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1 Introduction
Integral equations and inequalities have been of considerable significance in mathemat-
ics and have held a central place in the attention of mathematicians during the last few
decades. In the past few years, integral equations have proved to be of tremendous use in
several applied fields, such as population dynamics, spread of epidemics, automatic con-
trol theory, network theory and the dynamics of nuclear reactors. Themain application of
the integral inequalities is that they provide an explicit bounds of the unknown functions,
which are a very useful and important device in the study of many qualitative as well as
quantitative properties of solutions of nonlinear differential equations. In the theory of
integral inequalities, an enormous amount of effort has been devoted to the polishing of
classical approaches to proving the inequalities. The techniques of these proofs, in general
based on the classical mathematical analysis, lead up to virtuosity and significantly depend
on the number of independent variables and the geometry of the domain of integration.
The mathematical literature provides a good deal of information about the integral equa-
tions and inequalities and an excellent amount of results may be found in the monographs
[–] and the comprehensive list of references therein. We can find several different di-
rections and approaches to this field of study in [, ] and []. All monographs mentioned
above are proposed because the authors have an essential contribution to the theory pre-
sented in their books.
The aim of this paper is to develop the approach introduced for the linear case in the

work [] for the nonlinear one. The main idea introduced in [] is simple - establishing
conditions under which the unique solution of equation (.) is an upper bound of all
solutions of inequality (.). A similar idea was used in [] too. In view of the applications,
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it is important to study also inwhich cases, as in the one-dimensional case, the exponential
function is a sharp estimation for the Gronwall-type multidimensional inequalities. In the
case when the domains of integration are the Cartesian product of bounded and closed
intervals this is true (see []), but some results and examples given in [] indicate that the
answer of this problem generally speaking is negative, even in the linear case. Moreover,
the type of the sharp estimation function will depend on the geometry of the domains of
integration in the high dimensional cases.
The paper is organized as follows. In Section  we introduce an abstract nonlinear ana-

logue of the Volterra equations and its corresponding inequality. In Section  we discuss
the possibility to replace without loss of generality one compact domain of integration
with another one which is close to it in the measure and metric sense, but have better
properties. Section  is devoted to the study of Volterra equation (.) introduced below.
Section  includes the results concerning the integral inequality (.), and in Section 
some applications of our results obtained in the previous sections are given as well as ex-
amples illustrating the applications are presented.
We note that different kinds of results used in the conceptual plan of our approach in-

troduced in [] are received in [–] and some interesting ideas in the atomic case are
developed in [] and [].

2 Preliminaries
Let � be a complete metric space with metric ρ , let B� ⊂ � denote the σ -algebra of the
Borel subsets of �, and let μ : B� → [,∞) be a nontrivial σ -finite Borel measure. We
will denote by U(x, ε) = {y ∈ � | ρ(x, y) < ε} the open balls with a center point x ∈ �, and
radius ε > . If G is an arbitrary subset of �, then ∂G denotes the boundary of G and
U(G, ε) denotes the ε-neighborhood of G.
Let B be a real Banach space with the norm ‖ · ‖B, and let V ⊂ B be a cone in B. Then

we can introduce a partial ordering in B associated with the cone V , i.e., u≥ v when
u – v ∈ V . We shall write u > v to indicate that u – v ∈ V , but u �= v. Denote by C(G,B),
G ⊂ � is an arbitrary compact subset, the Banach space of all continuous maps f : G → B
with the norm ‖f ‖G = supy∈G ‖f (y)‖B, by Cb(�,B) the Banach space of all bounded contin-
uous maps f : � → B with the norm ‖f ‖ = supy∈� ‖f (y)‖B and by C(�,B) the linear topo-
logical space of all continuous maps f : � → B (limn→∞ fn = f if for each x ∈ � we have
limn→∞ ‖fn(x) – f(x)‖ = ).
Let G,H ⊂ � be arbitrary. We will denote by G,H ⊂ � with

G�H = (G \H)∪ (H \G)

the symmetric difference of the sets G and H .

Definition . A set G ∈ B� is called an atom for the measure μ if μ(G) > , and for each
H ∈ B� with μ(G) > μ(H) one has μ(H) = .

Partially, if for some point x ∈ � we have that μ({x}) > , then we say that this point is
an atom for the measure μ; otherwise, we say that the point is nonatomic.
We introduce the map M : � → � which associates every point x ∈ � with a subset

Mx ⊂ �. Generally speaking it is not obligatory for the point x ∈ � to be an element ofMx.
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Consider the equation

f (x) = p(x) +
∫
Mx

Q
(
x, y, f (y)

)
dμy (.)

and the inequality

g(x)≤ p(x) +
∫
Mx

Q
(
x, y, g(y)

)
dμy, (.)

where the operator Q : � × � × B → B and f , g,p ∈ C(Mx,B), x ∈ �.
Following [] we will say that conditions (A) hold if for the mapM : � → � the follow-

ing conditions are fulfilled:
(A) For every point x ∈ �, the setMx is compact.
(A) For each ε >  and every x ∈ �, there exists δ >  such that, for each y ∈ � with

ρ(y,x) < δ, we have that μ(Mx �My) < ε.
(A) For every x ∈ �, the inclusionMy ⊆Mx holds for each y ∈Mx.
(A) There exists x ∈ � such that μ(Mx ) = .
For every map M : � → � for which conditions (A) hold, we will define M = {Mx | x ∈

�}.

Remark . Generally speaking it is not necessary for the set Mx to include the point x.
A simple example when this is true is � = [,∞) andMx = [, x ].
If the operatorQ is continuous for every x ∈ � in the setMx ×Mx × B, then the integral

in (.) and (.) exists; see, e.g., [, ].

