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Abstract

In this article, we establish [P estimates for parametric Marcinkiewicz integral
operators with rough kernels. These estimates and extrapolation arguments improve
and extend some known results on Marcinkiewicz integrals.
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1 Introduction
Throughout this article, let $”7!, # > 2 be the unit sphere in R” which is equipped with the
normalized Lebesgue surface measure do = do (-). Also, we let &’ = u/|u| for u € R \ {0}
and p’ denote the exponent conjugate to p; thatis 1/p + 1/p’ = 1.

Let Koy = Q@ )h(|ul)|u|”~", where p = a + ib (a,b € R with a > 0), & is a measurable

function on R* and  is a function on $*! with Q € L}(S"!) and
/ Q) do () = 0. (11)
gn-1

For a suitable mapping ¢ : R* — R, a measurable function / on S"~! and an Q satisfying

(1.1), we define the Marcinkiewicz integral operator M?Z,h,qb for f € S(R") by

2 g\ 112
, .
If ¢(¢) = t, we denote Mgmh by Mg, ;. The operators Mg@,h have their roots in the
classical Marcinkiewicz integral operators M}M which were introduced by Stein in [1] in

which he studied the L# Boundedness of Mgq; when Q € Lip,(S"?) (0 < @ < 1). More
precisely, he proved that Mg is of type (p,p) for 1 < p <2 and of weak type (1,1).

MG 4, (%) = (/0 ‘t” /u<tf(x—¢(|u|)u’)1<9,hdu

The Marcinkiewicz integral operators play an important role in many fields in mathe-
matics such as Poisson integrals, singular integrals and singular Radon transforms. They
have received much attention from many authors (we refer the readers to [1-6], as well as
[7], and the references therein).

Before introducing our results, let us recall the definition of the space L(log L)*(S" ™)
and the definition of the block space Bi,o‘v)(S”‘l), which are related to our work. For @ > 0,
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let L(log L)*(S"!) denote the class of all measurable functions  on S$"~! that satisfy
120 Lgog Ly (sm-1) = / ) |Q(x)| log* (2 + |Q(x)|) do (x) < 0o.
-

The special class of block spaces B;O’”) (8" 1) (for v > —1and g > 1) was introduced by Jiang
and Lu in the study of the singular integral operators (see [8]), and it is defined as follows: A
g-block on $"7! is an L function b(x) that satisfies (i) supp(b) € I, (i) |16l ra(sn-1) < | |-V,
where |I| = o (I)and I = B(xp,8) = {x' € S"' : [x’ —x(| < §} isa cap on §”! for some x, € S"!
and § € (0,1]. The block space BEZO'U)(S’H) is defined by

oo
BYV(S" ) =1 Qel'(s""): Q=) Cyb, with M{V({C,)) < oo},

u=1

where each C,, is a complex number; each b, is a g-block supported on a cap 1, on $"7,
and

MPV(C) = D1l (1+1og D (11, [7)).

u=1

Define ||Q||B(q0,v)( )= inf{M,(IO’v)({Cﬂ}) :Q =3 %, Cyb,}, where the infimum is taken

over the whole g-block decomposition of €2, then | - || 5O
q

B{(IO’”)(S”’I), and the space (B;O'V)(Snfl), Il - ||B(qo:”)(sn—1)

Employing the ideas of [9], Wu [10] pointed out that for g > 1 and for v, > v; > -1,

gn-1

(1) is a norm on the space

) is a Banach space.

ULr(Sn—l) c B((Jo,uz)(sn—l) c B;O,vl)(sn—l).

r>1

The study of parametric Marcinkiewicz integral operator Mg, , was initiated by Hor-
mander in [11] in which he showed that Mgvl is bounded on L?(R”) for 1 < p < oo when
p >0 and Q € Lip,(S"!) with « > 0. However, the authors of [12] proved that Mé’m is
bounded on L?(R") for 1 < p < 0o when Re(p) > 0 and Q € Lip,(S"!) with 0 < o« < 1. This
result was improved in [13] in which the authors established that ./\/lg,h is bounded on
L*(R") if @ € L(logL)(S"™) and & € A, (R*, %), where A, (R*, %) is the collection of all
measurable functions /% : [0, c0) — C satisfying ||h||AV(R+,%) = supReZ(f(f |h(t)]” %)1/1/ < 0.

On the other hand, Al-Qassem and Al-Salman in [2] found that if Q2 € B;O'_I/Z)(S”’l)
with g > 1, then M}M is bounded on L?(R") for 1 < p < co. Furthermore, they proved that
v = —1/2 is sharp on L2(R").

