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1 Introduction and preliminaries

As the development of singular integral operators (see [1, 2]), their commutators and mul-
tilinear operators have been well studied. In [3—5], the authors prove that the commutators
generated by the singular integral operators and BMO functions are bounded on L”(R")
for 1 < p < co. Chanillo (see [6]) proves a similar result when the singular integral op-
erators are replaced by the fractional integral operators. In [7, 8], the boundedness for
the commutators generated by the singular integral operators and Lipschitz functions on
Triebel-Lizorkin and L?(R") (1 < p < 00) spaces is obtained. In [9, 10], the boundedness for
the commutators generated by the singular integral operators and the weighted BMO and
Lipschitz functions on L?(R") (1 < p < 00) spaces is obtained (also see [11]). In [12,13], some
singular integral operators with non-smooth kernels are introduced, and the boundedness
for the operators and their commutators is obtained (see [14—17]). Motivated by these, in
this paper, we study multilinear operators generated by singular integral operators with
non-smooth kernels and the weighted Lipschitz and BMO functions.

In this paper, we study some singular integral operators as follows (see [13]).

Definition1 A family of operators D;, t > 0, is said to be an ‘approximation to the identity’
if, for every ¢ > 0, D, can be represented by a kernel a,(x, y) in the following sense:

mmm=/

R

a(x,y)f (y) dy
for every f € LP(R") with p > 1, and a,(x, y) satisfies

|ac(x,)| < he(x,y) = CE"p(lx - yI7 /1),
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where p is a positive, bounded and decreasing function satisfying

lim r”“p(rz) =0

r—>0o0

for some € > 0.

Definition 2 A linear operator T is called a singular integral operator with non-smooth
kernel if T is bounded on L2(R") and associated with the kernel K (x, ) so that

T(f)(x) = /R K@) 0)dy

for every continuous function f with compact support, and for almost all x not in the
support of f.

(1) There exists an ‘approximation to the identity’ {B;, ¢ > 0} such that 7B, has the asso-
ciated kernel k;(x,y) and there exist ¢1, ¢, > 0 so that

f " |K(x,y) - kt(x,y)| dx <c, forallyeR".
[x—y|>c1t

(2) There exists an ‘approximation to the identity’ {A;,f > 0} such that A, T has the as-
sociated kernel K;(x, y) which satisfies

K%, 9)| < cat™ if [x - y| < c5t'?

and

|K(%,9) - Ki(x,9)| < cat®x =y if |x—y| > c3t"?

for some § > 0, c3,cq4 > 0. Moreover, let m be a positive integer and b be a function on R".
Set

Ry (59) = b@) = 3 Do) )"

lee|<m
The multilinear operator related to the operator T is defined by

Ry (b;x,9)

T(f)(x) = / o K y)f (y) dy.
-l

R |

Note that the commutator [b, T1(f) = bT (f) — T(bf) is a particular operator of the multi-
linear operator T if m = 0. The multilinear operator T is a non-trivial generalization of
the commutator. It is well known that commutators and multilinear operators are of great
interest in harmonic analysis and have been widely studied by many authors (see [18—20]).
The main purpose of this paper is to prove sharp maximal inequalities for the multilinear
operator T?. As an application, we obtain the weighted L”-norm inequality and Morrey
space boundedness for the multilinear operator T?.
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Now, let us introduce some notations. Throughout this paper, Q will denote a cube of
R" with sides parallel to the axes. For any locally integrable function f, the sharp maximal
function of f is defined by

M) = sup o / 1) —fol d

where, and in what follows, fg = |Q|™ fo(x) dx. It is well known that (see [1, 2])

M)~ sup pinf oo / ) —c|db.

Let

) =sup g5 [ 0l

For > 0, let M} (f)(x) = M*(|f1")""(x) and M, (f)(x) = M(|f|")"" ().
For 0 < n <n,1 < p < oo and the non-negative weight function w, set

1 » 1/p
Mnyp,w(f)(x)=zl;€(W/Qlf()’)| W(y)dy) .

