
El-Shabrawy Journal of Inequalities and Applications 2014, 2014:241
http://www.journalofinequalitiesandapplications.com/content/2014/1/241

RESEARCH Open Access

Spectra and fine spectra of certain lower
triangular double-band matrices as operators
on c
Saad R El-Shabrawy*

*Correspondence:
srshabrawy@yahoo.com
Mathematics Department, Faculty
of Science, Damietta University,
New Damietta, Egypt

Abstract
In this paper we determine the fine spectrum of the generalized difference operator
�a,b defined by a lower triangular double-band matrix over the sequence space c0.
The class of the operator �a,b contains as special cases many operators that have
been studied recently in the literature. Illustrative examples showing the advantage of
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1 Introduction
Several authors have studied the spectrum and fine spectrum of linear operators defined
by lower and upper triangular matrices over some sequence spaces [–].
Let X be a Banach space. By R(T), T∗, X∗, B(X), σ (T ,X), σp(T ,X), σr(T ,X) and σc(T ,X),

we denote the range of T , the adjoint operator of T , the space of all continuous linear
functionals onX, the space of all bounded linear operators onX into itself, the spectrumof
T onX, the point spectrumofT onX, the residual spectrumofT onX and the continuous
spectrum of T on X, respectively. We shall write c and c for the spaces of all convergent
and null sequences, respectively. Also by l we denote the space of all absolutely summable
sequences.
We assume here some familiarity with basic concepts of spectral theory and we refer to

Kreyszig [, pp.-] for basic definitions such as spectrum, point spectrum, residual
spectrum, and continuous spectrum of linear operators in normed spaces. Also, we refer
to Goldberg [, pp.-] for Goldberg’s classification of spectra.
Now, let (ak) and (bk) be two convergent sequences of nonzero real numbers with

lim
k→∞

ak = a and lim
k→∞

bk = b �= . ()

We consider the operator �a,b : c → c, which is defined as follows:

�a,bx = �a,b(xk) = (akxk + bk–xk–)∞k= with x– = b– = . ()
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It is easy to verify that the operator �a,b can be represented by a lower triangular double-
band matrix of the form

�a,b =

⎛
⎜⎜⎜⎜⎝
a   · · ·
b a  · · ·
 b a · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ . ()

We begin by determining when a matrix A induces a bounded linear operator from c
to itself.

Lemma . (cf. [, p.]) The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(c) from c to itself if and only if
() the rows of A are in l and their l norms are bounded,
() the columns of A are in c.

The operator norm of T is the supremum of the l norms of the rows.

As a consequence of the above lemma, we have the following corollary for the bounded
linearity of the operator �a,b on the space c.

Corollary . The operator �a,b : c −→ c is a bounded linear operator with the norm
‖�a,b‖c = supk(|ak| + |bk–|).

The rest of the paper is organized as follows. In Section , we analyze the spectrumof the
operator �a,b on the sequence space c. In Section  we give some illustrative examples.
Finally, Section  concludes with remarks and some special cases.

2 Fine spectrum of the operator�a,b on c0
In this section we examine the spectrum, the point spectrum, the residual spectrum and
the continuous spectrum of the operator �a,b on the sequence space c.

Theorem . Let D = {λ ∈ C : |λ – a| ≤ |b|} and E = {ak : k ∈ N, |ak – a| > |b|}. Then
σ (�a,b, c) =D∪ E.

Proof First, we prove that (�a,b – λI)– exists and is in B(c) for λ /∈ D ∪ E and then the
operator �a,b – λI is not invertible for λ ∈ D∪ E.
Let λ /∈ D ∪ E. Then |λ – a| > |b| and λ �= ak , for all k ∈ N. So, (�a,b – λI) is triangle and

hence (�a,b – λI)– exists. We can calculate that

(�a,b – λI)– = (skj) =

⎛
⎜⎜⎜⎜⎜⎜⎝


(a–λ)   · · ·
–b

(a–λ)(a–λ)


(a–λ)  · · ·
bb

(a–λ)(a–λ)(a–λ)
–b

(a–λ)(a–λ)