Walsh in [7] found that Mg, is bounded on L*(R") if Q € L(log L)"*(S"™"), and the ex-
ponent 1/2 is the best possible. However, under the same conditions, Al-Salman et al. in
[4] improved this result for any 1 < p < oo.

Recently, it was proved in [14] that if Q € Béo’fl/z)(S”‘l) forsomeg>1land/ e A, (R, %
for some 1< y <2, then M}Z,M is bounded on L?(R”) for any p satisfying |1/p — 1/2] <
min{1/2,1/y'}, where ¢ is C2([0, 00)), a convex and increasing function with ¢(0) = 0. Very
recently, Al-Qassem and Pan established in [15] that if 2 € L9(S"!) for some g € (1,2] and
he A, (R, %) for some 1< y <2, then Mg, 1, , is bounded on L”(R") for any p satisfying
[1/p —1/2| <min{1/2,1/y'}, where P(x) = (P1(x), P2(%), ..., Py (x)) is a polynomial mapping
and each P; is a real valued polynomial on R”.
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Our main concern in this work is in dealing with Marcinkiewicz operators under very
weak conditions on the singular kernels. In fact, we establish certain estimates for Mg’ o
and then we apply an extrapolation argument to obtain and improve some results on
Marcinkiewicz integrals. Our approach in this work provides an alternative way in dealing
with such kind of operators. Our main result is described in the following theorem.

Theorem 1.1 Let Q € L1(S" ™) for some 1< q <2, h e L” (R, %)for some y > 1. Suppose
that ¢ is C*([0,00)), a convex and increasing function with ¢(0) = 0. Then for any f €
LP(R™) with p satisfying |1/p—1/2| < min{1/2,1/y'}, there exists a constant C, (independent
of @, h, y, and q) such that

[ M2 g | eny < oA @ =1 2l sty 120 st 1 vy,

where A(y) = { vi2 fr>2

-2 ificy <2

Throughout this paper, the letter C denotes a bounded positive constant that may vary
at each occurrence but independent of the essential variables.

2 Definitions and lemmas
In this section, we present and establish some lemmas used in the sequel. Let us start this
section by introducing the following.

Definition 2.1 Let 6 > 2. For a suitable function ¢ defined on R*, a measurable function
h:R* — Cand : 5" — R, we define the family of measures {04, : £ € R*} and the
corresponding maximal operators o, ; , and Mg ,,6 on R by

fdoqen: = t‘”/ F(@(ul))h(lu)) Q(u) du.

R 1/2t<|ul<t |ua|*=#

)

03 o %) = sup| 100l % f()
teR*

0k+1

dt
Mg,pnof (x) = sup / lloQ.gmel = |f@)]]| =,
keZ t

gk
where |0q¢,| is defined in the same way as 0q g, but with replacing 2, & by ||, |4,
respectively. We write ||o || for the total variation of o.

In order to prove Theorem 1.1, it suffices to prove the following lemmas.

Lemma 2.2 Let 0 >2, Q € L1(S" ) for some q > 1 and h € LY (RY, %)for some y > 1. Sup-
pose that ¢ is C*([0,00)), a convex and increasing function with ¢(0) = 0. Then there are
constants C and o with 0 < a < ziq, such that

logen:dll < Cs (2.1)
k+1
9 |6 (s)]zﬂ = Cno)|g(6©) |77 1Al 121174 gn1y3 (2:2)
ok Qp,ht r = LV(R‘Z%) ra(sn-1y .
9k+1 dt 2
A k+1| 5%
f |60 — < CUnO)[E (@) |77 1112, o as, 192020 g0 (233)
ok t (R*, S )

hold for all k € Z. The constant C is independent of k, & and ¢.
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Proof As L1(S") C L*(S"!) for g > 2, it is enough to prove this lemma for 1 < g < 2. By
Holder’s inequality, we get

t
|Gapni€)] < 1 |h(s)|
jt

) d.
/ e Q(x) do (x) e
gn-1 S

t
< ||h||Ly(R+,%)</lt

2

y,ds Vy
S )

Let us first consider the case 1 < y < 2. By a change of variable, we obtain

’
2 tiS l/y
N

17y’
<uhmy+dsmn5§?3(ﬂwlw4 (R0 2y hﬂxdowv ,

/ e 5 Q(x) do (x)
sn—l

t
~ (1-2/
1606me()] < 1Al g Mmﬂyﬁ(f

1
ot

/ e 5 Q(x) do (x)
sn—l

where J(&,%,7) = f11/2 e iP5 (xy) %. Write J(€,x,y fl 1 Y/(5)5, where

S
Y,(s) = / e EE gy 1 <w<s<l1.
1/2

By the conditions on ¢ and the mean value theorem we have

(¢>(tW)) =t (tw) > —— ¢(tw) ¢(t/2) for1/2<w<s<l.