We write M, w(f) = My, (f) if n = 0.
The sharp maximal function M, (f) associated with the ‘approximation to the identity’
{A;, t > 0} is defined by

M@ = sup / 1)~ Ay ()|

where £, = 1(Q)* and /(Q) denotes the side length of Q. For > 0, let M%  (f) = ME([FImYn.
The A, weight is defined by (see [1]), for 1 < p < o0,

-1
Ap:{weLlloc(R") sup<|Q|/ w(x) d. )<|(12|/w(x)_1/(”_1)dx>p <oo}

and
A ={well (R"):Mw)x) <Cw(x)ae.}.

Given a non-negative weight function w. For 1 < p < 0o, the weighted Lebesgue space
L?(R",w) is the space of functions f such that

1/p
W lloow) = (/I;" [f () [ w(x) dx> < 00.

For 0 < 8 <1 and the non-negative weight function w, the weighted Lipschitz space
Lipg(w) is the space of functions b such that

1 Up
”b”Lip/g(W):SlépW( (Q)/| (y) - bQ|pw(x]pdy) < 00,
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and the weighted BMO space BMO(w) is the space of functions b such that

1 1/p
b = — | b)) = bo) r g4 .
1161l astow) sgp(W(Q) /QI ) - bo| w(x) y) <0
Remark (1) It has been known that (see [9, 21]), for b € Lips(w), w € A; and x € Q,
/n
16g — bakl < CKIB | Lip,mw@w(25Q)"".
(2) It has been known that (see [1, 21]), for b € BMO(w), w € A; and x € Q,
|bq — bykgl < Ckl|bl Barow) ().
(3) Let b € Lipg(w) or b € BMO(w) and w € A;. By [22], we know that spaces Lipg(w)
or BMO(w) coincide and the norms ||b||up,3(w) or ||b]|smoew) are equivalent with respect to

different values 1 < p < oc.

Definition 3 Let ¢ be a positive, increasing function on R*, and let there exist a constant
D > 0 such that

0(2t) < Dy(t) fort=>0.

Let w be a non-negative weight function on R” and f be a locally integrable function on R".
Set,forO0<n<mand1l<p<mn/n,

x€R",d>0

1 » 1/p
fllzone ) = sup (W /Q (xvd){f()/” W(VWJ’) ,

where Q(x,d) = {y € R" : |x — y| < d}. The generalized fractional weighted Morrey space is
defined by

L7 (R, w) = {f € Lige(R") « I llomo ) < 00}

We write LP?(R") = LP?(R") if n = 0, which is the generalized weighted Morrey space.
If p(d) = d°, § > 0, then LP¥#(R",w) = LP*(R",w), which is the classical Morrey space (see
[23, 24]). If p(d) = 1, then LP?(R",w) = LP(R",w), which is the weighted Lebesgue space
(see [1]).

As the Morrey space may be considered as an extension of the Lebesgue space, it is
natural and important to study the boundedness of the operator on the Morrey spaces
(see [22,25-27]).

2 Theorems and lemmas

We shall prove the following theorems.

Theorem 1 Let T be a singular integral operator with non-smooth kernel as given in Defi-
nition2, w € A1, 0 <n<1,1<r<oo0and D*b € BMO(w) for all « with |a| = m. Then there
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exists a constant C > 0 such that, for any f € C{°(R") and x € R”,

M (TH)@ = C 31Dy DM (.

|oe|=m

Theorem 2 Let T be a singular integral operator with non-smooth kernel as given in Def-
inition 2, w € A;, 0<n<1,1<r<o0,0< B <1land Db € Lipg(w) for all o« with |a| = m.
Then there exists a constant C > 0 such that, for any f € C°(R") and x € R”,

MY(THP)@ = C Y [D7b, o WOM ).

lee|=m

Theorem 3 Let T be a singular integral operator with non-smooth kernel as given in Defi-
nition 3, w € Ay, 1< p < 00 and D*b € BMO(w) for all o with |a| = m. Then T? is bounded
from LP(R",w) to LP(R", w'P).

Theorem 4 Let T be a singular integral operator with non-smooth kernel as given in Def-
inition 3, w € A}, 1< p < 00,0 <D < 2" and D*b € BMO(w) for all o« with |a| = m. Then T?
is bounded from IP#(R",w) to LP¢(R", w'P).