3 Domains of integration
It is well known that even for finite dimensional metric spaces with Lebesgue measure
two compact subsets in them can be very close in the measure sense (partially, having
equal measures) and at the same time very far in the metric sense (having very different
diameters). From this fact it follows that using as domains of integration arbitrary compact
sets cannot be convenient enough in lots of cases. It is easy to see that generally this is true
even for the compact sets belonging to the set M. The aim of this section is to find some
other setMμ ⊂ �, whose elements have better properties. Since all these sets will be used
as domains of integration, the best result will be if for every element Mx ∈ M we can find
an elementMμ

x ∈ Mμ such thatμ(Mμ
x �Mx) = , and both elements are close in themetric

sense too.
Let G ⊂ B� be an arbitrary set.

Definition . The nonatomic point x ∈ � will be called essential for the set G if for each
ε >  we have μ(G∩U(x, ε)) > .

Definition . The nonatomic point x ∈ � will be called unessential for the set G if there
exists εx >  such that μ(U(x, εx)∩G) = .

Let us consider the points x ∈ ∂G.

Lemma . For every point x ∈ ∂G which is unessential for G, there exists εx >  such that
the open ball U(x, εx) does not include essential points for G.
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Proof Let the point x ∈ ∂G be an unessential for G. Then there exists εx >  such that
μ(U(x, εx)∩G) = . Assume that there exists an essential for G point zx ∈U(x, εx). Then
there exists a number εz < εx such that U(zx, εz) ⊂U(x, εx), and μ(U(zx, εz)∩G) >  and
therefore

μ
(
U(x, εx)∩G

) ≥ μ
(
U(zx, εz)∩G

)
> ,

which is impossible. �

Corollary . Every isolated point x ∈ ∂G is either unessential for G, or an atom for the
measure μ.

Proof Let G ∈ B� be an arbitrary set and x ∈G be an isolated point. Then there exists
r >  such that G∩U(x, r) = {x} and therefore

μ
(
G∩U(x, r)

)
= μ

({x}).
Then either μ({x}) >  and x is an atom, or μ({x}) =  and then x is an unessential
point. �

Corollary . The nonatomic point x ∈ ∂G is essential for G if for each ε >  in the open
ball U(x, ε), there exists at least one point z, z �= x which is essential for G.

Proof Let for each ε >  the open ball U(x, ε) include at least one point z, z �= x essential
for G and put εz = –ρ(x, z) > . Then U(z, εz) ⊂ U(x, ε) and therefore μ(U(x, ε) ∩ G) ≥
μ(U(z, εz)∩G) > . �

Remark . It is easy to see that if G includes internal points, then all internal points of
G are essential for the set G. Every external point of G is either nonessential for the set G,
or an atom for the measure μ. Moreover, if the set G includes at least one essential for G
point, then we have μ(G) > .

Definition . ([]) The sets G,H ∈ B� will be called μ-equivalent G ∼μ H if μ(G�

H) = .

Let G,H ∈ B� be two arbitrary sets. If the set G�H includes at least one atom, then the
sets G and H cannot be μ-equivalent.

Definition . The set G ∈ B� is called μ-dense if each x ∈G is an essential for G point.

Everywhere in our exposition below, we will assume that the measure μ is nonatomic.
Let G be an arbitrary closed subset of �. Denote by Gμ the set of all points x ∈G, which

are essential for G and denote by Gν the set Gν =G \Gμ.

Lemma . Let G be an arbitrary closed subset of �. Then the following statements are
fulfilled:
. The set Gμ is either empty or μ-dense and a closed subset of �.
. The set Gν is either empty or Gν ⊂ ∂G and every point x ∈Gν is unessential for G.
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Proof . IfG is closed andμ(G) = , then obviouslyGμ =∅. LetGμ �=∅ and x ∈G be an ar-
bitrary essential point. Then from the definition of the setGμ it follows thatGμ isμ-dense.
Let {xn} ⊂Gμ be an arbitrary convergent sequence, limn→∞ ρ(xn,x) =  and x ∈ G. Then,
for each ε >  in the neighborhoodU(x, ε) = {y ∈ � | ρ(x, y) < ε}, there exists at least one
essential point xn of G. Then Corollary . implies that x is an essential point of G. Thus
we can conclude that the set Gμ is a closed subset of G.
. If Gν �=∅, then from point , Lemma . and Corollary . it follows that Gν ⊂ ∂G

and all points x ∈Gν are unessential for G. �

Corollary . Let G be an arbitrary closed subset of �. Then if G includes at least one
essential point, we have that μ(Gμ) > .

Proof Let x ∈G be an arbitrary essential point. Then, for each ε > , we have μ(G ∩
U(x, ε)) >  and therefore μ(G) ≥ μ(G∩U(x, ε)) > . �

Lemma . Let G be a compact subset of �, and μ(G) > . Then the set Gμ is a nonempty
compact set, and the sets G and Gμ are μ-equivalent.

Proof Suppose that Gμ =∅. Then Gν =G, and according to Lemma ., for x ∈Gν ,
there exists εx >  such that μ(U(x, εx) ∩ G) = . Since G is a compact subset of � and⋃

x∈G U(x, εx) is an open cover ofG, then there exist points x, . . . ,xk ∈ G and positive num-
bers εx , . . . , εxk such that μ(G) ≤ μ(

⋃k
i=U(xi, εi)∩G) = , which is impossible. Therefore

Gμ �=∅, and according to Lemma ., the set Gμ is a closed subset of G, and we can con-
clude that Gμ is compact.
According to Lemma . and Lemma ., for every x ∈ Gν , there exists εx >  such that

μ(U(x, εx)∩G) = . ThenGν ⊆ ⋃
x∈Gν U(x, εx) and letV, . . . ,Vn be open subsets of� such

that Gμ ⊆ ⋃n
i=Vi. Therefore

G ⊆
( n⋃

i=

Wi

)
∪

( ⋃
x∈Gν

U(x, εx)
)
,

whereWi = Vi \ (⋃x∈Gν U(x, εx)) are open subsets of�. SinceG is a compact set, then there
exist points x, . . . ,xk ∈Gν and positive numbers εx , . . . , εxk such that Gν ⊆ ⋃k

i=U(xi, εxi ),
and for each i we have μ(Gν ∩U(xi, εxi )) = . Therefore, μ(Gν) =  and the sets G and Gμ

are μ-equivalent. �

The next example illustrates the fact that the statement of Lemma . can be not true
when the measure μ is atomic and the set G is only closed, but not compact.

