RESEARCH Open Access

Eigenvalues of quasibounded maximal monotone operators

In-Sook Kim* and Jung-Hyun Bae

*Correspondence: iskim@skku.edu Department of Mathematics, Sungkyunkwan University, Suwon, 440–746, Republic of Korea

Abstract

Let X be a real reflexive separable Banach space with dual space X^* and let L be a dense subspace of X. We study a nonlinear eigenvalue problem of the type

$$0 \in Tx + \lambda Cx$$

where $T:D(T)\subset X\to 2^{X*}$ is a strongly quasibounded maximal monotone operator and $C:D(C)\subset X\to X^*$ satisfies the condition $(S_+)_{D(C)}$ with $L\subset D(C)$. The method of approach is to use a topological degree theory for $(S_+)_L$ -perturbations of strongly quasibounded maximal monotone operators, recently developed by Kartsatos and Quarcoo. Moreover, applying degree theory, a variant of the Fredholm alternative on the surjectivity of the operator $\lambda T+C$ is discussed, where we assume that λ is not an eigenvalue for the pair (T,C), T and C are positively homogeneous, and C satisfies the condition $(S_+)_L$.

1 Introduction and preliminaries

A systematic theory of compact operators emerged from the theory of integral equations of the form

$$Tx + \lambda x = y$$
, where $Tx(t) = \int_a^b k(t, s, x(s)) ds$.

Here, $\lambda \in \mathbb{R}$ is a parameter, y and k are given functions, and x is the unknown function. Such equations play a role in the theory of differential equations. The study goes back to Krasnosel'skii [1]. Moreover, the eigenvalue problem of the form

$$Tx + \lambda Cx = 0$$

could be solved with the Galerkin method, where C is continuous, bounded, and of type (S); see, e.g., [2].

From now on, we concentrate on the class of maximal monotone operators, as a generalization of linear self-adjoint operators. The theory of nonlinear maximal monotone operators started with a pioneer work of Minty [3] and has been extensively developed, with applications to evolution equations and to variational inequalities of elliptic and parabolic type; see [4, 5]. The eigenvalue problem for various types of nonlinear operators was investigated in [6–10]. As a key tool, topological degree theory was made frequent use of; for instance, the Leray-Schauder degree and the Kartsatos-Skrypnik degree; see [11–15].

Let X be a real reflexive Banach space with dual space X^* . We consider a nonlinear eigenvalue problem of the form

$$0 \in Tx + \lambda Cx$$
, (E)

where $T:D(T)\subset X\to 2^{X^*}$ is a maximal monotone multi-valued operator and $C:D(C)\subset X\to X^*$ is a single-valued operator. In the case where the operator C or the resolvents of T are compact, it was studied in [6,7,10] by using the Leray-Schauder degree for compact operators. When the operator C is densely defined and quasibounded and satisfies the condition (\tilde{S}_+) , Kartsatos and Skrypnik [9] solved the above problem (E) via the topological degree for these operators given in [13].

We are now focused on the quasiboundedness of the operator T instead of that of the operator C. Actually, a strongly quasibounded operator due to Browder and Hess [16] may not necessarily be bounded. One more thing to be considered is the condition $(S_+)_{L}$, where L is a dense subspace of X with $L \subset D(C)$. In fact, the condition $(S_+)_{0,L}$ was first introduced in [12] and the structure of the class $(S_+)_L$ or $(S_+)_{D(C)}$ was discussed in [17], as a natural extension of the class $(S_+)_{\mathbb{C}}$; see [4, 14].

In the present paper, the first goal is to study the above eigenvalue problem (E) for strongly quasibounded maximal monotone operators, provided that the operator C satisfies the condition $(S_+)_{D(C)}$. In addition, we assume the following property (\mathcal{P}) : For $\epsilon > 0$, there exists a $\lambda > 0$ such that the inclusion

$$0 \in Tx + \lambda Cx + \varepsilon Jx$$

has no solution in $D(T) \cap D(C) \cap \Omega$, where Ω is a bounded open set in X and J is a normalized duality operator. This property is closely related to the use of a topological tool for finding the eigensolution on the boundary of Ω ; see [9, 10]. To solve the above problem (E), we thus use the degree theory for densely defined $(S_+)_L$ -perturbations of maximal monotone operators introduced by Kartsatos and Quarcoo in [18]. Roughly speaking, the degree function is based on the Kartsatos-Skrypnik degree [8] of the densely defined operators $T_t + C$, which is constant for all small values of t, where T_t is the approximant introduced by Brézis et al. [19]. Such an approach was first used by Browder in [11]. The second goal is to establish a variant of a Fredholm alternative result on the surjectivity for the operator $\lambda T + C$, where $\lambda \geq 1$ is not an eigenvalue for the pair (T, C) and the operator C satisfies the condition $(S_+)_L$; see [9, 20].

This paper is organized as follows: In Section 2, we give some eigenvalue results for strongly quasibounded maximal monotone operators by applying the Kartsatos-Quarcoo degree theory. Section 3 contains a version of the Fredholm alternative for positively homogeneous operators, with a regularization method by means of a duality operator J_{φ} .

Let X be a real Banach space, X^* its dual space with the usual dual pairing $\langle \cdot, \cdot \rangle$, and Ω a nonempty subset of X. Let $\overline{\Omega}$, int Ω , and $\partial \Omega$ denote the closure, the interior, and the boundary of Ω in X, respectively. The symbol \to (\to) stands for strong (weak) convergence. An operator $A: \Omega \to X^*$ is said to be *bounded* if A maps bounded subsets of Ω into bounded subsets of X^* . A is said to be *demicontinuous* if, for every $x_0 \in \Omega$ and for every sequence $\{x_n\}$ in Ω with $x_n \to x_0$, we have $Ax_n \to Ax_0$.

An operator $T: D(T) \subset X \to 2^{X^*}$ is said to be *monotone* if

$$\langle u^* - v^*, x - y \rangle \ge 0$$
 for every $x, y \in D(T)$ and every $u^* \in Tx, v^* \in Ty$,

where $D(T) = \{x \in X : Tx \neq \emptyset\}$ denotes the *effective domain* of T.

The operator T is said to be *maximal monotone* if it is monotone and it follows from $(x, u^*) \in X \times X^*$ and

$$\langle u^* - v^*, x - y \rangle \ge 0$$
 for every $y \in D(T)$ and every $v^* \in Ty$

that $x \in D(T)$ and $u^* \in Tx$.

An operator $T: D(T) \subset X \to 2^{X^*}$ is said to be *strongly quasibounded* if for every S > 0 there exists a constant K(S) > 0 such that for all $x \in D(T)$ with

$$||x|| \le S$$
 and $\langle u^*, x \rangle \le S$,

where $u^* \in Tx$, we have $||u^*|| \le K(S)$.

We say that $T:D(T)\subset X\to 2^{X^*}$ satisfies the condition (S_q) on a set $M\subset D(T)$ if for every sequence $\{x_n\}$ in M with $x_n\rightharpoonup x_0$ and every sequence $\{u_n^*\}$ with $u_n^*\to u^*$ where $u_n^*\in Tx_n$, we have $x_n\to x_0$.