Theorem 5 Let T be a singular integral operator with non-smooth kernel as given in Def-
inition3, we A, 0<B<1,1<p<n/B,1/q=1/p—- B/nand Db € Lipﬁ(w)for all o with
la| = m. Then T? is bounded from LP(R",w) to L1(R", w'™9).

Theorem 6 Let T be a singular integral operator with non-smooth kernel as given in Def-
inition 3, w€ A;,0< B <1,0<D<2", 1<p<n/B,1/q=1/p - B/n and D*b € Lipg(w) for
all o with |a| = m. Then T? is bounded from LPP¥¢(R", w) to L7 (R", w'~7).

To prove the theorems, we need the following lemmas.

Lemma 1 (see [1, p.485]) Let 0 < p < q < 00, and for any function f > 0, we define that, for
1/r=1/p-1/q,

1
Ifllwza = supAl{x € R": f(x) > A} [T, Npg(f) = sup i xall/lxaler
A>0
where the sup is taken for all measurable sets Q with 0 < |Q| < co. Then

I llwze < Npo(F) < (a/(q = )" If Nwaa-

Lemma 2 (see [12, 13]) Let T be a singular integral operator with non-smooth kernel as
given in Definition 2. Then T is bounded on L? (R", w) for w € A, with 1 < p < 00, and weak
(LY, LY bounded.

Lemma 3 ([12, 13]) Let {Ast > 0} be an ‘approximation to the identity’. For any y > 0,
there exists a constant C > 0 independent of y such that

[{x € R": M(f)(x) > DA, ME (F)(x) < yA}| < Cy|{x € R" : M(f)(x) > 1 }|
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for . >0, where D is a fixed constant which only depends on n. Thus, for f € [P (R"),1<p <
00,0<n<o0andwe A,

[445) 1o = CIMEL O ooy

Lemma 4 (see [1,6]) Let0<n<m 1<s<p<n/n,1lqg=1lp—n/nandw e A,. Then

”Mn,s,w(f) ”Lq(w) =< C”f”l}’(w)'

Lemma 5 (see [12, 13]) Let {As,t > 0} be an ‘approximation to the identity’, 0 < D < 2",
l<p<oo,0<n<oo,weAandwe A;. Then

126 oy = CIMAL D

Lemma 6 (see [22, 25]) Let 0 <n<n,0<D<2",1<s<p<n/n,1/qg=1/p—-n/n and
w € A;. Then

”Mn,s,w(f) ||Lq,<p(w) =< C||f||l}7'”v‘4’(w)~

Lemma 7 (see [19]) Let b be a function on R" and D*A € L1(R") for all o with |a| = m and
any q > n. Then

1 1/q
R, (b;x,9)| < Clx —y|™ <~7/ D*b(z2) qdz) ,
| | Z 1Q(x, »)| Q(x,y>| |

|ae|=m
where Q is the cube centered at x and having side length 5/n|x — y|.

Lemma 8 Let {A;,t > 0} be an ‘approximation to the identity’, w € Ay and b € BMO(w).
Then, for every f € LP(w),p>1,1<r < oo and x € R",

sup

Qo3 |LQ| /Q|AtQ ((b - bQ)f) ()/)| dy < C||b|| ssowywE) M, (f) (%),

where tq = [(Q)? and 1(Q) denotes the side length of Q.

Proof We write, for any cube Q with ¥ € Q,

ﬁ /Q ¢y (b — bo)f) )] dx
=g |, [ s |66) - bl o] v
< /Q /Q g )| (60) - bo)f )| dyx
: ki G [ Lo e (60) - Q) )] dy s

=I+1I.
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We have, by Holder’s inequality,

< % / / |(b) - bQ)f )| dy

< / 163) — b | wi) ™7 £ 0) | wi)'" dy

=1Q </ 6~ bolw)” f@) r(/QV(y)I’w(y)dy)w

< Vg ur 1 r w
< € bllamomm( Q" w(Q) ( el /Q £6)| W(y)dy>
wQ

< ClIbll smow) IQI M, (f)(%)

=< C“b”BMO(w)W x)Mr,w(f)(;C)