Example Let x, y ∈ �, x �= y, x is not an atom and y is an atom for the measure μ. Define
r = –ρ(x, y) and consider the closed set

G =
{
z ∈ � | ρ(x, z)≤ r

} ∪ {y}.

Obviously, Gμ = {z ∈ � | ρ(x, z) ≤ r}, μ(G�Gμ) = μ({y}) > , and therefore the sets Gμ

and G are not μ-equivalent.
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Lemma . Let, for the map M : � → �, conditions (A) and (A) hold. Then, for every
x ∈ � for which μ(Mx) > , there exists δ >  such that for each s ∈ � with ρ(x, s) < δ, we
have Mx ∩Ms �=∅.

Proof Suppose that the statement of Lemma . is not true. Then there exist a strictly
decreasing sequence from positive numbers {δn}∞n= with limn→∞ δn =  and a sequence
{yn}∞n= ⊂ �, yn ∈ U(x, δn) with Mx ∩ Myn = ∅ for each n ≥ . Since limn→∞ ρ(x, yn) = ,
then from condition (A) it follows that limn→∞ μ(Mx �Myn ) = . On the other hand,
sinceMx ∩Myn =∅ for each n ≥ , then we have that μ(Mx �Myn ) ≥ μ(Mx) > , which is
impossible. �

Corollary . Let the conditions of Lemma . hold. Then, for each x ∈ �, there exists
δ >  such that for each s ∈ � with ρ(x, s) < δ, we have μ(Ms) > .

Proof Since μ(Mx) > , then condition (A) implies that there exists δ >  such that for
each s ∈ � with ρ(x, s) < δ, we have

μ(Mx \Ms) ≤ μ(Mx �Ms) <
μ(Mx)


.

Then from μ(Mx) = μ(Mx ∩Ms) +μ(Mx \Ms) it follows that

μ(Mx ∩Ms) ≥ μ(Mx)


> . �

For every map M : � → �, we define the associated map Mμ : � → � for each x ∈ �

by the following relationMμ
x = (Mx)μ.

Lemma . ([]) Let, for the map M : � → �, conditions (A) hold. Then, for the map
Mμ, conditions (A) hold too.

Remark. FromLemma. and Lemma. it follows that for everymapM : � → �

for which conditions (A) hold, without loss of generality, we can use for every x ∈ � as a
domain of integration instead of the setMx its μ-equivalent setMμ

x which is μ-dense.

Let the map M : � → � be arbitrary and denote by KerM the set KerM = {x ∈ � |
μ(Mx) = }.

Lemma . Let, for the map M : � → �, the following conditions be fulfilled:
. Conditions (A) hold.
. � is a connected metric space and  < μ(�)≤ ∞.

Then, for every x ∈ �, the following statements are true:
(i) μ(Mx) < ∞;
(ii) KerM ∩Mx �=∅.

Proof (i) Let us consider the set � = {x ∈ � | μ(Mx) < ∞} and define � =� \ �. Condi-
tion (A) implies that � �=∅, and let us assume that � �=∅ too.
First we will prove that � is a closed subset of �. Let y ∈ ∂� be an arbitrary

point. Then there exists a sequence {xn}∞n= ⊂ int� such that limn→∞ ρ(xn, y) = . Since

http://www.journalofinequalitiesandapplications.com/content/2014/1/260
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limn,m→∞ μ(Mxn �Mxm ) = , then there exist a number n and a constant C >  such that
μ(Mxn ) ≤ C for each n ≥ n. For an arbitrary number ε >  from condition (A) it follows
that there exists a number n(ε) ≥ n such that for each n≥ n(ε) we haveμ(Mxn �My) < ε.
Then μ(My) ≤ μ(Mxn ) +μ(Mxn �My) ≤ C + ε <∞ and therefore y ∈ �. Thus we proved
that � is a closed subset of �. It is easy to see that for each z ∈ ∂� from condition (A)
it follows that μ(Mz) = +∞. Then � is also a closed set and therefore� =� ∪ �, where
� ∩ � =∅, which is impossible. Thus we can conclude that � =∅.
(ii) Assume that there exists some y ∈ � such thatMy ∩KerM =∅. From condition (A)

and (i) it follows that the function μ ◦M : � → [,∞) is continuous in �. Since My is
compact, there exists z ∈My such that

μ(Mz) = min
s∈My

μ(Ms) and μ(Mz) > .

Let x ∈ � be an arbitrary point for whichMx ∩Mz �=∅. Then either

μ(Mx ∩Mz) = μ(Mz) or Mz \Mx �=∅ and μ(Mz \Mx) > .

In the second case we have that  ≤ μ(Mx ∩Mz) < μ(Mz) and from condition (A) it fol-
lows that there exists a point y∗ ∈Mx ∩Mz such that

My∗ ⊂Mx ∩Mz ⊂ My,

and the inequalityμ(My∗ ) < μ(Mz) holds, which is impossible. Then, for every point x ∈ �,
we have that eitherMx ∩Mz =∅ or μ(Mx ∩Mz) = μ(Mz).
DefineG = {x ∈ � | μ(Mx ∩Mz) = μ(Mz)} andH =� \G. We will prove thatG is closed.