We say that $T:D(T)\subset X\to X^*$ satisfies the condition (S_+) on a set $M\subset D(T)$ if for every sequence $\{x_n\}$ in M with

$$x_n \rightharpoonup x_0$$
 and $\limsup_{n \to \infty} \langle Tx_n, x_n - x_0 \rangle \le 0$,

we have $x_n \to x_0$.

Throughout this paper, X will always be an infinite-dimensional real reflexive separable Banach space which has been renormed so that X and its dual X^* are locally uniformly convex.

An operator $J_{\varphi}: X \to X^*$ is said to be a *duality operator* if

$$\langle J_{\varphi}x, x \rangle = \varphi(\|x\|)\|x\|$$
 and $\|J_{\varphi}x\| = \varphi(\|x\|)$ for $x \in X$,

where $\varphi: [0,\infty) \to [0,\infty)$ is continuous, strictly increasing, $\varphi(0) = 0$ and $\varphi(t) \to \infty$ as $t \to \infty$. When φ is the identity map $I, J := J_I$ is called a *normalized duality operator*.

It is described in [21] that J_{φ} is continuous, bounded, surjective, strictly monotone, maximal monotone, and that it satisfies the condition (S_+) on X.

The following properties as regards maximal monotone operators will often be used, taken from [19, Lemma 1.3], [13, Lemma 3.1], [22, Lemma 1], and [18, Lemma D] in this order.

Lemma 1.1 Let $T: D(T) \subset X \to 2^{X^*}$ be a maximal monotone operator. Then the following statements hold:

- (a) For each $t \in (0, \infty)$, the operator $T_t \equiv (T^{-1} + tJ^{-1})^{-1} : X \to X^*$ is bounded, demicontinuous, and maximal monotone.
- (b) If, in addition, $0 \in D(T)$ and $0 \in T(0)$, then the operator $(0, \infty) \times X \to X^*$, $(t,x) \mapsto T_t x$ is continuous on $(0,\infty) \times X$.

Lemma 1.2 Let $T: D(T) \subset X \to 2^{X^*}$ and $S: D(S) \subset X \to X^*$ be two maximal monotone operators with $0 \in D(T) \cap D(S)$ and $0 \in T(0) \cap S(0)$ such that T+S is maximal monotone. Assume that there is a sequence $\{t_n\}$ in $(0,\infty)$ with $t_n \downarrow 0$ and a sequence $\{x_n\}$ in D(S) such that $x_n \to x_0 \in X$ and $T_{t_n}x_n + w_n^* \to y_0^* \in X^*$, where $w_n^* \in Sx_n$. Then the following hold:

- (a) The inequality $\liminf_{n\to\infty} \langle T_{t_n} x_n + w_n^*, x_n x_0 \rangle \ge 0$ is true.
- (b) $If \lim_{n\to\infty} \langle T_{t_n} x_n + w_n^*, x_n x_0 \rangle = 0$, then $x_0 \in D(T+S)$ and $y_0^* \in (T+S)x_0$.

Lemma 1.3 Let $T:D(T) \subset X \to 2^{X^*}$ be a strongly quasibounded maximal monotone operator such that $0 \in D(T)$ and $0 \in T(0)$. If $\{t_n\}$ is a sequence in $(0, \infty)$ and $\{x_n\}$ is a sequence in X such that

$$||x_n|| \leq S$$
 and $\langle T_{t_n}x_n, x_n \rangle \leq S_1$,

where S, S_1 are positive constants, then the sequence $\{T_{t_n}x_n\}$ is bounded in X^* .

Let *L* be a dense subspace of *X* and let $\mathcal{F}(L)$ denote the class of all finite-dimensional subspaces of *L*. Let $\{F_n\}$ be a sequence in the class $\mathcal{F}(L)$ such that for each $n \in \mathbb{N}$

$$F_n \subset F_{n+1}, \quad \dim F_n = n, \quad \text{and} \quad \overline{\bigcup_{n \in \mathbb{N}}} F_n = X.$$
 (1.1)

Set $L\{F_n\} := \bigcup_{n \in \mathbb{N}} F_n$.

Definition 1.4 Let $C: D(C) \subset X \to X^*$ be a single-valued operator with $L \subset D(C)$. We say that C satisfies the condition $(S_+)_{0,L}$ if for every sequence $\{F_n\}$ in $\mathcal{F}(L)$ satisfying equation (1.1) and for every sequence $\{x_n\}$ in L with

$$x_n \rightharpoonup x_0$$
, $\limsup_{n \to \infty} \langle Cx_n, x_n \rangle \leq 0$, and $\lim_{n \to \infty} \langle Cx_n, y \rangle = 0$

for every $y \in L\{F_n\}$, we have $x_n \to x_0, x_0 \in D(C)$, and $Cx_0 = 0$.

We say that C satisfies the condition $(S_+)_L$ if the operator $C_h : D(C) \to X^*$, defined by $C_h x := Cx - h$, satisfies the condition $(S_+)_{0,L}$ for every $h \in X^*$.

We say that the operator C satisfies the condition $(S_+)_{0,D(C)}$ if it satisfies the condition $(S_+)_{0,L}$ with ' $\{x_n\} \subset L$ ' replaced by ' $\{x_n\} \subset D(C)$ '. We say that C satisfies the condition $(S_+)_{D(C)}$ if the operator C_h satisfies the condition $(S_+)_{0,D(C)}$ for every $h \in X^*$.

It is obvious from Definition 1.4 that if the operator C satisfies the condition $(S_+)_{D(C)}$, then C satisfies the condition $(S_+)_L$. However, the converse is not true in general, as we see in Example 3.2 of [17].

2 The existence of eigenvalues

In this section, we deal with some eigenvalue results for strongly quasibounded maximal monotone operators in reflexive separable Banach spaces, based on a topological degree theory for $(S_+)_L$ -perturbations of maximal monotone operators due to Kartsatos and Quarcoo [18].

We establish the existence of an eigenvalue concerning $(S_+)_{D(C)}$ -perturbations of strongly quasibounded maximal monotone operators.

Theorem 2.1 Let Ω be a bounded open set in X with $0 \in \Omega$ and let L be a dense subspace of X. Suppose that $T:D(T) \subset X \to 2^{X^*}$ is a multi-valued operator and $C:D(C) \subset X \to X^*$ is a single-valued operator with $L \subset D(C)$ such that

- (t1) T is maximal monotone and strongly quasibounded with $0 \in D(T)$ and $0 \in T(0)$,
- (c1) C satisfies the condition $(S_+)_{D(C)}$,
- (c2) for every $F \in \mathcal{F}(L)$ and $v \in L$, the function $c(F,v): F \to \mathbb{R}$, defined by $c(F,v)(x) = \langle Cx,v \rangle$, is continuous on F, and
- (c3) there exists a nondecreasing function $\psi:[0,\infty)\to[0,\infty)$ such that

$$\langle Cx, x \rangle \ge -\psi(\|x\|)$$
 for all $x \in D(C)$.

Let Λ and ε_0 be two given positive numbers.