(a–λ) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now, for each k ∈N, the series Sk =
∑

j |skj| is convergent since it is finite. Next, we prove
that supk Sk is finite.
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Since limk→∞ | bk
ak–λ

| = | b
a–λ

| < , then there exist k ∈ N and q <  such that | bk
ak–λ

| < q,
for all k ≥ k. Then, for each k > k,

Sk =


|ak – λ|
[
 +

|bk–|
|ak– – λ| +

|bk–||bk–|
|ak– – λ||ak– – λ|

+ · · · + |bk–||bk–| · · · |bk |
|ak– – λ||ak– – λ| · · · |ak – λ|

+ · · · + |bk–||bk–| · · · |bk+||bk | · · · |b|
|ak– – λ||ak– – λ| · · · |ak+ – λ||ak – λ| · · · |a – λ|

]

≤ 
|ak – λ|

[
 + q + q + · · · + qk–k + qk–k

|bk–|
|ak– – λ| + qk–k

|bk–||bk–|
|ak– – λ||ak– – λ|

+ · · · + qk–k
|bk–||bk–| · · · |b|

|ak– – λ||ak– – λ| · · · |a – λ|
]
.

Therefore

Sk ≤ 
|ak – λ|

[
 + q + q + · · · + qk–k mk

]
,

where

mk =  +
|bk–|

|ak– – λ| +
|bk–||bk–|

|ak– – λ||ak– – λ| + · · · + |bk–||bk–| · · · |b|
|ak– – λ||ak– – λ| · · · |a – λ| .

Then mk >  and so

Sk ≤ mk
|ak – λ|

[
 + q + q + · · · + qk–k

]
.

But there exist k ∈N and a real number q < 
|b| such that 

|ak–λ| < q, for all k ≥ k. Then

Sk ≤ qmk
 – q

,

for all k >max{k,k}. Thus supk Sk < ∞.
Also, it is easy to see that limk→∞ |skj| = , for all j ∈N, since

lim
k→∞

∣∣∣∣ sk+,jsk,j

∣∣∣∣ = lim
k→∞

∣∣∣∣ bk
ak+ – λ

∣∣∣∣ =
∣∣∣∣ b
a – λ

∣∣∣∣ < .

So, the sequence (sj, sj, sj, . . .) converges to zero, for each j ∈ N. This shows that the
columns of (�a,b – λI)– are in c. Then, from Lemma ., (�a,b – λI)– ∈ B(c) and so,
λ /∈ σ (�a,b, c). Thus σ (�a,b, c) ⊆D∪ E.
Conversely, suppose that λ /∈ σ (�a,b, c). Then (�a,b – λI)– ∈ B(c). Since the (�a,b –

λI)– transform of the unite sequence e = (, , , . . .) is in c, we have limk→∞ | bk
ak+–λ

| =
| b
a–λ

| ≤  and λ �= ak , for all k ∈ N. Then {λ ∈ C : |λ – a| < |b|} ⊆ σ (�a,b, c) and {ak : k ∈
N} ⊆ σ (�a,b, c). But σ (�a,b, c) is a compact set, and so it is closed. Then D = {λ ∈ C :
|λ – a| ≤ |b|} ⊆ σ (�a,b, c) and E = {ak : k ∈ N, |ak – a| > |b|} ⊆ σ (�a,b, c). This completes
the proof. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/241
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Theorem . σp(�a,b, c) = E ∪K , where

K =

{
aj : j ∈N, |aj – a| = |b|,

∞∏
i=m

bi–
aj – ai

diverges to zero for some m ∈N

}
.

Proof Suppose �a,bx = λx for any x ∈ c. Then we obtain

(a – λ)x =  and bkxk + (ak+ – λ)xk+ = , for all k ∈N.