SinceG �=∅, let {xn}∞n= ⊆G be an arbitrary convergent sequencewith boundary s ∈ �, i.e.,
limn→∞ ρ(xn, s) = . Then we have limn→∞ μ(Mxn �Ms) = , and there exists n integer
such that for each n≥ n the inequality μ(Mxn �Ms) < μ(Mz)

 holds.
If we assume that  ≤ μ(Ms ∩ Mz) < μ(Mz), then Ms ∩ Mz = ∅, and therefore we have

that the following estimation

μ(Mxn �Ms) ≥ μ(Mxn \Ms) ≥ μ(Mz \Ms) ≥ μ(Mz)

holds, which is impossible. Therefore μ(Ms ∩Mz) = μ(Mz), i.e., s ∈G.
Since H �=∅ and � is connected, then H cannot be a closed set. There exist a

point s ∈ ∂G and a sequence {tn}∞n= ⊆ H such that limn→∞ ρ(tn, s) = , and therefore
limn→∞ μ(Mtn �Ms) = . There exists n integer such that for each n≥ n we have
μ(Mtn �Ms) < μ(Mz)

 . Since the sequence {tn}∞n= ⊆H , then we have that  ≤ μ(Mtn ∩Mz) <
μ(Mz) and thereforeMtn ∩Mz =∅. Then the following estimation μ(Mtn �Ms) ≥ μ(Ms \
Mtn ) ≥ μ(Mz) holds, which is impossible. �

Remark . The assertion of Lemma .was proved in [] with the additional assump-
tion that all setsMx are μ-dense.

We will say that condition (AM) is fulfilled if the following condition holds:
(AM) For each x ∈ �, the setMx is μ-dense.

http://www.journalofinequalitiesandapplications.com/content/2014/1/260
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Before considering the next important theorem,we draw attention to that from the view-
point of the applications the case when KerM =� is meaningless.

Theorem . Let, for the map M : � → �, the following conditions be fulfilled:
. Conditions (A) and (AM) hold.
. � is a connected metric space and  < μ(�)≤ ∞.

Then, for every x ∈ � for which Mx \KerM �=∅, there exist a point y ∈ ∂ KerM ∩Mx and
a sequence {yn}∞n= ⊆Mx \KerM such that limn→∞ ρ(yn, y) = .

Proof Let x ∈ � be an arbitrary point, for whichMx \KerM �=∅. In virtue of Lemma .,
there exists at least one connected component Mco of Mx, Mco ⊆ Mx such that Mco \
KerM �=∅. For the closure ofMco, we have that cl�(Mco) ⊆Mx, then cl�(Mco) is compact.
Since cl�(Mco) is compact, then if we assume that cl�(Mco)∩KerM =∅, then there exists
z ∈ cl�(Mco) such that μ(Mz) =miny∈cl�(Mco) μ(My) and μ(Mz) > , which is impossible.
DefineG = {y ∈ � | μ(My ∩Mz) = μ(Mz)} andH =� \G. In a similar way as in the proof

of Lemma ., we can prove that G is closed, G �=∅ and H �=∅ too. Moreover, for each
y ∈ H , we haveμ(My ∩Mz) = . Then there exist a point s ∈ ∂G and a sequence {tn}∞n= ⊆H
such that limn→∞ ρ(tn, s) =  and therefore limn→∞ μ(Mtn �Ms) = . In the same way as
in the proof of Lemma ., we conclude that this is impossible.
Then we can conclude that cl�(Mco) ∩ KerM �= ∅, and therefore there exists at least

a point y ∈ ∂ KerM ∩ Mx. Then, since cl�(Mco) is connected, there exists {yn}∞n= ⊂
cl�(Mco) \KerM such that limn→∞ ρ(yn, y) = . �

Theorem . Let conditions (A) and (AM) hold. Then, for every point x ∈ � and each
ε > , there exists δ(x, ε) >  such that for s ∈U(x, δ) we have that Mx ⊂U(Ms, ε) andMs ⊂
U(Mx, ε).

Proof Let ε > , x ∈ � be an arbitrary point and suppose thatMx �=∅ (the case Mx =∅ is
trivial). If we assume that Mx \ U(Ms, ε) �= ∅, then there exists a decreasing sequence
of positive numbers {δn}∞n=, limn→∞ δn =  such that for each δn, there exist points
sn ∈U(x, δn) and xn ∈ Mx \U(Msn , ε) such that ρ(xn,Msn ) > ε for each n≥ . This implies
that for each n ≥  we have U(xn, ε)∩Mzn =∅ and therefore the inequality

μ(Mx \Msn ) ≥ μ
(
Mx ∩U(xn, ε)

)
holds. Taking into account that Mx is compact, there exists a convergent subsequence
{xnk }∞k= such that limk→∞ ρ(xnk ,x) = , where x ∈Mx. Since limk→∞ ρ(snk ,x) = , then
from the last inequality above and condition (A) the relationμ(U(x, ε)∩Mx) =  follows.
Therefore x is an unessential point ofMx, which is impossible. Then there exists δ(x, ε) > 
such that for every s ∈U(x, δ) the inclusionMx ⊂U(Ms, ε) holds.
Let s ∈U(x, δ) be an arbitrary fixed point. Then we have ρ(Ms,Ms) < ε and therefore

Ms ⊂ U(Mx, ε). �

Remark . For the setsMx which are μ-dense, Theorem . illustrates the important
fact that if these sets are close in the measure sense, they are close in the metric sense too.

Definition . We say that the set G ⊆ � is M-star if for every x ∈G the inclusion
Mx ⊆G holds.
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Remark . It is easy to see that condition (A) implies that for each x ∈ � the setMx is
an M-star set. Moreover, the union and the intersection of an arbitrary family of M-star
sets are theM-star set. The set KerM is anM-star set too.