(a) For a given $\varepsilon > 0$, assume the following property (\mathcal{P}) : There exists a $\lambda \in (0, \Lambda]$ such that the inclusion

$$0 \in Tx + \lambda Cx + \varepsilon Jx$$

has no solution in $D(T+C) \cap \Omega$.

Then there exists a $(\lambda_{\varepsilon}, x_{\varepsilon}) \in (0, \Lambda] \times (D(T + C) \cap \partial \Omega)$ *such that*

$$0 \in Tx_{\varepsilon} + \lambda_{\varepsilon}Cx_{\varepsilon} + \varepsilon Jx_{\varepsilon}.$$

Here, D(T + C) denotes the intersection of D(T) and D(C).

(b) If property (P) is fulfilled for every $\varepsilon \in (0, \varepsilon_0]$, T satisfies the condition (S_q) on $D(T) \cap \partial \Omega$, $0 \notin T(D(T) \cap \partial \Omega)$, and the set $C(D(C) \cap \partial \Omega)$ is bounded, then the inclusion

$$0 \in Tx + \lambda Cx$$

has a solution (λ_0, x_0) in $(0, \Lambda] \times (D(T + C) \cap \partial \Omega)$.

Proof (a) Assume that the conclusion of (a) is not true. Then for every $\lambda \in (0, \Lambda]$, the following boundary condition holds:

$$0 \notin Tx + \lambda Cx + \varepsilon Jx$$
 for all $x \in D(T + C) \cap \partial \Omega$. (2.1)

Considering a multi-valued map *H* given by

$$H(s,x) := Tx + s\Lambda Cx + \varepsilon Jx$$
 for $s \in [0,1]$,

the inclusion $0 \in H(s,x)$ has no solution x in $D(T+C) \cap \partial \Omega$ for all $s \in [0,1]$. Actually, this holds for s=0, in view of the injectivity of the operator $T+\varepsilon J$ with $0 \in (T+\varepsilon J)(D(T)\cap \Omega)$.

Now we consider a single-valued map H_1 given by

$$H_1(t, s, x) := T_t x + s \Lambda C x + \varepsilon J x$$
 for $t \in (0, \infty)$ and $s \in [0, 1]$.

We will first show that there exists a positive number t_0 such that the equation

$$H_1(t, s, x) = 0$$
 (2.2)

has no solution x in $D(C) \cap \partial \Omega$ for all $t \in (0, t_0]$ and all $s \in [0, 1]$. For s = 0, assertion (2.2) is obvious because $(T_t + \varepsilon J)x = 0$ implies x = 0. Assume that assertion (2.2) does not hold for any $s \in (0, 1]$. Then there exist sequences $\{t_n\}$ in $(0, \infty)$, $\{s_n\}$ in (0, 1], and $\{x_n\}$ in $D(C) \cap \partial \Omega$ such that $t_n \downarrow 0$, $s_n \to s_0$, $x_n \to x_0$, $Jx_n \to J^*$, and

$$T_{t_n} x_n + s_n \Lambda C x_n + \varepsilon J x_n = 0, \tag{2.3}$$

where $s_0 \in [0,1]$, $x_0 \in X$, and $j^* \in X^*$. Let S be a positive upper bound for the bounded sequence $\{\|x_n\|\}$. Note that $s_0 \in (0,1]$. Indeed, if $s_0 = 0$, then we have by the monotonicity of T_{t_n} with $T_{t_n}(0) = 0$, equation (2.3), and (c3)

$$\varepsilon \|x_n\|^2 \le \varepsilon \langle Jx_n, x_n \rangle + \langle T_{t_n} x_n, x_n \rangle = -s_n \Lambda \langle Cx_n, x_n \rangle$$

$$\le s_n \Lambda \psi (\|x_n\|) \le s_n \Lambda \psi (S)$$

and so $x_n \to 0 \in \Omega$; but $x_n \in \partial \Omega$, which is a contradiction. Since we have the inequality

$$\langle T_{t_n} x_n, x_n \rangle = -s_n \Lambda \langle C x_n, x_n \rangle - \varepsilon \langle J x_n, x_n \rangle \leq \Lambda \psi(S),$$

Lemma 1.3 implies that the sequence $\{T_{t_n}x_n\}$ is bounded in the reflexive Banach space X^* . Passing to a subsequence, if necessary, we may suppose that $T_{t_n}x_n \rightharpoonup \nu^*$ for some $\nu^* \in X^*$. Set

$$u^* := \frac{1}{s_0 \Lambda} (v^* + \varepsilon j^*).$$

By equation (2.3), we have $Cx_n \rightharpoonup -u^*$ and hence

$$\lim_{n \to \infty} \langle Cx_n + u^*, y \rangle = 0 \quad \text{for every } y \in L\{F_n\}.$$
 (2.4)

Recall that if two operators $A_1:D(A_1)\subset X\to 2^{X^*}$ and $A_2:D(A_2)\subset X\to 2^{X^*}$ are maximal monotone and $D(A_1)\cap \operatorname{int} D(A_2)\neq\emptyset$, then the sum $A_1+A_2:D(A_1)\cap D(A_2)\to 2^{X^*}$ is also maximal monotone; see [5, Theorem 32.I]. Since $T+\varepsilon J$ is thus maximal monotone and $T_{t_n}x_n+\varepsilon Jx_n\rightharpoonup v^*+\varepsilon j^*$, Lemma 1.2(a) says that

$$\liminf_{n\to\infty} \langle T_{t_n} x_n + \varepsilon J x_n, x_n - x_0 \rangle \ge 0. \tag{2.5}$$

From equations (2.3), (2.5), and the equality

$$\langle Cx_n + u^*, x_n \rangle = \left\langle Cx_n + \frac{1}{s_n \Lambda} (T_{t_n} x_n + \varepsilon J x_n), x_n \right\rangle - \left\langle \frac{1}{s_n \Lambda} (T_{t_n} x_n + \varepsilon J x_n), x_n - x_0 \right\rangle$$
$$- \left\langle \frac{1}{s_n \Lambda} (T_{t_n} x_n + \varepsilon J x_n), x_0 \right\rangle + \left\langle u^*, x_n \right\rangle$$

it follows that

$$\limsup_{n \to \infty} \langle Cx_n + u^*, x_n \rangle \leq -\liminf_{n \to \infty} \frac{1}{s_n \Lambda} \langle T_{t_n} x_n + \varepsilon J x_n, x_n - x_0 \rangle$$

$$\leq 0.$$
(2.6)

Since the operator C satisfies the condition $(S_+)_{D(C)}$, we find from equations (2.4) and (2.6) that $x_n \to x_0 \in D(C)$ and $Cx_0 + u^* = 0$. Since $\lim_{n \to \infty} \langle T_{t_n} x_n, x_n - x_0 \rangle = 0$, Lemma 1.2(b) tells us that $x_0 \in D(T)$ and $v^* \in Tx_0$. From $Jx_n \rightharpoonup Jx_0 = j^*$, we get

$$v^* + s_0 \Lambda C x_0 + \varepsilon j^* = 0$$
 or $0 \in T x_0 + s_0 \Lambda C x_0 + \varepsilon J x_0$,

which contradicts our boundary condition equation (2.1). Consequently, we have proven our first assertion: that there exists a number $t_0 > 0$ such that

$$H_1(t,s,x) \neq 0$$
 for any $(t,s) \in (0,t_0] \times [0,1]$ and all $x \in D(C) \cap \partial \Omega$.