Hence, by Van der Corput’s lemma, |Y;(s)| < s|¢p(¢/2)&| &’ - (x — y)| ™}, and then by inte-
gration by parts, we conclude

(& x,9)| < Clo@2E| & @-y)|"

Combining the last estimate with the trivial estimate |J(§,x,7)| < C, and choosing 0 <
20q' <1, we get

J(E %) < Clop@/2)E|[€" - x-»|™,
which leads to

|6 (E)| < C]¢(t/2)

(1-2/y") @y’
(R*, dé)“Q”Ll - 1 ||Q||Lq S= 1)

, 1/q'y’
« </ £ (e y)| da(x)do(y)> .
Sn—lxsn—l

By the assumption of ¢, and since the last integral is finite, we obtain

pk+1

n 2 dt k=172 o 2
./ek |60.pm: )] TSC(1H9)|E(¢(9)) B ||h||LV(R+’%)”Q”Lq(sn—l)'


http://www.journalofinequalitiesandapplications.com/content/2014/1/269

Ali Journal of Inequalities and Applications 2014, 2014:269 Page 5 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/269

For the case y > 2, we use Holder’s inequality to obtain

t
Gagne(®)] < ||h||Ly<R+,%)( /
5t

2

1 d 1/2
y ( /1 —i(st)5 - yip(st)§ )da(x) do (3’)> ’

2

2 172
ds\V
s

/ e PO rQ(w) do (x)
gn-1

By this, Van der Corput’s lemma, and the above procedure, we obtain

160.666)| < ClIQ Lo Il o, a5y |ESE)| 77,
and therefore
9k+] R zdt i )
|Ga.pneE)]" = < CnO)|&(4(0) " ”hllu e, oy |2 asy
ok t (R,

The estimate in (2.3) can be proved by using the cancellation property of 2. By a change
of variable, we have

|6pnt(6)] // _ldm 1||Q(x)||hst)|da(x)—
d
< €N s f |h(st)f|¢(ts)|f.

Since ¢(¢) is increasing and % < s <1, we obtain

£¢(

[60.648)] = IR ol s

which when combined with the trivial estimate |6 5:(§)| < (In2), we derive

gk+1

/ Gapne@)*Z = < CnOEPO) 77 112, o i 12 sy
gk
The proof is complete. d

Following a similar argument to the one used in [16, Lemma 2.7], we achieve the follow-

ing lemma.

Lemma 2.3 Suppose that ¢ is given as in Lemma 2.2. Let My, f be the maximal function
of f in the direction y defined by

[ o oo

M of (x) = sup -

teR+

Then there exists a constant C, such that

[ Moy gy < Collf o

forany f € LP(R™) with1 < p < oco.
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Proof By a change of variable, we get

0] dr
Mol (3) < tssg( ¢(t/z)lf ”'W)

Since the function m is non-negative, decreasing and its integral over [¢(¢/2),

¢(t)] is equal to In(2), then by [16, Lemma 2.6] we obtain
Mopy(f) < CM,f(x)

where M,f(x) = sup; .r % fOL |f (x — ry)| dr is the Hardy-Littlewood maximal function of f
in the direction of y. By this, and since M, (f) is bounded in L#(R™) with bounded inde-
pendent of y, we obtain our desired result. O

Lemma 2.4 Let Q € L1(S"™!) for somel<q <2andh e LY (RY, %)for some y > 1. Assume
that o, , , and ¢ are given as in Definition 2.1 and Lemma 2.2, respectively. Then for any
f e LP(R™) with y' < p < 00, there exists a constant C, (independent of 2, h and f) such
that

|06, @ o gemy < CollBll e ) 1R agsnn) If o om. (2.4)
Proof By Holder’s inequality, we have
1/y
lloQpnl * /)] < Al ge, )12 g,
t y’ dS 1/]//
X sup (/ / Q)| [f (x - ¢(s)y)| da(y)—) )
teR* \J £ Jgn-1 s
Using Minkowski’s inequality for integrals gives
* 1y
||OQ,¢,hf(x) ||Lp(Rm) S C”h”Ly( ”Q”LI SH— 1

([ n_l\szw(nm,y(w’)rw(w))dw))w.