For II, notice for x € Q and y € 287 Q\ 2¢Q, then |x — y| > 2"Vt and /i, (x,) < ce_) 22 - 1) ,
then

o0

n=c 2(=D) // —bQ)f(y)| dyd
=Cp s i@y fooe WO dy e

3

1
<C 2/(}'! 22(](—1)
= kXO: @) grrg)

X

MQ| (b®) = bynig) + (byrrg — bo)||f )| dy

o

o0

, ) 1
< CkXO:WS(ZZ(k_D) |2k“Q|’1( /2 PO~ byng| wiy)' dy)

<( [, Joro dy)w

[ee) 1/r
€3 252 2] Kb f ro wiay)
k=0

1 Vo) (r=-1)/r
-1/(r-1) g
) <|2k+1<2| /zkﬂQW(y) g )
1 1/r Y
d 2k+1 2k+1 —Ur
X <|2k+1Q| /;kleW(y) J/) | Q|W( Q)

i k+1
< C”b”BMO(w) Zkzkns(22(k—l)) <W(2 Q) + W(;c))

k+1
pan 2+1Q)
1 1/r
_ ) d
(g L oo y)
<C||b||BMOW>Zk2k" (2 D) w@R)M,, (f) &
k=0

< C|Ibll spmow)yw(x) M (f ) (%),
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where the last inequality follows from

[ee]

Zkzk Drs(220 D) <€) k2t <00
k=1
for some € > 0. This completes the proof. O

Lemma9 Let {A;,t >0} be an ‘approximation to the identity, w € A;,0< B <1,1<r<oo
and b € Lipg(w). Then, for every f € LP(w), p >1 and x € R",

sup i [ Vg (6 bQ))0)] dy = Clbluy WMy )
03z 1Ql Jo

The same argument as in the proof of Lemma 8 will give the proof of Lemma 9, we omit
the details.

3 Proofs of theorems
Proof of Theorem 1 1t suffices to prove for f € Ci°(R") and some constant C, that the

following inequality holds:

1/n
(IQI/ 7000~ AP dx) =€ 3 57l n M)

loe|=m

where ¢ = d* and d denotes the side length of Q. Fix a cube Q = Q(xp,d) and x € Q. Let
Q =5/nQ and b(x) = b(x) — Z|a\=m i(D“b)éx"‘, then R, (b;x,y) = R,,,(I;;x,y) and D*b =
D*b — (D*b)g, for |a| = m. We write, for fi = f x5 and f ZfXRn\Q:

() = / Mzax,y)ﬁ(y) dy
R X -

o otb
Y L[S e na

loe|=m

m+1(b X, )
+ /Rn WK(W»J’)JCZ(Y) dy

_ T(Mﬁ> _ T( iwﬁ> + IO ()

[ —-|™ o al  |x—-m

and
AT = [ ;jc(_y’l"”m(x, i) dy
1 - 9)*D%D
- Y o [ ko
loe|l=m "

+/ m+1(b x’y)1<t(x’ fz()/) dy
Rﬂ

e — y|™

A, T(Mﬁ) _A, T( lwﬁ) + A, Té(fz)(x),
Q |x_|m Q o o! |x_,|m Q
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then

1/
b b n
(i f T - A T )

R, (b;x, - 1
: <|Q|” ( ﬁ)(x) )
1 (x--)*D"b n 1y
' C<IQ| /Q T<a|ma_wa1)(x) dx)

1 bx, 1/
Cl = [ AT\ ————— d
<IQ|/Q (R 5 )| )

! 1 (x—)*D"b
C(@/QA“?T( awﬁ)(x)

|a|=m

n 1/n
dx)

+C<L/|T5(f)(x)—A Ti)(f)(x)|ndx)1/n
Qe o7 V2

=h+L+1+14+1s.