In the next step, we want to show that for each fixed $t \in (0, t_0]$, the degree $d(H_1(t, s, \cdot), \Omega, 0)$ is independent of $s \in [0, 1]$, where d denotes the Kartsatos-Skrypnik degree from [12]. Fix $t \in (0, t_0]$. For $s \in [0, 1]$, let $A_s : D(A_s) \subset X \to X^*$ be defined by

$$A_s x := H_1(t, s, x) = T_t x + s \Lambda C x + \varepsilon J x,$$

where $D(A_s) = X$ for s = 0 and $D(A_s) = D(C)$ for $s \in (0,1]$. First of all, for every finitedimensional space $F \subset L\{F_j\}$ and every $v \in L\{F_j\}$, the function $\tilde{a}(F,v) : F \times [0,1] \to \mathbb{R}$, defined by $\tilde{a}(F,v)(x,s) = \langle A_sx,v \rangle$, is continuous on $F \times [0,1]$ because the operators T_t and J are continuous and C satisfies the condition (c2). To show that the family $\{A_s\}$ satisfies the condition $(S_+)_{0,L}^{(s)}$, we assume that $\{s_n\}$ is a sequence in [0,1] and $\{x_n\}$ is a sequence in $L\{F_n\}$ such that $s_n \to s_0$, $x_n \rightharpoonup x_0$, and

$$\limsup_{n \to \infty} \langle A_{s_n} x_n, x_n \rangle \le 0 \quad \text{and} \quad \lim_{n \to \infty} \langle A_{s_n} x_n, y \rangle = 0$$
 (2.7)

for every $y \in L\{F_n\}$, where $s_0 \in [0,1]$ and $x_0 \in X$. By Lemma 1.1(a), the sequence $\{T_tx_n\}$ is bounded in X^* . So we may suppose without loss of generality that $T_tx_n \rightharpoonup \nu^*$ and $Jx_n \rightharpoonup J^*$ for some $\nu^*, J^* \in X^*$. There are two cases to consider. If $s_0 = 0$, then we have

$$\varepsilon \|x_n\|^2 \le \varepsilon \langle Jx_n, x_n \rangle + \langle T_t x_n, x_n \rangle \le \langle A_{s_n} x_n, x_n \rangle + s_n \Lambda \psi(S),$$

which implies along with equation (2.7)

$$\varepsilon \limsup_{n\to\infty} \|x_n\|^2 \leq \lim_{n\to\infty} s_n \Lambda \psi(S) = 0,$$

where *S* is an upper bound for the sequence $\{\|x_n\|\}$. Hence it follows that $x_n \to 0$, $x_0 = 0 \in X = D(A_{s_0})$, and $A_{s_0}x_0 = 0$. Now let $s_0 \in (0,1]$. We may suppose that $s_n > 0$ for all $n \in \mathbb{N}$. Set

 $\tilde{s}_n := 1/(s_n \Lambda)$ and $\tilde{s} := 1/(s_0 \Lambda)$. The relation (2.7) can be expressed in the form

$$\limsup_{n\to\infty} \langle Cx_n + \tilde{s}_n(T_t + \varepsilon J)x_n, x_n \rangle \le 0,$$

$$\lim_{n\to\infty} \langle Cx_n + \tilde{s}_n(T_t + \varepsilon J)x_n, y \rangle = 0 \quad \text{for every } y \in L\{F_n\}.$$
(2.8)

From the second part of equation (2.8), it is obvious that

$$\lim_{n \to \infty} \langle Cx_n + \tilde{s}(\nu^* + \varepsilon j^*), y \rangle = 0 \quad \text{for every } y \in L\{F_n\}.$$
 (2.9)

By the monotonicity of the operator $T_t + \varepsilon J$, we have

$$\liminf_{n\to\infty} \langle (T_t + \varepsilon J)x_n, x_n - x_0 \rangle \ge \liminf_{n\to\infty} \langle (T_t + \varepsilon J)x_0, x_n - x_0 \rangle = 0.$$
 (2.10)

Hence it follows from the first part of equation (2.8) and from equation (2.10) that

$$\limsup_{n \to \infty} \langle Cx_n + \tilde{s}(v^* + \varepsilon j^*), x_n \rangle \le -\liminf_{n \to \infty} \tilde{s}_n \langle (T_t + \varepsilon J)x_n, x_n - x_0 \rangle$$

$$\le 0. \tag{2.11}$$

Since the operator C satisfies the condition $(S_+)_L$, we find from equations (2.9) and (2.11) that

$$x_n \to x_0$$
, $x_0 \in D(C) = D(A_{s_0})$ and $Cx_0 + \tilde{s}(v^* + \varepsilon j^*) = 0$.

By the demicontinuity of the operators T_t and J, we have

$$T_t x_n \rightarrow T_t x_0 = v^*$$
 and $J x_n \rightarrow J x_0 = j^*$

and hence

$$A_{s_0}x_0 = T_tx_0 + s_0\Lambda Cx_0 + \varepsilon Jx_0 = 0.$$

Consequently, the family $\{A_s\}$ satisfies the condition $(S_+)_{0,L}^{(s)}$, as required.

Since $A_s(x) \neq 0$ for all $(s,x) \in [0,1] \times (D(A_s) \cap \partial \Omega)$, we see, in view of Theorem A of [18], that the degree $d(A_s, \Omega, 0)$ is independent of the choice of $s \in [0,1]$. Until now, we have shown that for each fixed $t \in (0,t_0]$, the degree $d(H_1(t,s,\cdot),\Omega,0)$ is constant for all $s \in [0,1]$. Notice that $T + \varepsilon J$ is maximal monotone and strongly quasibounded, $0 \in (T + \varepsilon J)(0)$, and

$$H(s,x) = (T + \varepsilon J)x + s\Lambda Cx \not\ni 0$$
 for all $s \in [0,1]$ and all $x \in D(T + C) \cap \partial \Omega$.

Combining this with our first assertion above, Theorem 2 of [18] says that for each fixed $s \in [0,1]$, the degree $d(T_t + s\Lambda C + \varepsilon J, \Omega, 0)$ is constant for all $t \in (0, t_0]$. If deg denotes the degree introduced in [18], then for every $s \in [0,1]$, we have

$$\deg(T+s\Lambda C+\varepsilon J,\Omega,0)=\mathrm{d}(T_t+s\Lambda C+\varepsilon J,\Omega,0)\quad\text{for }t\in(0,t_0]$$

and hence

$$deg(T + s\Lambda C + \varepsilon J, \Omega, 0) = d(A_s, \Omega, 0) = d(A_0, \Omega, 0)$$
$$= d(T_t + \varepsilon J, \Omega, 0) = 1,$$

where the last equality follows from Theorem 3 in [23]. Thus, for all $s \in (0,1]$, the inclusion

$$0 \in Tx + s\Lambda Cx + \varepsilon Ix$$

has a solution in $D(T + C) \cap \Omega$, which contradicts property (\mathcal{P}) . We conclude that statement (a) is true.