If the sequence (ak) is constant, then we can easily see that x = θ and so, σp(�a,b, c) = ∅
and the result follows immediately. Now, if the sequence (ak) is not constant, then for all
λ /∈ {ak : k ∈N}, we have xk =  for all k ∈N. So, λ /∈ σp(�a,b, c). Also, we can easily prove
that a /∈ σp(�a,b, c). Thus σp(�a,b, c)⊆ {ak : k ∈N}\{a}. Now, we will prove that

λ ∈ σp(�a,b, c) if and only if λ ∈ E ∪K .

If λ ∈ σp(�a,b, c), then λ = aj �= a for some j ∈ N and there exists x ∈ c, x �= θ such that
�a,bx = ajx. Then

lim
k→∞

∣∣∣∣xk+xk

∣∣∣∣ =
∣∣∣∣ b
a – aj

∣∣∣∣ ≤ .

Then λ = aj ∈ E or |aj – a| = |b|. In the case when |aj – a| = |b|, we have

xk =
bk–bk– · · ·bm–

(aj – ak)(aj – ak–) · · · (aj – am)
xm– = xm–

k∏
i=m

bi–
aj – ai

, k ≥ m.

Then
∏∞

i=m
bi–
aj–ai

diverges to , since x ∈ c. Therefore λ ∈ E∪K . Thus σp(�a,b, c) ⊆ E∪K .
Conversely, let λ ∈ E ∪K . If λ ∈ E, then there exists i ∈ N such that λ = ai �= a and so we

can take x �= θ such that �a,bx = aix and

lim
k→∞

∣∣∣∣xk+xk

∣∣∣∣ =
∣∣∣∣ b
a – ai

∣∣∣∣ < ,

that is, x ∈ c. Also, if λ ∈ K , then there exists j ∈ N such that λ = aj �= a and |aj – a| = |b|,∏∞
i=m

bi–
aj–ai

diverges to , for somem ∈ N. Then we can take x ∈ c, x �= θ such that �a,bx =
ajx. Thus E ∪K ⊆ σp(�a,b, c). This completes the proof. �

Theorem . σp(�∗
a,b, c

∗
) = {λ ∈C : |λ – a| < |b|} ∪ E ∪H , where

H =

{
λ ∈C : |λ – a| = |b|,

∞∑
k=

∣∣∣∣∣
k∏
i=

λ – ai
bi

∣∣∣∣∣ < ∞
}
.
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Proof Suppose that �∗
a,bf = λf for f = (f, f, f, . . .) �= θ in c∗ ∼= l. Then, by solving the sys-

tem of linear equations

af + bf = λf,

af + bf = λf,

af + bf = λf,

...

we obtain

fk+ =
λ – ak
bk

fk , k ∈N.

Then we must take f �=  since otherwise we would have f = θ . It is clear that for all k ∈N,
the vector f = (f, f, . . . , fk , , , . . .) is an eigenvector of the operator �∗

a,b corresponding to
the eigenvalue λ = ak , where f �=  and fn = λ–an–

bn–
fn–, for all n = , , , . . . ,k. Then {ak : k ∈

N} ⊆ σp(�∗
a,b, c

∗
). Also, if λ �= ak for all k ∈ N, then fk �= , for all k ≥  and

∑∞
k= |fk| < ∞ if

limk→∞ | fk+fk
| = | λ–a

b | < . Also, if |λ – a| = |b|, we can easily see that

|fk| =
∣∣∣∣ (λ – a)(λ – a) · · · (λ – ak–)

bb · · ·bk–
∣∣∣∣|f| = |f|

k–∏
i=

∣∣∣∣λ – ai
bi

∣∣∣∣, for all k ≥ ,

and so
∑∞

k= |fk| < ∞ if
∑∞

k= |∏k
i=

λ–ai
bi

| <∞. This implies that H ⊆ σp(�∗
a,b, c

∗
). Thus

{
λ ∈C : |λ – a| < |b|} ∪ E ∪H ⊆ σp

(
�∗

a,b, c
∗

)
.

The second inclusion can be proved analogously. �

The following lemma is required in the proof of the next theorem.

Lemma . [, p.] T has a dense range if and only if T∗ is one to one.

Theorem . σr(�a,b, c) = σp(�∗
a,b, c

∗
)\σp(�a,b, c).