For I1, noting that w € A;, w satisfies the reverse of Holder’s inequality

1 1/po
(|Q|fw(x)p dx) _| |/w(x)dx

for all cube Q and some 1 < py < oo (see [1]). We take g = rpo/(r + po — 1) in Lemma 7 and
have 1 < g <rand pg = g(r —1)/(r — q), then by Lemma 7 and Holder’s inequality, we get

- 1 5 l/q
Ru(Bix,3)| < Clr—y|" (—/ Dei )%z)
RnBm)| < Co=31" 2 (G fo 1PN 22

|la|=m

- 1/q
<Clx _ylm Z |Q|—1/q <[ |Dab(z)|qw(z)q(l—r)/rw(z)q(r—l)/r dZ)
Qlx,y)

|ae|=m

1/r
|Do‘l~9(z) | "wz)"" dz)

<Clx—y" ) |é|”q(fé(

la|=m XY,

(r-q)/rq
1% ( / W(z)q(r—l)/(r—q) dz)
Q)

< Cle=y1" 3 1QI Db gy, w(Q1QI "

la|=m

1 (r-q)Irq
X < = / w(z)P0 dz)
1Qx, ) J Q)

= Gl Y 5B 0, Q@G

la|=m

1 (r-1)/r
_ (9)d )
* <|Q(x»y)| /éw)W o
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< C|x _ylm Z ”Dab”BMO(W)|Q|—1/qw(é)1/r|é|1/q—1/rw(é)l—1/r|Q|l/r—1

lae|=m

ol w(Q)

< Clr sl 3 1B
la|=m

< Clx—y|" Z ”Dab”BMO(W)W(;C)'

|or|=m

Thus, by the L*-boundedness of T (see Lemma 2) for1 < s <rand w € A; C A,/;, we obtain

h= IQI/‘ ( |xbx’ ﬁ)(x)

1 1/s
< C Y 1D bl (5 [ [0 )

lat|=m

1/s
< C Y 1D bl ( [ ol ax)

loe|=m

1/s
= C Z HDab“BMO |Q| l/s(/ V x)’ W(x S/r s/rdx)

lee|=m

dx

Ir (r—s)/rs
<C). 1DB|| sps00 w@1QI l/s(/ [f @) w x)dx> (/Qw(x)—s/(r-s) dx)

|la|=m

~, -1/s ~W\1/r 1 r Lr
< C ) D8] ppsopy @RI WQ) (Wz) /Q If ()] w(x) dx)

la|=m

i —s/(r-s) )(VS)/rS<L )l/r A1L/s. o, O\-1/r
x (| 5 fQ W) dx 5 /Q wwdx ) 10Mw(Q)

=C Z 108 pso W @M () ).

lat|=m

For I, by the weak (L}, L!) boundedness of T (see Lemma 2) and Kolmogorov’s inequality
(see Lemma 1), we obtain

1/
12<CZ<IQ|/]T Dbf)(x \"dx) n

|o|=m

ey Q" I T(D*Bfi)xqllu
n |Q|1/'7 ”XQ”Ln/(l—n)

|ot|=m

=C Z ”T Dabfl ”WLl

||=m

<CZ IQI/ |D bx)fl(x’dx

|ot|=mm

* *h -1/r 1r
=C2 IQI/ |D*b(x) — (D"b) o | wlo) ™" |f () wiae) " dx

|ot|=mm

/ , 17 1/r
=€ g (/ |(D*b(x) ~ (D*b) )| wia)™” dx) ( /Q [f(x)|’w(x)dx)

|ot|=mm

A
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1 P 1/r
<C Z Ql ”Dab”BMO(W W(Q)WW(Q)U’< e /Q[f(x)| wi(x) dx>

|a|=m

o Q
< C 30158 gy Ml

|a|=m |

< C Y 10°B gy WEM (N ).

|o|=m

For I3 and I, by Lemma 8 and similar to the proof of I; and I,, we get

m(bx’
13_|Q|/‘ ( PR )(x)

< C Db o WEM () @),

loe|=m

=CL (IQI['T Db MC) ;

la|=m

dx

< C > Db o WE M) ).

|a|=m

For I5, note that |x—y| = |xo —y| forx € Qand y € R"\ Q. We have, by Lemma 7 and similar
to the proof of I,

RG] = Clr=31" 3 1Bl w5

|or|=m

Thus, by the conditions on K and K;, and w € A; C A4,,

T2 (5)(0) = Ay T () (x0)|

IR, (b3 x,9)]
“Jrn lx—y™

£y 1 [ 1D*hi)l =)

o! R |x—y|’”