(b) Let $\{\varepsilon_n\}$ be a sequence in $(0, \varepsilon_0]$ such that $\varepsilon_n \to 0$. According to statement (a), there exists a sequence $\{(\lambda_{\varepsilon_n}, x_{\varepsilon_n})\}$ in $(0, \Lambda] \times (D(T + C) \cap \partial \Omega)$ such that

$$u_{\varepsilon_n}^* + \lambda_{\varepsilon_n} C x_{\varepsilon_n} + \varepsilon_n J x_{\varepsilon_n} = 0$$
,

where $u_{\varepsilon_n}^* \in Tx_{\varepsilon_n}$. If we set $\lambda_n := \lambda_{\varepsilon_n}$, $x_n := x_{\varepsilon_n}$, and $u_n^* := u_{\varepsilon_n}^*$, it can be rewritten in the form

$$u_n^* + \lambda_n C x_n + \varepsilon_n J x_n = 0. \tag{2.12}$$

Notice that the sequence $\{u_n^*\}$ is bounded in X^* . This follows from the strong quasiboundedness of the operator T together with the inequality

$$\langle u_n^*, x_n \rangle = -\lambda_n \langle Cx_n, x_n \rangle - \varepsilon_n \langle Jx_n, x_n \rangle \leq \Lambda \psi(S),$$

where *S* is an upper bound for the sequence $\{\|x_n\|\}$. From equation (2.12), $\{\lambda_n Cx_n\}$ is bounded in X^* . Without loss of generality, we may suppose that

$$\lambda_n \to \lambda_0, \qquad x_n \rightharpoonup x_0, \quad \text{and} \quad u_n^* \rightharpoonup u_0^*,$$
 (2.13)

where $\lambda_0 \in [0, \Lambda]$, $x_0 \in X$, and $u_0^* \in X^*$. Note that the limit λ_0 belongs to $(0, \Lambda]$. In fact, if $\lambda_0 = 0$, then the boundedness of the set $C(D(C) \cap \partial \Omega)$ implies that $\lambda_n C x_n \to 0$ and so by equation (2.12) $u_n^* \to 0$. Since the maximal monotone operator T satisfies the condition (S_q) on $D(T) \cap \partial \Omega$, we find from equation (2.13) and Lemma 1.2(b) that $x_n \to x_0 \in \partial \Omega$, $x_0 \in D(T)$, and $0 \in Tx_0$, which contradicts the hypothesis that $0 \notin T(D(T) \cap \partial \Omega)$. As $Cx_n \to (-1/\lambda_0)u_0^*$, we have

$$\lim_{n \to \infty} \left\langle Cx_n + \frac{1}{\lambda_0} u_0^*, y \right\rangle = 0 \quad \text{for every } y \in L\{F_n\}.$$
 (2.14)

From equation (2.12) it follows that

$$\limsup_{n \to \infty} \left\langle Cx_n + \frac{1}{\lambda_0} u_0^*, x_n \right\rangle \le -\frac{1}{\lambda_0} \liminf_{n \to \infty} \left\langle u_n^* + \varepsilon_n J x_n, x_n - x_0 \right\rangle$$

$$\le 0, \tag{2.15}$$

where the last inequality follows from Lemma 1.2(a). Since the operator C satisfies the condition $(S_+)_{D(C)}$, we obtain from equations (2.14) and (2.15) $x_n \to x_0 \in D(C)$ and $\lambda_0 C x_0 + C = 0$

 $u_0^* = 0$. By the maximal monotonicity of the operator T, we have $x_0 \in D(T)$ and $u_0^* \in Tx_0$. We conclude that

$$0 \in Tx_0 + \lambda_0 Cx_0$$
 and $x_0 \in D(T + C) \cap \partial \Omega$.

This completes the proof.

Remark 2.2 (a) In Theorem 2.1, it is inevitable that the set $C(D(C) \cap \partial \Omega)$ is assumed to be bounded because it does not hold in general that if $\lambda_n \to 0$ then $\lambda_n C x_n \to 0$.

(b) When C is quasibounded and satisfies the condition (\tilde{S}_+) , it was studied in [9, Theorem 4] by using Kartsatos-Skrypnik degree theory for (\tilde{S}_+) -perturbations of maximal monotone operators developed in [13]. For the case where C is generalized pseudomonotone in place of the condition (\tilde{S}_+) , we refer to [20, Theorem 2.1].

From Theorem 2.1, we get the following eigenvalue result in the case when the operator C satisfies the condition (S_+) .

Corollary 2.3 Let T, Ω , L, Λ , ε_0 be as in Theorem 2.1. Suppose that $C: X \to X^*$ is a strongly quasibounded demicontinuous operator such that

- (c1') C satisfies the condition (S_+) on X,
- (c2) for every $F \in \mathcal{F}(L)$ and $v \in L$, the function $c(F,v): F \to \mathbb{R}$, defined by $c(F,v)(x) = \langle Cx,v \rangle$, is continuous on F, and
- (c3) there exists a nondecreasing function $\psi:[0,\infty)\to[0,\infty)$ such that

$$\langle Cx, x \rangle \ge -\psi(\|x\|)$$
 for all $x \in X$.

Then the following statements hold:

- (a) If property (\mathcal{P}) is fulfilled for a given $\varepsilon > 0$, then there exists a $(\lambda_{\varepsilon}, x_{\varepsilon}) \in (0, \Lambda] \times (D(T) \cap \partial \Omega)$ such that $0 \in Tx_{\varepsilon} + \lambda_{\varepsilon}Cx_{\varepsilon} + \varepsilon Jx_{\varepsilon}$.
- (b) If property (P) is fulfilled for every $\varepsilon \in (0, \varepsilon_0]$, T satisfies the condition (S_q) on $D(T) \cap \partial \Omega$ and $0 \notin T(D(T) \cap \partial \Omega)$, then the inclusion $0 \in Tx + \lambda Cx$ has a solution in $(0, \Lambda] \times (D(T) \cap \partial \Omega)$.

Proof Statement (a) follows immediately from Theorem 2.1 if we only show that the operator C satisfies the condition $(S_+)_{D(C)}$ with D(C) = X. To do this, let $h \in X^*$ be given and suppose that $\{x_n\}$ is any sequence in X such that

$$x_n \rightharpoonup x_0$$
, $\limsup_{n \to \infty} \langle Cx_n - h, x_n \rangle \le 0$, and $\lim_{n \to \infty} \langle Cx_n - h, y \rangle = 0$ (2.16)

for every $y \in L\{F_n\}$. Then $\{\langle Cx_n, x_n \rangle\}$ is obviously bounded from above. By the strong quasiboundedness of the operator C, the sequence $\{Cx_n\}$ is bounded in X^* . Since $L\{F_n\}$ is dense in the reflexive Banach space X, it follows from the third one of equation (2.16) that $Cx_n \rightharpoonup h$. Hence we obtain from the first and second one of equation (2.16)

$$\limsup_{n \to \infty} \langle Cx_n, x_n - x_0 \rangle
\leq \limsup_{n \to \infty} \langle Cx_n - h, x_n \rangle - \lim_{n \to \infty} \langle Cx_n - h, x_0 \rangle + \lim_{n \to \infty} \langle h, x_n - x_0 \rangle \leq 0.$$

Since C satisfies the condition (S_+) on X and is demicontinuous, we have

$$x_n \to x_0 \in X$$
 and $Cx_0 - h = 0$.