Proof For λ ∈ σp(�∗
a,b, c

∗
)\σp(�a,b, c), the operator �a,b – λI is one to one and hence has

an inverse. But �∗
a,b – λI is not one to one. Now, Lemma . yields the fact that the range

of the operator �a,b – λI is not dense in c. This implies that λ ∈ σr(�a,b, c). �

Theorem . σr(�a,b, c) = {λ ∈C : |λ – a| < |b|} ∪ (H\K ).

Proof The proof follows immediately from Theorems ., ., and .. �

Theorem . σc(�a,b, c) = {λ ∈C : |λ – a| = |b|}\H .

Proof Since σ (�a,b, c) is the disjoint union of the parts σp(�a,b, c), σr(�a,b, c) and
σc(�a,b, c) we must have σc(�a,b, c) = {λ ∈C : |λ – a| = |b|}\H . �

Also, we have the following result.

http://www.journalofinequalitiesandapplications.com/content/2014/1/241
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Theorem . σc(�a,b, c) = σ (�a,b, c)\σp(�∗
a,b, c

∗
).

Proof The proof is obvious and so is omitted. �

With respect to Goldberg’s classification of the spectrum of an operator (see [, pp.-
]), the spectrum is partitioned into nine states, which are I, I, I, II, II, II, III, III,
and III. For the operator �a,b : c → c, we have

Iσ (�a,b, c) = IIσ (�a,b, c) = ∅,

since σp(�a,b, c) ⊆ σp(�∗
a,b, c

∗
). Also, Iσ (�a,b, c) = ∅, by the closed graph theorem. Thus

we have to discuss the states II, III, III, and III.

Theorem . λ ∈ σp(�a,b, c) if and only if λ ∈ IIIσ (�a,b, c).

Proof The proof is obvious and so is omitted. �

Theorem . λ ∈ σc(�a,b, c) if and only if λ ∈ IIσ (�a,b, c).

Proof Let λ ∈ σc(�a,b, c). By Theorem ., �∗
a,b – λI is one to one. By Lemma ., �a,b –

λI has dense range. Additionally, λ /∈ σp(�a,b, c) implies that the operator �a,b – λI has
inverse. Therefore, λ ∈ IIσ (�a,b, c) or λ ∈ Iσ (�a,b, c). But Iσ (�a,b, c) = ∅. Thus λ ∈
IIσ (�a,b, c). �

Theorem . λ ∈ σr(�a,b, c) if and only if λ ∈ IIIσ (�a,b, c)∪ IIIσ (�a,b, c).

Proof Let λ ∈ σr(�a,b, c). By Theorem ., �∗
a,b – λI is not one to one. By Lemma .,

�a,b – λI has not a dense range. Additionally, λ /∈ σp(�a,b, c) implies that the operator
�a,b – λI has inverse. Therefore, λ ∈ IIIσ (�a,b, c)∪ IIIσ (�a,b, c). �

3 Illustrative examples
In this section we provide some illustrative examples in support of our new results.

Example . Consider the sequences (ak) and (bk) defined by the following recurrence
relations:

a =
√
, ak+ =

√
 + ak ,

b =
√
, bk+ =

√
bk ,

for all k ∈N. Then (ak) and (bk) are monotonically increasing sequences and limk→∞ ak =
a =  and limk→∞ bk = b = . Also, ak ≥ bk for all k ∈N. Thus, for all λ ∈C with |λ–| = ,
one can prove that | λ–ak

bk
| ≥  for all k ∈N. This implies thatH = ∅. Also, we can prove that

E = K = ∅. Using Theorems ., ., ., and ., we have

σ (�a,b, c) =
{
λ ∈C : |λ – | ≤ 

}
,

σp(�a,b, c) = ∅,

http://www.journalofinequalitiesandapplications.com/content/2014/1/241
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σr(�a,b, c) =
{
λ ∈C : |λ – | < 

}
,

σc(�a,b, c) =
{
λ ∈C : |λ – | = 

}
.