4 Main results
Let the mapM : � → � satisfy conditions (A) and (AM). For eachM-star set �∗ ⊂ �, we
denote by BC(�∗) the normed space of all functions f : �∗ → B, for which

‖f ‖�∗ = sup
x∈�∗

∥∥f (x)∥∥B <∞ and f ∈ C
(
M(�∗),B

)
,

whereM(�∗) = cl�∗ (
⋃

x∈�∗ Mx).
In our discussion below we will assume that for the operator

Q : � × � × B → B,

some of the following conditions are fulfilled.
(S) For everyM-star compact set �∗ ⊂ �, the operator Q is continuous in the set

�∗ × �∗ × B.
(S) For each x ∈ � and every f ∈ C(Mx,B), there exist numbers δ(Mx, f ) >  and

L(Mx, f , δ) >  such that for every functions g ∈ C(Mx,B) for which ‖f – g‖Mx < δ,
the following inequality holds:

sup
(s,y)∈Mx×Mx

∥∥Q(
s, y, f (y)

)
–Q

(
s, y, g(y)

)∥∥
B ≤ L(Mx, f , δ)‖f – g‖Mx .

(S) For every x ∈ � and arbitrary r > , there exists a constant L(Mx, r) >  such that
for every two functions f , g ∈Ux(r) = {f ∈ C(Mx,B) | ‖f ‖Mx ≤ r}, the following
inequality holds:

sup
(s,y)∈Mx×Mx

∥∥Q(
s, y, f (y)

)
–Q

(
s, y, g(y)

)∥∥
B ≤ L(Mx, r)‖f – g‖Mx .

(S) For eachM-star continuum �∗ ⊂ �, there exists a number L(�∗) >  such that for
every two functions f, f ∈ C(�∗,B) and for each x, y ∈ �∗, the following inequality
holds:

∥∥Q(
x, y, f(y)

)
–Q

(
x, y, f(y)

)∥∥
B ≤ L

(
�∗)∥∥f(y) – f(y)

∥∥
B.

Consider the operator K defined by the equation

Kf (x) = p(x) +
∫
Mx

Q
(
x, y, f (y)

)
dμy, (.)

where f ,p ∈ C(�,B), x ∈ �. If for the operator Q condition (S) holds, then the integral in
(.) exists; see, e.g., [, ].

Lemma . Let x ∈ � be an arbitrary point and the following conditions be fulfilled:
. Conditions (A), (AM), (S) and (S) hold.
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. � is a connected metric space and  < μ(�)≤ ∞.
Then the operator K defined by equality (.)maps C(Mx,B)→ C(Mx,B) continuously for
each p ∈ C(Mx,B).

Proof Let s ∈Mx be an arbitrary fixed point, and let {sn}∞n= ⊂Mx be an arbitrary sequence
such that limn→+∞ ρ(sn, s) = . If f ∈ C(Mx,B) is an arbitrary fixed element, then

∥∥Kf (sn) –Kf (s)
∥∥
B ≤ ∥∥p(sn) – p(s)

∥∥
B

+
∫
Msn∩Ms

∥∥Q(
sn, y, f (y)

)
–Q

(
s, y, f (y)

)∥∥
B dμy

+
∫
Msn \Ms

∥∥Q(
sn, y, f (y)

)∥∥
B dμy

+
∫
Ms \Msn

∥∥Q(
s, y, f (y)

)∥∥
B dμy. (.)

Let ε >  be an arbitrary number. DefineB(f ) =Mx×Mx× f (Mx) andT = sup(s,y,ν)∈B(f ) ‖Q(s,
y,ν)‖B. From conditions (A) and (S) it follows that a number n exists such that for each
n≥ n and y ∈Ms , the inequalities

sup
n≥n,y∈Ms

∥∥Q(
sn, y, f (y)

)
–Q

(
s, y, f (y)

)∥∥
B <

ε

μ(Ms )
,

∥∥p(sn) – p(s)
∥∥
B <

ε



and

μ(Msn �Ms ) ≤
ε

T

hold. Therefore, from (.) it follows that for each n ≥ n, we have

∥∥(Kf )(sn) – (Kf )(s)
∥∥
B < ε.

Let {fn}∞n= ⊂ C(Mx,B) be an arbitrary sequence such that

lim
n→∞‖fn – f ‖Mx = .

The function μ ◦M : � → [,∞) is continuous in � and then there exists a point x∗ ∈Mx

such that μ(Mx∗ ) = sups∈Mx μ(Ms). Moreover, from condition (S) it follows that there ex-
ists a number n = n(ε) such that for each n≥ n, we have ‖fn – f ‖Mx < δ and the estima-
tion

sup
(s,y)∈Mx×Mx

∥∥Q(
s, y, fn(y)

)
–Q

(
s, y, f (y)

)∥∥
B ≤ L(Mx, f , δ)‖fn – f ‖Mx (.)

holds. Since limn→∞ ‖fn – f ‖Mx = , then for each ε > , there exists a number n = n(ε) ≥
n such that for each n≥ n, we have

‖fn – f ‖Mx <min
(
δ, ε

(
μ(Mx∗ )L(Mx, f , δ)

)–).
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Therefore, from (.) it follows that

‖Kfn –Kf ‖Mx ≤ sup
s∈Mx

∫
Ms

∥∥Q(
s, y, fn(y)

)
–Q

(
s, y, f (y)

)∥∥
B dμy

≤ μ(Mx∗ ) sup
s∈Mx

(
sup
y∈Mx

∥∥Q(
s, y, f (y)

)
–Q

(
s, y, fn(y)

)∥∥
B

)
≤ μ(Mx∗ )L(Mx, f , δ)‖fn – f ‖Mx < ε. �

Let x ∈ � be an arbitrary point. Then, for every f ∈ C(Mx,B), there exist two points
sxm, sxM ∈Mx such that

∥∥f (sxm)∥∥
B = min

s∈Mx

∥∥f (s)∥∥B and
∥∥f (sxM)∥∥

B =max
s∈Mx

∥∥f (s)∥∥B.