Thus, the operator *C* satisfies the condition $(S_+)_{D(C)}$ with D(C) = X.

(b) Let $\{\varepsilon_n\}$ be a sequence in $(0, \varepsilon_0]$ such that $\varepsilon_n \to 0$. In view of (a), there exists a sequence $\{(\lambda_n, x_n)\}$ in $(0, \Lambda] \times (D(T) \cap \partial \Omega)$ such that

$$u_n^* + \lambda_n C x_n + \varepsilon_n J x_n = 0, \tag{2.17}$$

where $u_n^* \in Tx_n$. Notice that the sequence $\{Cx_n\}$ is bounded in X^* and so is $\{u_n^*\}$. This follows from the strong quasiboundedness of the operator C and the inequality

$$\langle Cx_n, x_n \rangle = -\frac{1}{\lambda_n} \langle u_n^*, x_n \rangle - \frac{\varepsilon_n}{\lambda_n} \langle Jx_n, x_n \rangle \leq 0.$$

We may suppose that $\lambda_n \to \lambda_0$, $x_n \to x_0$, and $u_n^* \to u_0^*$, where $\lambda_0 \in [0, \Lambda]$, $x_0 \in X$, and $u_0^* \in X^*$. Note that λ_0 belongs to $(0, \Lambda]$. Indeed, if $\lambda_0 = 0$, then we have by the boundedness of $\{Cx_n\}$ and equation (2.17) $u_n^* \to 0$ and hence by the condition (S_q) $x_n \to x_0 \in D(T)$ and $0 \in Tx_0$, which contradicts the hypothesis $0 \notin T(D(T) \cap \partial \Omega)$. The rest of the proof proceeds analogously as in the proof of Theorem 2.1.

Remark 2.4 (a) The boundedness assumption on the set $C(D(C) \cap \partial \Omega)$ is unnecessary in Corollary 2.3, provided that the operator C is strongly quasibounded.

(b) An analogous result to Corollary 2.3 can be found in [9, Corollary 1], where the operator *C* is supposed to be bounded.

We close this section by exhibiting a simple example of operators A satisfying the condition $(S_+)_{D(A)}$.

Let G be a bounded open set in \mathbb{R}^N . Let $1 and <math>X = W_0^{1,p}(G)$. Define the two operators $A_1, A_2 : X \to X^*$ by

$$\langle A_1 u, v \rangle = \sum_{i=1}^N \int_G \left| \frac{\partial u}{\partial x_i} \right|^{p-2} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} dx,$$

$$\langle A_2 u, v \rangle = \int_G |u|^{p-2} uv \, dx.$$

Then the operator A_1 is clearly bounded and continuous, and it satisfies the condition (S_+) on X. The operator A_2 is compact; see [24, Theorem 2.2] and [5, Proposition 26.10]. In particular, the sum $A := A_1 + A_2$ satisfies the condition $(S_+)_{D(A)}$ with D(A) = X.

3 Fredholm alternative

In this section, we present a variant of the Fredholm alternative for strongly quasibounded maximal monotone operators, by applying Kartsatos-Quarcoo degree theory as in Section 2.

Given $\gamma > 0$, an operator $A : D(A) \subset X \to X^*$ is said to be *positively homogeneous* of degree γ on a set $M \subset D(A)$ if $A(rx) = r^{\gamma}Ax$ for all $x \in M$ and all r > 0. For example, the

duality operator $J_{\varphi}: X \to X^*$ is positively homogeneous of degree γ on X if $\varphi(t) = t^{\gamma}$ for $t \in [0, \infty)$. In addition, the operators A_1 and A_2 given at the end of Section 2 are positively homogeneous of degree p-1 on $X = W_0^{1,p}(G)$.

Theorem 3.1 Let L be a dense subspace of X and let $\lambda, \gamma \in [1, \infty)$ be given. Suppose that $T: D(T) = L \to X^*$ is an operator and $C: D(C) \subset X \to X^*$ is an operator with $L \subset D(C)$ and C(0) = 0 such that

- (t1) T is maximal monotone and strongly quasibounded with T(0) = 0,
- (t2) $\lambda Tx + Cx + \mu J_{\varphi}x = 0$ implies x = 0 for every $\mu \ge 0$, where $\varphi(t) = t^{\gamma}$,
- (c1) C satisfies the condition $(S_+)_L$,
- (c2) for every $F \in \mathcal{F}(L)$ and $v \in L$, the function $c(F,v): F \to \mathbb{R}$, defined by $c(F,v)(x) = \langle Cx,v \rangle$, is continuous on F, and
- (c3) there exists a nondecreasing function $\psi:[0,\infty)\to[0,\infty)$ such that

$$\langle Cx, x \rangle \ge -\psi(\|x\|)$$
 for all $x \in D(C)$.

If the operators T and C are positively homogeneous of degree γ on L, then the operator $\lambda T + C$ is surjective.

Proof Let p^* be an arbitrary but fixed element of X^* . For each fixed $\varepsilon > 0$, consider a family of operators $A_t : D(A_t) \subset X \to X^*$, $t \in [0,1]$ given by

$$A_t(x) := H(t,x) := t(\lambda Tx + Cx + \varepsilon J_{\omega}x - p^*) + (1-t)\varepsilon J_{\omega}x,$$

where $D(A_t) = X$ for t = 0 and $D(A_t) = L$ for $t \in (0,1]$. The first aim is to prove that the set of all solutions of the equation H(t,x) = 0 is bounded, independent of $t \in [0,1]$. If t = 0, then $H(0,x) = \varepsilon J_{\varphi}x = 0$ implies x = 0. It suffices to show that $\{(t,x) \in (0,1] \times L : H(t,x) = 0\}$ is bounded. Assume the contrary; then there exist sequences $\{t_n\}$ in $\{t_n\}$ in $\{t_n\}$ in $\{t_n\}$ and $\{t_n\}$ in $\{t_n\}$ and $\{t_n\}$ in $\{t_n\}$ and

$$t_n (\lambda T x_n + C x_n + \varepsilon J_{\varphi} x_n - p^*) + (1 - t_n) \varepsilon J_{\varphi} x_n = 0,$$

which can be written as

$$\lambda T x_n + C x_n - p^* + \frac{\varepsilon}{t_n} J_{\varphi} x_n = 0. \tag{3.1}$$

We may suppose that $||x_n|| \ge 1$ for all $n \in \mathbb{N}$. Since the operators T, C, and J_{φ} are positively homogeneous of degree γ , it follows from equation (3.1) that

$$\lambda T\left(\frac{x_n}{\|x_n\|}\right) + C\left(\frac{x_n}{\|x_n\|}\right) - \frac{1}{\|x_n\|^{\gamma}} p^* + \frac{\varepsilon}{t_n} J_{\varphi}\left(\frac{x_n}{\|x_n\|}\right) = 0.$$