[K(x,9) = Ke(x,9)| |20 | dy

|K(x,9) - Ki(x,9)| || dy

loe|=m

=< Z Z ”Dab”BMO x/k*lQ\ZkQ |x |n+(3 V(y)|w(y)1/rw(y) -1/r dy

k=0 |ot|=m
[o¢]
PID M) NMICENTE (D“”)o|mlfmlw(w”’w(yrwdy
la|=m k=0 2f75Q 0 y

+C Z me ’D"‘b(y D"‘ )2k+1Q| y|n+8 VU)’W@ Wri(y) “Ur dy

la|=m k=0

1/r
=C Z ”Dub”BMO W& Zk de),,+5 (/ IF )] w(y) dx)

la|=m

(g oo a) ™ (Sl [ i) ey
2+Q1 )2 26 Jrg Y
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) , ) 17
+C Y g ([ o700~ @)l wor )

la|=m k=1

<([ oo

o) 1
=C Z ”D |BMO w)W(x)X:k2 ks( (2]<Q

1/r
lf(Y)I w(y) dx)

la|=m
+C HZ; 10°B prs00m gzw Wl%? (W(Zlk )W) dx) ur
< C Y b M) S 2
la|=m k=1
< C Y 10D ppropn @M () E)
la|=m
Thus
I < C Y 107D gy @M () &).
la|=m
These complete the proof of Theorem 1. 0

Proof of Theorem 2 It suffices to prove for f € C§°(R") and some constant Cj that the
following inequality holds:

(IQI/}Tb

where £ = d* and d denotes the side length of Q. Fixa cube Q = Q(xo, d) and x € Q. Similar
to the proof of Theorem 1, we have, for fi = f x¢ and fo = f xn\»

(IQI/}Tb AT <x>\"dx>1/n
(IQI/‘ ( Z(ff; )Undx)lm
(o l, T(M:m . %f )@ "dx)”"
+(6/QA‘QT( Ryu(b; x,~f1)(x) )Un
(b [l 3

la|=m

1/n
AtQ(Tb )(x)|ndx) <C ||DabHLipﬂ(w)w(&)Mﬁ,,w(f)(fc),
|o|=m

)1/17

1/n
(|Q| / 7)) - AtQTboa)(x)r’dx)

=h+h+h+]a+]s.

Page 12 0of 18


http://www.journalofinequalitiesandapplications.com/content/2014/1/276

Lu Journal of Inequalities and Applications 2014, 2014:276
http://www.journalofinequalitiesandapplications.com/content/2014/1/276

For J; and J;, by using the same argument as in the proof of Theorem 1, we get

- - - 1/q
|Rm(b;x,y)| <Clx _ylm Z |Q|—1/q </: |Dab(z)|qW(Z)LI(Lr)/rW(Z)Q(r—l)/r dz)
Q(xvy)

|oe|=m

1/r
< Cle—y" ) 1QI™ ( / ( )!Dah(z)\’w(z)l-f dz)
Qxyy.

|a|=m

(r-q)irq
X < / W(z)q(r—l)/(r—q) dz)
Q(xv_y)

< Clx _ylm Z |Q|—l/q HDab“Lipﬁ(w)w(é)ﬁ/nﬂ/rlé|(r—q)/rq

la|=m

1 / o (r-a)irg
8 <|<~2(x,y)| éw)WZ Z)

< C|x _ylm Z ”Dab“LiPB(W)|Q|—1/qw(é)ﬁ/n+1/r|Q|1/q—1/r

|a|=m

1 (r=-1)/r
~ (z) d )
* <|Q(x,y)|/@<x.y>wz ‘

< C|x _ylm Z HDab”upﬁ(W)|Q|—l/qw(é)ﬂ/n+1/r|Q|1/q—1/rw(é)l—l/r|é|l/r—1

|la|=m
(Q)ﬁ/n+1
<C| |
x=y ‘o;n” ||Llpﬁ (w) |Q|
<Clx-y" 1070, 0y Q" " wE).
|ae|=m
Thus
” Bin s 1/s
Ji=C 3 [0 bl 00 mQ wENQI( | G d
loe|=m
1/r
< C 3|0 bl, Qi [ rearwes )
loe|=m