Example . Let ak = k+
k+ and bk = k+

k+ for all k ∈ N. Then limk→∞ ak = a =  and
limk→∞ bk = b = . Similarly, as in Example ., we can prove that E = K =H = ∅ and so

σ (�a,b, c) =
{
λ ∈C : |λ – | ≤ 

}
,

σp(�a,b, c) = ∅,
σr(�a,b, c) =

{
λ ∈C : |λ – | < 

}
,

σc(�a,b, c) =
{
λ ∈C : |λ – | = 

}
.

Example . Consider the sequences (ak) and (bk) defined by the following recurrence
relations:

a = , a = , ak =  for k ≥ ,

b = , b = , bk =
(
k + 
k

)

for k ≥ .

Therefore, limk→∞ ak = a =  and limk→∞ bk = b = . Then E = {}, K = ∅ and H = {λ ∈ C :
|λ – | = }, and so

σ (�a,b, c) =
{
λ ∈C : |λ – | ≤ 

} ∪ {},
σp(�a,b, c) = {},
σr(�a,b, c) =

{
λ ∈C : |λ – | ≤ 

}
,

σc(�a,b, c) = ∅.

Remark . From the above examples, we note that the spectrum of the operator �a,b

on the space c may include also a finite number of points outside a region enclosed by a
circle. Also, we may have σp(�a,b, c) �= ∅.

Example . Let the sequences (ak) and (bk) be taken such that ak = –bk = (k+)
(k+)+(k+) ,

k ∈N. Then we can prove that E = K =H = ∅ and so we have

σ (�a,b, c) =
{
λ ∈C :

∣∣∣∣λ –



∣∣∣∣ ≤ 


}
,

σp(�a,b, c) = ∅,

σr(�a,b, c) =
{
λ ∈C :

∣∣∣∣λ –



∣∣∣∣ < 


}
,

σc(�a,b, c) =
{
λ ∈C :

∣∣∣∣λ –



∣∣∣∣ = 


}
.
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4 Remarks and some special cases
In this section we are going to give some special cases of the operator �a,b which has been
studied recently. More precisely, we show that special conditions on the sequences (ak)
and (bk) characterize certain special cases of the operator �a,b.

The difference operator �: If ak =  and bk = – for all k ∈N, then the operator �a,b

reduces to the backward difference operator � (cf. []).
The generalized difference operator B(r, s): If ak = r and bk = s �=  for all k ∈ N, then
the operator �a,b reduces to the operator B(r, s) (cf. []).
The generalized difference operator �v: If ak = –bk = vk for all k ∈N, then the operator
�a,b reduces to the operator �v (cf. []).
The generalized difference operator �uv: If (ak) is a sequence of positive real numbers
such that ak �=  for all k ∈N with limk→∞ ak =U �=  and (bk) is either constant or
strictly decreasing sequence of positive real numbers with limk→∞ bk = V �=  and
supk ak <U +V , then the operator �a,b reduces to the operator �uv (cf. []).

Remark . If (ak) and (bk) are convergent sequences of nonzero real numbers such that

lim
k→∞

ak = a > , ()

lim
k→∞

bk = b; |b| = a, ()

and

sup
k

ak ≤ a, bk ≤ ak for all k ∈N, ()

then we can prove that H = ∅ and so we have:

σ (�a,b, c) =
{
λ ∈C : |λ – a| ≤ a

} ∪ {
ak : k ∈N, |ak – a| > a

}
,

σp(�a,b, c) =
{
ak : k ∈N, |ak – a| > a

}
,

σp
(
�∗

a,b, c
∗

)
=

{
λ ∈C : |λ – a| < a

} ∪ {
ak : k ∈N, |ak – a| > a

}
,

σr(�a,b, c) =
{
λ ∈C : |λ – a| < a

}
,

σc(�a,b, c) =
{
λ ∈C : |λ – a| = a

}
.

It is immediate that our new results cover a wider class of linear operators which are
represented by infinite lower triangular double-band matrices on the sequence space c.
For this reason, our study is more general and more comprehensive than the previous
work.We note that our new results in this paper improve and generalize the results which
have been stated in [, ].
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