Definition . A continuous function f : � → B is called an extension of the function
f ∈ C(Mx,B) if F(s) = f (s) for each s ∈Mx. If in addition for some extension F(s) and each
s ∈ � the following inequalities

∥∥f (sm)∥∥B ≤ ∥∥F(s)∥∥B ≤ ∥∥f (sM)∥∥B

hold, then such an extension will be called a middle extension.

Lemma . Let conditions (A) and (AM) be fulfilled. Then, for each x ∈ �, every function
f ∈ C(Mx,B) has at least one middle extension.

Proof Let x ∈ � and f ∈ C(Mx,B) be an arbitrary function. Denote by F ∈ C(�,B) the ex-
tension of the function f – f (sm) which exists according to the Dugundji extension theo-
rem ([], Theorem .). Define F∗ ∈ C(�,B) by F∗(s) = F(s) for s ∈Mx such that

 ≤ ∥∥F(s)∥∥B ≤ ∥∥f (sM)∥∥B –
∥∥f (sm)∥∥B

and F∗(s) = f (sM) – f (sm) for s ∈Mx such that

∥∥F(s)∥∥B >
∥∥f (sM)∥∥B –

∥∥f (sm)∥∥B.

Since the function

F∗ = F∗ + f (sm)

is an extension of f for which the inequalities

∥∥f (sm)∥∥B ≤ ∥∥F(s)∥∥B ≤ ∥∥f (sM)∥∥B

hold for each s ∈ �, then F∗ is a middle extension of the function f ∈ C(Mx,B). �

Definition . We say that equation (.) has a local solution in someM-star set �∗ ⊂ �

for some p ∈ BC(�∗,B) if there exist a point xp ∈ �∗ and a function f ∈ C(Mxp ,B) forwhich
μ(Mxp ) >  and f satisfies equation (.) for each s ∈ Mxp . If p, f ∈ C(�∗,B) and f satisfies
equation (.) for each x ∈ �∗, then we say that f is a solution of (.) in �∗ ⊂ �.
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Theorem . Let the following conditions be fulfilled:
. Conditions (A), (AM), (S) and (S) hold.
. � is a connected metric space and  < μ(�) ≤ ∞.
. KerM ⊂ � (the case when KerM =� is trivial).

Then, for every x ∈ � such that Mx \KerM �=∅ and for every p ∈ C(Mxp ,B), equation (.)
has at least one local solution in Mx.

Proof From condition , Lemma . and Theorem . it follows that there exists x ∈ �

such thatKerM∩Mx �=∅ andMx\KerM �=∅.Moreover, there exist a point y ∈ ∂ KerM∩
Mx and a sequence {yn}∞n= ⊆ Mx \KerM such that limn→∞ ρ(yn, y) = . Denote by Un(r)
for every n≥  the set

Un(r) =
{
f | f ∈ C(Myn ,B),‖f ‖Myn ≤ r

}
.

According to Lemma ., for every function f ∈ C(Myn ,B) and for each n≥ , there exists
a middle extension Fyn ∈ C(Mx,B) such that ‖Fyn‖Mx = ‖f ‖Myn . Therefore, the set Un(r) =
{Fyn | f ∈Un(r)} ⊂ Ux(r) for every n≥ .
Let us define

P =max
s∈Mx

∥∥p(s)∥∥B,

Q = sup
(s,y)∈Mx×Mx

∥∥Q(s, y, )∥∥B

and r > P is an arbitrary number and define for every n≥  the operatorKn by the following
equality:

Knf (s) = p(s) +
∫
Ms

Q
(
s, y, f (y)

)
dμy, s ∈Myn , (.)

where f ∈ C(Myn ,B), p ∈ C(Mx,B).
From Lemma . it follows that for each n≥  the operator Kn maps C(Myn ,B) into

C(Myn ,B) continuously, and from (.) and (S) it follows that the inequality

‖Knf ‖Myn ≤ P + sup
s∈Myn

∫ ∥∥Q(
s, y, f (y)

)
–Q(s, y, ) +Q(s, y, )

∥∥dμy

≤ P +μ(Myn )
(
L(Mx, r)‖f ‖Myn +Q

)
≤ P +μ(Myn )

(
L(Mx, r)r +Q

)
(.)

holds for each f ∈Un(r) and every n ≥ . Since limn→∞ ρ(yn, y) = , then there exists a
number n = n(y, r) such that for every n≥ n from (.) it follows that the inequalities

P +μ(Myn )
(
L(Mx, r)r +Q

)
< r,

μ(Myn )L(Mx, r)≤ q < 
(.)

hold. Obviously, first of them implies that Kn(Un(r))⊆Un(r).

http://www.journalofinequalitiesandapplications.com/content/2014/1/260


Zahariev et al. Journal of Inequalities and Applications 2014, 2014:260 Page 13 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/260

Define a = yn for some fixed n ≥ n, and let f , g ∈Un (r) be arbitrary functions. If we
denote by Fa and Ga their middle extensions onMx, then from (.) it follows the estima-
tion

‖Kaf –Kag‖Ma ≤ μ(Ma) sup
(s,y)∈Ma×Ma

∥∥Q(
s, y, f (y)

)
–Q

(
s, y, g(y)

)∥∥
B

≤ μ(Ma) sup
(s,y)∈Ma×Ma

∥∥Q(
s, y,Fa(y)

)
–Q

(
s, y,Ga(y)

)∥∥
B

≤ μ(Ma)L(Mx, r)‖Fa –Ga‖Mx = μ(Ma)L(Mx, r)‖f – g‖Ma

≤ q‖f – g‖Ma .