(r—s)/rs
X < /: wix)™ (r=s) dx)
Q

o O 0OVr 1 r v
<C Z |D b||L,'pﬂ(W)W(x)|Q| w(Q) (W/QV(JC” w(x)dx)

|la|=m
y (i / ()10 dx)(”)m(i / w(x)dx)l/r|é|”3w(é>”’
1Ql Ja |Q| )
<Cy. [ D%l 0 WEMp i ()
|la|=m

h<CY — a / |D*b(x) = (D*b) o | W)™ [f () | w(x)""” dx

la|=m

/ ' Ur
_C |Q| </| (D*b(x) - (Db )Q)|r w(x)'™" dx) (/Q[f(x)|rw(x)dx)

la|=m

A
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<C Z |Q| b”Lipﬂ(w)W(Q)ﬂ/nH/r W(Q)W—ﬁ/ﬂ( (Q)l i / lf(x)| w(x) dx>

la|=m

w(Q)
< C 2 1Pl 0y M B
la|=m

<C Y 1D°bl W @M (N

la|=m

For /3 and J4, by Lemma 9 and similar to the proof of J; and J,, we get

(D3 %, -
]3—|Q|” <|x fl)“’

<C Y 1D°bl 1y WEMp (N,

la|=m

. 1/n
ab d.
CZ(|Q|/|TD b)) x)

|or|=m

dx

<C Y106y, WEMp N

lae|=m
For /5, by Lemma 7 and similar to the proof of J;, for k > 0, we have

’Rm(l;;x,y)’ <Clx—y™ Z HD"‘b”Lipﬁ(w)w(ZkQ)ﬁ/nw(fc).

lot|=m

Thus

TP (5) (%) = Ay T () (x0)|

Ry (b; x,y)l
T Ix-

[K(x,9) = K, 9) ||| dy

+Zi DBy (5)]1(x — 5)" U1K () = Kot [50)] dy

ol ol Jpn |x — y|™"
00 5
~ ~ n
<> ||Dab||Lipﬁ(W)W(x)W(2kQ)
=0 |a|=

1/r -1/r
X /k+1Q\2kQ |x0 — |n+§ lf(y |w()’ W(j/ dy

o]

C D). gy — (D?B) | ——— 1r -Ur g
+ |¢§n;£k+lé|( )2k+ Q ( )Q| %o — y|d [f()’)|W()’) w(y) y
+C Z Zf ’D“b(y )2k+1Q| P V(y)’W@ I/rw(y) i dy
|ee|=m k=0 k1Q y'
<C Y |Db|,,, 0w @ ik—da w(2+Q)"" ( / IFo)| wi) dx) "
- el Lipg(w) — (2kd)n+d o

1 Vo) (r=1)/r 1 1/r (o 1/
X - w(y) - d) < - w )d) 2kQlw(2KQ) ™"
(IZkQI " 2 ") Q)
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> & . 3 — 1
+C ) ZW(/M‘D bO) = (D*b) 5| W) dy)

la|=m k=1
1r
< ([ rowoa)
2kQ
o ~, - —k§ 1 r v
<€ 3 1570l Y0 <W / SO W()’)dx)
o0 k¢ 1/r
C “b,, e ~Q)( 1 f "w(y)d )
+ |§nHD ”szﬂ(w)g 260 \w(2kQ)rpin szV(J’){ w(y) dx
<Cc> | Dbl oy WEMp () G).
|oe|=m
This completes the proof of Theorem 2. O

Proof of Theorem 3 Choose 1 < r < p in Theorem 1 and notice w'? € A;, then we have, by
Lemmas 3 and 4,

I7° O ooy = 1M (T | irny = CIMAL (T |

=C Z HDab”BMO(w) ”WMr'W(f)HLP(WIfP)

la|=m

=C Z HDab“BMO(w) “Mrvw(f) ”Ll’(w)

|at|=m

=C Z 1078 gpsom If 12760

la|=m
This completes the proof of Theorem 3. O

Proof of Theorem 4 Choose 1 < r < p in Theorem 1 and notice w'? € A;, then we have, by
Lemmas 5 and 6,