Setting $u_n := x_n / ||x_n||$ and $q_n := 1/t_n$, we have $||u_n|| = 1$, $q_n > 0$, and

$$\lambda T u_n + C u_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n = 0. \tag{3.2}$$

Then we obtain from equation (3.2) and (c3)

$$\lambda \langle Tu_n, u_n \rangle = -\langle Cu_n, u_n \rangle + \frac{1}{\|x_n\|^{\gamma}} \langle p^*, u_n \rangle - q_n \varepsilon \langle J_{\varphi} u_n, u_n \rangle$$

$$\leq \psi(1) + \|p^*\|.$$

Hence the strong quasiboundedness of T implies that the sequence $\{Tu_n\}$ is bounded in X^* . There are two cases to consider. If $t_0 = 0$, then $q_n \to \infty$, $\langle J_{\varphi}u_n, u_n \rangle = 1$, and the monotonicity of T with T(0) = 0 implies

$$0 \le \lambda \langle Tu_n, u_n \rangle \le \psi(1) + ||p^*|| - q_n \varepsilon \to -\infty,$$

which is a contradiction. Now let $t_0 > 0$ and set $q_0 := 1/t_0$. Without loss of generality, we may suppose that

$$u_n \rightharpoonup u_0$$
, $Tu_n \rightharpoonup v^*$, and $J_{\varphi}u_n \rightharpoonup j^*$,

where $u_0 \in X$, $v^* \in X^*$, and $j^* \in X^*$. By equation (3.2), we have $Cu_n \rightharpoonup -\lambda v^* - q_0 \varepsilon j^*$ and hence

$$\lim_{n \to \infty} \langle Cu_n + \lambda v^* + q_0 \varepsilon j^*, y \rangle = 0 \quad \text{for every } y \in L\{F_n\}.$$
 (3.3)

Since the operator $\lambda T + q_0 \varepsilon J_{\varphi}$ is maximal monotone, we have

$$\liminf_{n \to \infty} \langle \lambda T u_n + q_n \varepsilon J_{\varphi} u_n, u_n - u_0 \rangle \ge 0. \tag{3.4}$$

In fact, if equation (3.4) is false, then there is a subsequence of $\{u_n\}$, denoted again by $\{u_n\}$, such that

$$\lim_{n\to\infty}\langle \lambda T u_n + q_n \varepsilon J_{\varphi} u_n, u_n - u_0 \rangle < 0.$$

Hence it is clear that

$$\limsup_{n \to \infty} \langle \lambda T u_n + q_n \varepsilon J_{\varphi} u_n, u_n \rangle < \langle \lambda v^* + q_0 \varepsilon j^*, u_0 \rangle. \tag{3.5}$$

For every $u \in D(T)$, we have, by the monotonicity of the operator $\lambda T + q_n \varepsilon J_{\varphi}$,

$$\begin{aligned} & \liminf_{n \to \infty} \langle \lambda T u_n + q_n \varepsilon J_{\varphi} u_n, u_n \rangle \\ & \ge \liminf_{n \to \infty} \left[\langle \lambda T u_n + q_n \varepsilon J_{\varphi} u_n, u \rangle + \langle \lambda T u + q_n \varepsilon J_{\varphi} u, u_n - u \rangle \right] \\ & = \langle \lambda v^* + q_0 \varepsilon j^*, u \rangle + \langle \lambda T u + q_0 \varepsilon J_{\varphi} u, u_0 - u \rangle, \end{aligned}$$

which implies along with equation (3.5)

$$\langle \lambda \nu^* + q_0 \varepsilon j^* - (\lambda T u + q_0 \varepsilon J_{\omega} u), u_0 - u \rangle > 0. \tag{3.6}$$

By the maximal monotonicity of $\lambda T + q_0 \varepsilon J_{\varphi}$, we have $u_0 \in D(T)$ and $(\lambda T + q_0 \varepsilon J_{\varphi})u_0 = \lambda \nu^* + q_0 \varepsilon j^*$. Letting $u = u_0 \in D(T)$ in equation (3.6), we get a contradiction. Thus, equation (3.4) is true.

Furthermore, equation (3.4) implies, because of $(1/\|x_n\|^{\gamma})p^* \to 0$, that

$$\liminf_{n\to\infty} \left\langle \lambda T u_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n, u_n - u_0 \right\rangle \ge 0.$$
(3.7)

From equations (3.2), (3.7), and the equality

$$\begin{split} \left\langle Cu_n + \lambda v^* + q_0 \varepsilon j^*, u_n \right\rangle \\ &= \left\langle Cu_n + \lambda Tu_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n, u_n \right\rangle \\ &- \left\langle \lambda Tu_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n, u_n - u_0 \right\rangle \\ &- \left\langle \lambda Tu_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n, u_0 \right\rangle + \left\langle \lambda v^* + q_0 \varepsilon j^*, u_n \right\rangle \end{split}$$

it follows that

$$\limsup_{n \to \infty} \langle Cu_n + \lambda v^* + q_0 \varepsilon j^*, u_n \rangle$$

$$\leq -\liminf_{n \to \infty} \langle \lambda Tu_n - \frac{1}{\|x_n\|^{\gamma}} p^* + q_n \varepsilon J_{\varphi} u_n, u_n - u_0 \rangle$$

$$\leq 0. \tag{3.8}$$

Since the operator C satisfies the condition $(S_+)_L$, we obtain from equations (3.3) and (3.8)

$$u_n \to u_0$$
, $u_0 \in D(C)$, and $Cu_0 + \lambda v^* + q_0 \varepsilon j^* = 0$.

Since T is maximal monotone and J_{φ} is continuous, Lemma 1.2(b) implies that

$$u_0 \in D(T)$$
, $Tu_0 = v^*$, and $J_{\omega}u_0 = j^*$.

Therefore, we obtain

$$\lambda T u_0 + C u_0 + q_0 \varepsilon J_{\varphi} u_0 = 0$$
 and $||u_0|| = 1$,

which contradicts hypothesis (t2) with $\mu = q_0 \varepsilon$. Thus, we have shown that $\{(t, x) \in [0, 1] \times L : H(t, x) = 0\}$ is bounded.

So we can choose an open ball $B_r(0)$ in X of radius r > 0 centered at the origin 0 so that

$$\{x \in L : H(t,x) = 0 \text{ for some } t \in [0,1]\} \subset B_r(0).$$

This means that $H(t,x) = A_t(x) \neq 0$ for all $(t,x) \in [0,1] \times (D(A_t) \cap \partial B_r(0))$. Note that the operator $\tilde{T}_{\varepsilon} := \lambda T + \varepsilon J_{\varphi}$ is maximal monotone, strongly quasibounded, $\tilde{T}_{\varepsilon}(0) = 0$, and the operator $\tilde{C} := C - p^*$ satisfies the condition $(S_+)_L$ and other conditions with $\tilde{c}(F,\nu)(x) := \langle \tilde{C}x,\nu \rangle$

for $x \in F$ and $\langle \tilde{C}x, x \rangle \ge -\tilde{\psi}(\|x\|)$ for $x \in D(\tilde{C})$, where $\tilde{\psi}(t) := (1 + \|p^*\|) \max\{\psi(t), t\}$. Moreover, we know from Section 1 that the operator εJ_{φ} is continuous, bounded and strictly monotone, and that it satisfies the condition (S_+) , and $\langle \varepsilon J_{\varphi}x, x \rangle = \varepsilon \|x\|^{\gamma+1}$ for $x \in X$.