By using Holder’s inequality plus Lemma 2.3, we finish the proof. d

Lemma 2.5 Let h € LY (R", %)for somel<y <2,Q¢€ Lq(S”’l)for some l<q <2 and
0 =297, Assume that {oqenet € RYY and ¢ are given as in Definition 2.1 and Lemma 2.2,
respectively. Then for any p satisfying |1/p —1/2| <1/y’, there is a positive constant C, such

that
9k+1 Zdt 5
Z loQghe * &gkl™—
rez L7 Nrwen
140y &e, as ||Q||Lq(s" 1 <Z| |2>”2 2
» E 8k
[(g- 1)( o )

holds for arbitrary functions {gi(-),k € Z} on R™.
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Proof We employ some ideas from [2, 15], and [17]. By Schwarz’s inequality, we obtain

|0 * &l* < ClIAIT, ) [1€211 La(sm-1)
- da
([, [ late-oemPRolmor T aon ). e

Let us first prove this lemma for the case 2 < p < =% ~- By duality, there is a non-negative
function ¥ € L?’?' (R™) with IV 1l ooy oy < 1 such that

pk+1 Jdt 1/2
H( loQ,¢h,t * Gkl —>
keZ

By this, (2.5), and a change of variable we derive

(=

keZ

< C||h||y Y &Y, dt)”Q”L‘I(S”‘l)/ <Z|gk(x)|2)MQ,¢,|hZ—V,el/f(—x)dx~
Rm

keZ

2 gk+1

/mZ/ |00, * () | —w(x)dx

keZ

gk+1 2

1/2
2
loQ,¢,n: * 8kl —)
t LP(R™)

Since 1 € L”(R*, %), then |h(-)|*" € LY@ )(R*,%), and since (£) > (ﬁ)’, then by
Lemma 2.4, Holder’s inequality, and the same arguments that Stein and Wainger used

in [18], we obtain

ok+1 1722
H <Z/ loq,g.ne *gk|2_)
p t7 lrem
1722
< C||h||y Y&, dt)”Q”L‘I(S”‘l) (Z |gk|2) ||Msz,¢,|h|2—y,9‘ﬁ(—x) ||L(p/2>/(Rm)
kez LP(R™)
1722
= CIn@IA, . g 1@ zocs (Z I ) lo* g mp-7 0¥ ) ooy o
keZ LP(R™)
2
”h”LV + dt ”QHLq Sn— 1 9 122
< p 1 1 Z'gk'
(q- )(J/— ) ez LP(R™)

For the case 3)2,—’:2 < p <2, by the duality, there are functions ¢ = {i(x, £) defined on R” x R*

with [111Gell2(got oty ) 12| oy < 1 stich that

k+1
9 ,dt
loQ,p e * 8kl 7
keZ LP(R™)

||(T(;>)“2||Lp & ( 112
> e )

"lg-Diy -0 |\ &

2
(2.6)

’

LP(R™M)

where

gk+1

dt
1©)=3 [ lonaner a0

keZ
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As %/ > 1, we obtain, by applying the above procedure,

ok+1
S dt
([, lacor?)

||T(§')HL(p’/2)(Rm) = C||h||zV(R+,%)||Q||Lq(s"-1)

kez LR
x ||U*Q,¢,|h|2-V,9(§) ||L(p//2)/(Rm)
S C”h”iV(R+ ﬂ)”Q”iq(sn—l)r (2'7)
Tt

where ¢ is a function in L@ (R™) with ||§||L(p’/2)’(Rm) < 1. Thus, by (2.6) and (2.7), our

estimate holds for 3)2/—):2 < p < 2; and therefore the proof of Lemma 2.5 is complete. d
In the same manner, we prove the following lemma.

Lemma 2.6 Let h € LV (R", %)for somey >2,Q¢€ Lq(S”’l)for somel<q<2and0 =
297" Assume that {oq¢net € RYY and ¢ are given as in Definition 2.1 and Lemma 2.2,
respectively. Then for any p satisfying 1 < p < 0o, there exists a constant C, such that

k+ 1

gt Ldt\ ?
Z loQ.¢.0ne * 8kl 7
kez /%" LR

2| 1h| €21l a(sn- 1722

14 L7 (R+,%) La(s"1) )
<G e >l
(q - ) keZ LP(R™)

holds for arbitrary functions {gi(-),k € Z} on R™.
3 Proof of the main result
We prove Theorem 1.1 by applying the same approaches that Al-Qassem and Al-Salman

[2] as well as Fan and Pan [17] used. Let us first assume that # € L” (R, %) for some 1 <

y <2;and ¢ is C%([0, 00)), a convex and increasing function with ¢(0) = 0. By Minkowski’s
inequality, we get

2 1/2
ﬂ
t)
([ 2de\V?
= t"/’/ B N d _)
k2:<~/0 ‘ 2—k—1t<‘u‘§2_ktf(x ¢(|M|)u) andu p

0
24 o0 de\"?