[T o rery = IMa (T O s iory = UM (TP s i

=C Z ”Dab”BMO(w) |wM,,.(f) ||LP"/’(w1’I’)

la|=m

=C Z ”Dab”BMO(W) ”Mﬂw(f) ”Lw(w)

|ot|=m

=C Z ”Dab”BMO(w)”f”Lp‘“)(W)'

loe|=m
This completes the proof of Theorem 4. O

Proof of Theorem 5 Choose 1< r < p in Theorem 2 and notice w'™4 € A;, then we have, by
Lemmas 3 and 4,

I 720 o0y = 1M (T2 ) | aur-a) = CIMA (T O oy

e O L N PP a)

la|=m
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=C Z HDab”Lipﬁ(w) ”Mﬁmw(f) ”Lq(w)

la|=m

=C) HDab”Lipﬂ(w)Hf”Lp(w)«

|la|=m
This completes the proof of Theorem 5. d

Proof of Theorem 6 Choose 1 < r < p in Theorem 2 and notice w'™7 € A;, then we have, by

Lemmas 5 and 6,

“ Tb(f) ”Lq:W(Wl-q) = HM'I(Tb(f)) ||L%V’(w1—q) = C”Mj.n(Tb(f)) “Lq:W(Wl-q)

= C Dby 0 M)

|la|=m

=C Z ”DabHLipﬁ(w) ”Mﬁ”vw(f)”quV’(w)

lat|=m

< C Y Dby, 0 s

loe|=m

This completes the proof of Theorem 6. O
4 Applications
In this section we shall apply the theorems of the paper to the holomorphic functional
calculus of linear elliptic operators. First, we review some definitions regarding the holo-
morphic functional calculus (see [13]). Given 0 < 6 < 7. Define

Sy={zeC:|arg(z)| <0} U{0}
and its interior by SJ. Set Ss = Sy \ {0}. A closed operator L on some Banach space E is said
to be of type 0 if its spectrum o (L) C Sy and for every v € (6, ], there exists a constant C,
such that

|77|||(’7[—L)_1|| SCV! T]égg
For v € (0, 7], let

Hoo(Sg) = {f:Sg — C:f is holomorphic and ||f|| 1~ < oo},

where ||f]|z = sup{|f(2)| : z € S)}. Set

‘-I—’(Sg) = {geHoo(Sg) :3ds > 0,3c > 0 such that |g(z)| < C1+|-Z||z|2S ]

If L is of type 0 and g € Hy(S}), we define g(L) € L(E) by

(L) = (2! /r (nl — L) "g(n) dn,
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where I' is the contour {£ = re*® : r > 0} parameterized clockwise around S; with
0 < ¢ < . If, in addition, L is one-to-one and has a dense range, then, for f € Hy, (Sg),

£L) = [hW)] " (m)0),

where /(z) = z(1 + z)72. L is said to have a bounded holomorphic functional calculus on
the sector S, if

lg@)| < Nligllz

for some N > 0 and for all g € Hy(S)).

Now, let L be a linear operator on L?(R") with 6 < /2 so that (~L) generates a holomor-
phic semigroup ™%, 0 < | arg(z)| < /2 —6. Applying Theorem 6 of [12] and Theorems 1-6,
we get the following.

Corollary Assume that the following conditions are satisfied:
(i) The holomorphic semigroup e £, 0 < |arg(z)| < /2 — 0 is represented by the kernels
a,(x,y) which satisfy, for all v > 6, an upper bound

|ﬂz(xry)| = th\zl(x’y)

forx,y € R", and 0 < |arg(z)| < w/2 — 6, where hy(x,y) = Ct™"2s(jx — y|*/t) and s is a
positive, bounded and decreasing function satisfying

. 2\
rlg(r)lo r”*es(r ) =0.

(ii) The operator L has a bounded holomorphic functional calculus in L*(R"); that is, for
allv>0andge Hoo(Sg), the operator g(L) satisfies

le@@)| > < coliglz=Ifll 2.

Then Theorems 1-6 hold for the multilinear operator g(L)? associated to g(L) and b.
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