Therefore, the operator Ka maps Un (r) into Un (r) and is a contraction. Therefore, equa-
tion (.) has a solution f ∈ C(Ma,B). Moreover, since yn ∈ Mx \ KerM, then μ(Ma) > .

�

Remark . Generally speaking, if the setMa is not connected, then the local solution of
equation (.) can be not unique. The next example confirms that the connectivity of the
setMa is essential for the uniqueness of the local solution of equation (.).

Example Let � = [,∞), B =R,Mx = [,x]∪ [,  + x] for x ∈ [, ],Mx ∈ [,  + x] for x ∈
[,∞) and p≡  for x ∈ [,∞). Then, for each x ∈ (, ) according to Theorem ., there
exists ax ∈ (,x) such that equation (.) has a solution f ∈ C(Max ,R) in Max . Moreover,
since p≡  for x ∈ [,∞), then from conditions (A) it follows that if we choose ax ∈ (,x)
small enough, then f (s) >  for s ∈ (,ax). By the Urison lemma, there exists a continuous
function h : � → [, ] such that h(s) ≡  for s ∈ [,  + ax] and h(s) ≡  when s ∈ [,ax].
Then, obviously, the function w(s) = h(s)f (s) is another solution of equation (.) inMax .

Theorem . Let the set �∗ ⊂ � be an arbitrary M-star continuum, μ(�∗) < +∞ and the
following conditions be fulfilled:
. The metric space � is connected and  < μ(�) ≤ ∞.
. Conditions (A), (S), (S) and (AM) hold and for each x ∈ �∗ the setsMx are

connected.
Then, for each p ∈ C(�∗,B), equation (.) has exactly one solution f ∈ C(�∗,B).

Proof Suppose that f, f ∈ C(�∗,B) are two different solutions of equation (.). Then
from (.) it follows that for each x ∈ �∗ the inequality

∥∥f(x) – f(x)
∥∥
B ≤

∫
Mx

∥∥Q(
x, y, f(y)

)
–Q

(
x, y, f(y)

)∥∥
B dμy

holds. From the last equation and condition (S) it follows that for each x ∈ �∗ the in-
equality

∥∥f(x) – f(x)
∥∥
B ≤ L(�∗)

∫
Mx

∥∥f(y) – f(y)
∥∥
B dμy

holds. Using Theorem andTheorem  from [] we get ‖f(x)– f(x)‖B =  for each x ∈ �∗,
which contradicts our supposition. �
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Corollary. Let the conditions of Theorem. be fulfilled,and let the setMx be connected
for any x ∈ �. Then, for each Mx, equation (.) has exactly one solution f ∈ C(Mx,B).

Proof It is enough to apply Theorem . for �∗ =Mx. �

In our consideration below we will assume that B =R, and we denote by V + the cone

V + =
{
f ∈ C(�,R) | f (x)≥ ,x ∈ �

}
.

Theorem . Let the following conditions be fulfilled:
. The metric space � is connected and  < μ(�)≤ ∞.
. Conditions (A), (AM), (S), and (S) hold, and for any x ∈ � the setMx is connected.
. For each x ∈ �, there exists anM-star continuum �x ⊂ � with μ(�x) < ∞ such that

Mx ⊂ �x.
. For arbitrary x, y ∈ �, the operator Q is monotonic in V + with regard to the order

induced by the cone V+.
Then, for each p ∈ C(�,R) and every x ∈ �, equation (.) has a unique solution f ∈
C(�x,R) in �x.

Proof Let x ∈ � be an arbitrary point and �x ⊂ � be the M-star continuum existing ac-
cording to condition  of Theorem .. Lemma . implies that the operator K defined by
(.) maps C(�x,R) into C(�x,R). Then, from (.) for each s ∈ �x ∪ {x} and f ∈ C(�x,R),
we have

Kf (s) = p(s) +
∫
Ms

(
Q

(
s, y, f (y)

)
–Q(s, y, ) +Q(s, y, )

)
dμy. (.)

Define h(s) = |p(s)| + ∫
Ms

|Q(s, y, )|dμy and define for every f ∈ C(�x,R) the linear con-
tinuous and positive operator Lf (s) = L(�x)

∫
Ms

f (y)dμy for s ∈ �x ∪ {x}. From Theorem 
of [] it follows that the spectral radius of the operator L is equal to zero. Therefore the
equation Lf (s) + h(s) = f (s) has a unique solution f ∈ V +. For every f ∈ V +, from (.) and
condition (S) it follows that Kf (s) ≤ Lf (s) + h(s) for each s ∈ �x ∪ {x}. Then the operator
K maps the order interval

[, f] =
{
f ∈ C(�x,R) |  ≤ f (s)≤ f(s), s ∈ �x ∪ {x}}

into itself, and therefore K has at least one fixed point in the interval (see [], Chapter ).
From Theorem . it follows that for each x, y ∈ � for which Mx ∩ My �=∅ and for any

solutions fx and fy, we have that fx(s) = fy(s) for s ∈Mx ∩My, and therefore the global solu-
tion f� defined with (.) for all x ∈ � is unique. Note that the solution f� is continuous in
�x for each x ∈ �.
It is easy to see that if � is a local compact metric space, then the solution f� is contin-

uous in �, i.e., f� ∈ C(�,R). �

5 Inequalities
In this section we apply the results obtained in Section  to study inequality (.).
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Definition . We say that inequality (.) has a local solution in someM-star set�∗ ⊂ �

for some p ∈ BC(�∗,B) if there exist a point xp ∈ �∗ and a function g ∈ C(Mxp ,B) for which
μ(Mxp ) >  and g satisfies inequality (.) for each s ∈ Mxp . If p, g ∈ C(�∗,B) and g satisfies
inequality (.) for each x ∈ �∗, then we say that g is a solution of (.) in �∗ ⊂ �.