- 5 1( / |09,¢,h,t>kf(x)|2?) ‘ (3.1)
- 0

Take 6 = 297 and for k € Z, let {Axp}, be a smooth partition of unity in (0, 00) adapted

[e¢]

Zt_p/ f(x—¢(|u|)u’)l(gyhdu

=0 2-k=1ge|y| <2kt

to the interval Z; 4 = [0 ~%"1,67%*1]. More precisely, we require the following:
Ap€C® 0<Agp <1, D Age(d)=1,
k

FA@)] C
supp Arg € Zry and ‘ kol )‘s

des
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where C; is independent of 6. Let \f/:g(S) = Ao(|€]). Decompose ogen: * f(x) =
> jez Yapnjo(%: 1), where

Younio(®0) =Y 0agme * Wesjaf ) Xk grn (0.
keZ

Define Sog0f ®) = ([5° | Yagnj0(, £)[> %), Then for any f € S(R™),
2a
M 5f () = 9a_1 D Sapmio)- (3.2)

jez

Let us first compute the L?-norm of Sq 4,4,0,(f). By using Plancherel’s theorem and Lem-
ma 2.2, we obtain

pk+1

d o
|Se.6me,() ||i2(Rm) < Z,/r </&k |6.6.6.0(8) 2%) V(g)‘zdrf
k+j,0

keZ

T FYPND)
= GO, . a 120 sr 2 Y [ (€ de

kez Y Tkjo

= Con ORI, o at) |12 a2V I 2 oy
where 'y g = {§ e R": |§| € Iy »}. Thus,

Wl e, ey 19 sy
L 277 ||fll2@m)- (3.3)
[(g-D(y -2 R

|S2.0m0/00)] 2@ < Cp

Applying the Littlewood-Paley theory and Theorem 3 along with the remark that follows
its statement in [19, p.96], plus using Lemma 2.5, we see that

1720 e, ey 1211 sty

Sa,¢.n0,(f) oy < If Nl o e (3.4)
“ 6,110, ”LP(R ) =P (g =Dy D2 (R™)
holds for [1/p —1/2| < 1/y’. By interpolation between (3.3) and (3.4) we obtain
—alj] ”h“LV(R* ﬂ)”Q“Lq(S”‘l)
S i <C,277 L ny. 3.5
|| 9:¢:h:9,](f) ”LP(R”‘) =Ly [(q _ 1)()’ _ 1)]1/2 ”f”U’(R ) ( )

Consequently, by (3.2) and (3.5), we get our result for the case & € L" (R*, %) for some
1<y <2.

The proof of our theorem for the case & € LY (R*, %) for some y > 2 is obtained by
following the above argument, except that we need to invoke Lemma 2.6 instead of Lem-
ma 2.5. Therefore, the proof of Theorem 1.1 is complete.

4 Further results
The power of our theorem is in applying the extrapolation method on it (see [16]). In
particular, Theorem 1.1 and extrapolation lead to the following theorem.

Theorem 4.1 Suppose that h € L (RY, %)for some y > 1 and Q satisfies (1.1). Let ¢ be
C%([0,00)), a convex and increasing function with ¢(0) = 0.
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() IfQe Béo’fl/z)(S”‘l)for some q > 1, then

[ M@ Loy = CoA NN s, ey I lromy (L4 120 01 00)

for |1/p —1/2| < min{1/2,1/y"}.
(ii) If Q2 € L(log L)Y*(S" 1), then

[ MG, o ey = CoA Wl s e I emy (14 120 g0 s

. 2 s
for|1/p—1/2|<mm{1/2,1/y’},WhereA(y):{(V:_l)_l,2 ify>2

ifl<y§2.

We point out that the L” boundedness of Mg, , , was obtained in [14] if € B,(IO'_I/Z) (8" 1)
for some ¢ > 1, and the L” boundedness (1 < p < 00) of Mg, was investigated in [4] if
Q e L(log L)M?(S"1).
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