · nds
∣∣∣∣

≤ 

‖w‖L∞(∂�)‖w‖L(∂�).

Combining the formulas above, we have

d
dt

‖w‖L ≤ 
(
( +

√
)

|c(t)|
a

+M +M

)
‖w‖L

+ 
(‖u‖L∞(∂�) + ‖w‖L∞(∂�)

)‖w‖L(∂�). (.)
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Since u→ v in the sense of L(∂�)∩ L∞(∂�), we can make, for every given ε > ,

(‖u‖L∞(∂�) + ‖w‖L∞(∂�)
)‖w‖L(∂�) ≤ ε.

Using the Gronwall inequality in (.), for every t ∈ [,T],

‖w‖L ≤ exp
∫ t
 ((+

√
) |c(τ )|

a
+M+M)dτ∥∥w(x)

∥∥
L

+ ε
∫ t


exp

∫ t
τ ((+

√
) |c(s)|

a
+M+M)ds dτ

→ , (.)

as u→ v in the sense of L(∂�)∩ L∞(∂�) and ‖w‖L(�) → . So we reach the stability of
the solution in finite time.

Remark . Adopting the same method as we use in the proof of Theorem ., we ob-
tain

d
dt

‖w‖L ≤ 
(‖u‖L∞(∂�) + ‖w‖L∞(∂�)

)‖w‖L(∂�), (.)

‖w‖L ≤ tε + 
∥∥w(x, )∥∥

L

→ , as u→ v in the sense of L(∂�)∩ L∞(∂�),

for t ∈ [,T].

7 Explicit solution to (3 + 1)-dimensional Navier-Stokes equation
We now give an improvement of the example in reference [].

Example . Let  < T ≤ ∞, and consider the initial problem for the Navier-Stokes equa-
tion,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + (u · ∇)u +∇p = σ�u, in R × (,T),

divu = , in R × (,T),

u(x, ) = u = (u,u,u), p(x, ) = p,

ui,p ∈ C∞([,T]× BM)

for any  < T < T ,  <M < +∞,

(.)

where BM = {x ∈ R||x| <M}. Suppose

u =
√
T

(
– + c exp

(


σT
s –


σ
√
T
s + c

))
,

u =
√
T

(
– + c exp

(


σT
s –


σ
√
T
s + c

))
,

u = –
√
T

(
 + (c + c) exp

(


σT
s –


σ
√
T
s + c

))
, (.)
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p = –

T

(



√
T
s + c

)
,

s =
∑
i=

(xi – xi).

Then for arbitrary constants c, c, c, and c, (.) has a class of smooth blow-up solutions
at finite time T ,

u = (u,u,u),p, (.)

ui,p ∈ C∞([,T]× BM) for any  < T < T ,  <M < ∞. We have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u = √
T–t (– + c exp( 

σ (T–t) s
 – 

σ
√
T–t s + c)),

u = √
T–t (– + c exp( 

σ (T–t) s
 – 

σ
√
T–t s + c)),

u = – √
T–t ( + (c + c) exp( 

σ (T–t) s
 – 

σ
√
T–t s + c)),

p = 
T–t (



√
T–t s + c).

(.)

Moreover, the initial function satisfies the second equation,

divu = , in R. (.)

Here a solution of (.) is called a smooth blow-up solution at finite time T , if ui,p ∈
C∞([,T]×BM)∩Wm,q (,T;Wm,q (BM)) for any T ∈ (,T), any nonnegative integer
numbersm,m, any positive real numbers q, q, but

lim
t→T–

‖u‖Wm,q(BM) = +∞, lim
t→T–

‖p‖Wm,q(BM) = +∞, (.)

for some nonnegative integer numbersm and positive real numbers q,M.

Remark . This example indicates that the C∞ solution of the Navier-Stokes equation
does not always tend to a solution of the Euler equation.
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