Theorem . Let the following conditions be fulfilled:
. � is a connected metric space and  < μ(�) ≤ ∞.
. For each x ∈ �, the setsMx are connected.
. Conditions (A) hold.
. The function Q : � × � ×R →R for every two fixed elements x ∈ � and y ∈Mx is a

monotonously increasing function of ν .
Then, if for the functions f , g ∈ C(�,R) the inequality

g(x) –Kg(x) < f (x) –Kf (x) (.)

holds for each x ∈ �, then g(x) < f (x) for x ∈ �.

Proof Denote byW the following subset of �:

W =
{
x ∈ � | g(y) < f (y) for each y ∈Mx

}
.

Condition (A) implies that there exists x ∈ � such that μ(Mx ) = . Then, according to
condition (A), for each x ∈ Mx , we have that μ(Mx) = . Since Kf (x) = Kg(x) for each
x ∈Mx , then (.) implies that x ∈ W and thereforeW �=∅.
Let {xn}∞n= ⊂ W be an arbitrary convergent sequence and define x = limn→∞ xn. If we

assume that x /∈ W , then there exists a point y ∈Mx such that g(y) ≥ f (y), and therefore
from (.) it follows that

Kg(y) –Kf (y) > .

Then there exists a set G ⊆My such that μ(G) >  and g(s) > f (s) for each s ∈G. Then, for
each n≥ , we have that μ(G) ≤ μ(My \Mxn ) ≤ μ(Mx �Mxn ) and from condition (A) it
follows thatμ(G) = , which contradicts our assumption. Thus we prove thatW is a closed
set.
It is easy to see that if x ∈W , then obviously Mx ⊂ W , i.e., W is an M-star set. Since

f , g ∈ C(�,R), then for each y ∈Mx, x ∈W , there exists an open ball U(y, εy) such that
U(y, εy)⊂W . Then the set Ux =

⋃
y∈Mx U(y, εy) is an open cover ofMx andUx ⊂W . Since

Mx is compact, there exists a finite number of balls such that
⋃n

k=U(yk , εyk ) ⊂ W . Then,
according to Theorem ., there exists δ(εy , . . . , εyn ) >  such that for each s ∈ �, ρ(s,x) <
δ we have thatMs ⊂W , and therefore we prove thatW is an open set.
Since � is a connected metric space, then we can conclude that W = �. Then we have

that for each x ∈ � and y ∈ Mx, the following inequality Q(x, y, g(y)) < Q(x, y, f (y)) holds.
Then from (.) it follows that

g(x) < g(x) –Kg(x) +Kg(x) < f (x) –Kf (x) +Kg(x),

and therefore g(x) < f (x) for each x ∈ �. �
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Remark . It is easy to see that if we replace the strict inequality (.) by a non-strict
one, the assertion of the theorem still holds for every x ∈ � \KerM.

Corollary . Let the following conditions be fulfilled:
. Conditions of Theorem . hold.
. Condition  of Theorem . holds.

Then, for every solution g ∈ C(�,R) of inequality (.) and for every x ∈ �, the inequality
g(x) ≤ f (x) holds, where f ∈ C(�,R) is the unique solution of equation (.).

Proof According to Theorem ., equation (.) has a unique solution f ∈ C(�,R). For
every solution g ∈ C(�,R) of inequality (.), we have that the inequality

g(x) –Kg(x)≤ f (x) –Kf (x) (.)

holds for every x ∈ �. Then if for some x ∈ � we have that

g(x) –Kg(x) = f (x) –Kf (x),

then we can conclude that g(x) = f (x) (f is the unique solution of equation (.)). For other
points x ∈ � for which inequality (.) is strict, the assertion of Corollary . follows from
Theorem .. �

6 Applications
As an illustration of the results obtained in the previous sections, we will consider integral
inequalities with maxima.
Let � = R


+ = [,∞)× [,∞), ρ is the Euclidean metric, B =R, μ is the Lebesgue mea-

sure, c,a,b >  are arbitrary constants, x = (x,x) ∈ R
 and define Tx = [x – a,x]× [x –

b,x] and I(a,b) = {[–a,∞) × [–b,∞)} \ R

+. The function k : R

+ → [,∞) is continu-
ous and the operator Q : � ×R → R is defined by the following inequality Q(x, y, f (y)) =
k(x, y)maxs∈Ty f (s). Let, for the mapM : � → �, conditions (A) and (AM) hold, and con-
sider equation (.) and inequality (.) under the following conditions:

f (x) = c +
∫
Mx

k(x, y)max
s∈Ty

f (s)dμy, (.)

g(x)≤ c +
∫
Mx

k(x, y)max
s∈Ty

g(s)dμy (.)

for x ∈ R
+ and g(x) ≤ f (x) ≤ c for x ∈ I(a,b). It is simple to verify that all conditions of

Corollary . are fulfilled and therefore we have that g(x) ≤ f (x) for x ∈ R
+, where f (x) is

the unique solution of (.) and g(x) is an arbitrary solution of (.).
Let us define ϕ(x) =maxs∈Ty f (s), y ∈R

+, k(x, y)≡ k(y), and consider the equation

ϕ(x) = c +
∫
Mx

k(y)ϕ(y)dμy (.)

and ϕ(x) = c for x ∈ I(a,b). Then from the results in [] it follows that the equation has a
unique solution for which the estimation

g(x)≤ f (x)≤ ϕ(x) ≤ cφ(x)
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for x ∈R
+ holds, where φ(x) is the solution of equation (.) when c = , and it can be

represented as a convergent Neumann series

φ(x) =  +
∫
Mx

k(y)dμy +
∫
Mx

k(y)
(∫

My

k(y)dμy

)
dμy + · · · . (.)

Example Let � = (,∞)× (,∞), B =R andMx = [,x]× [,x]. Then

φ(x) = exp

(∫ x



(∫ x


k(y)dy

)
dy

)
.
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