Using the homotopy invariance property of the degree stated in [18, Theorem 3], we have

$$\deg(\lambda T + C + \varepsilon I_{\omega} - p^*, B_r(0), 0) = \deg(\varepsilon I_{\omega}, B_r(0), 0) = 1. \tag{3.9}$$

Applying equation (3.9) with $\varepsilon = 1/n$, there exists a sequence $\{x_n\}$ in L such that

$$\lambda T x_n + C x_n + \frac{1}{n} J_{\varphi} x_n = p^*. \tag{3.10}$$

Next, we show that the sequence $\{x_n\}$ is bounded in X. Indeed, assume on the contrary that there is a subsequence of $\{x_n\}$, denoted by $\{x_n\}$, such that $\|x_n\| \to \infty$. Dividing both sides of equation (3.10) by $\|x_n\|^{\gamma}$ and setting $u_n := x_n/\|x_n\|$ and $w_n^* := \lambda T u_n + C u_n$, we get

$$\lambda T u_n + C u_n + \frac{1}{n} J_{\varphi} u_n = \frac{1}{\|x_n\|^{\gamma}} p^*$$

and so $w_n^* \to 0$. Since $\lambda \langle Tu_n, u_n \rangle = -\langle Cu_n, u_n \rangle + \langle w_n^*, u_n \rangle \leq \psi(1) + ||w_n^*||$ for all $n \in \mathbb{N}$, it follows from (t1) that the sequence $\{Tu_n\}$ is bounded in X^* . We may suppose that $u_n \to u_0$ and $Tu_n \to v^*$ for some $u_0 \in X$ and some $v^* \in X^*$. As in the proof of equations (3.3) and (3.8) above, we can show that

$$\limsup_{n\to\infty} \langle Cu_n + \lambda v^*, u_n \rangle \le 0 \quad \text{and} \quad \lim_{n\to\infty} \langle Cu_n + \lambda v^*, y \rangle = 0$$

for every $y \in L\{F_n\}$. Since the operator C satisfies the condition $(S_+)_L$, we obtain

$$u_n \to u_0$$
, $u_0 \in D(C)$, and $Cu_0 + \lambda v^* = 0$.

By Lemma 1.2(b), we have $u_0 \in D(T)$ and $Tu_0 = v^*$ and hence

$$\lambda T u_0 + C u_0 = 0$$
 and $||u_0|| = 1$,

which contradicts hypothesis (t2) with $\mu = 0$. Therefore, the sequence $\{x_n\}$ is bounded in X.

Combining this with equation (3.10), we know from (c3) and (t1) that the sequence $\{Tx_n\}$ is also bounded in X^* . Thus we may suppose that $x_n \rightharpoonup x_0$ and $Tx_n \rightharpoonup \nu_0^*$ for some $x_0 \in X$ and some $\nu_0^* \in X^*$. From $Cx_n \rightharpoonup -\lambda \nu_0^* + p^*$ and the maximal monotonicity of the operator T, we get as before

$$\limsup_{n\to\infty} \langle Cx_n + \lambda v_0^* - p^*, x_n \rangle \le 0 \quad \text{and} \quad \lim_{n\to\infty} \langle Cx_n + \lambda v_0^* - p^*, y \rangle = 0$$

for every $y \in L\{F_n\}$. Since the operator C satisfies the condition $(S_+)_L$ and T is maximal monotone, we conclude that

$$x_0 \in D(\lambda T + C)$$
 and $\lambda Tx_0 + Cx_0 = p^*$.

As $p^* \in X^*$ was arbitrary, this says that the operator $\lambda T + C$ is surjective. This completes the proof.

Remark 3.2 An analogous result to Theorem 3.1 was investigated in [20, Theorem 4.1], where the method was to use Kartsatos-Skrypnik degree theory for quasibounded densely defined (\tilde{S}_+) -perturbations of maximal monotone operators, developed in [13]; see also [9, Theorem 5].

As a particular case of Theorem 3.1, we have another surjectivity result.

Corollary 3.3 *Let L, T, and C be the same as in Theorem* 3.1, *except that hypothesis* (t2) *is replaced by*

(t2')
$$\langle \lambda Tx + Cx, x \rangle \ge 0$$
 for all $x \in L$.

If λ is not an eigenvalue for the pair (T, C), that is, $\lambda Tx + Cx = 0$ implies x = 0, then the operator $\lambda T + C$ is surjective.

Proof Noting that

$$\langle \lambda Tx + Cx + \mu J_{\omega} x, x \rangle \ge \mu \langle J_{\omega} x, x \rangle = \mu \|x\|^{\gamma+1} \ge 0$$

for every $x \in L$ and $\mu > 0$, it is clear that hypothesis (t2) in Theorem 3.1 is satisfied. Apply Theorem 3.1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KI conceived of the study and drafted the manuscript. BI participated in coordination. All authors approved the final manuscript.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2012-0008345).

Received: 11 October 2013 Accepted: 16 December 2013 Published: 14 Jan 2014

References

- 1. Krasnosel'skii, MA: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon, New York (1964)
- 2. Zeidler, E: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New York (1985)
- 3. Minty, G: Monotone operators in Hilbert spaces. Duke Math. J. 29, 341-346 (1962)
- 4. Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), pp. 1-308. Am. Math. Soc., Providence (1976)
- 5. Zeidler, E: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)
- Guan, Z, Kartsatos, AG: On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces. Nonlinear Anal. 27, 125-141 (1996)
- Kartsatos, AG: New results in the perturbation theory of maximal monotone and m-accretive operators in Banach spaces. Trans. Am. Math. Soc. 348, 1663-1707 (1996)
- Kartsatos, AG, Skrypnik, IV: Normalized eigenvectors for nonlinear abstract and elliptic operators. J. Differ. Equ. 155, 443-475 (1999)
- 9. Kartsatos, AG, Skrypnik, IV: On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces. Trans. Am. Math. Soc. **358**, 3851-3881 (2006)
- 10. Li, H-X, Huang, F-L: On the nonlinear eigenvalue problem for perturbations of monotone and accretive operators in Banach spaces. Sichuan Daxue Xuebao (J. Sichuan Univ.) 37, 303-309 (2000)
- 11. Browder, FE: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. **9**, 1-39 (1983)

- 12. Kartsatos, AG, Skrypnik, IV: Topological degree theories for densely defined mappings involving operators of type (S₁). Adv. Differ. Equ. **4**, 413-456 (1999)
- 13. Kartsatos, AG, Skrypnik, IV: A new topological degree theory for densely defined quasibounded (\$\tilde{S}_1\$)-perturbations of multivalued maximal monotone operators in reflexive Banach spaces. Abstr. Appl. Anal. **2005**, 121-158 (2005)
- 14. Skrypnik, IV: Nonlinear Higher Order Elliptic Equations. Naukova Dumka, Kiev (1973) (Russian)
- 15. Skrypnik, IV: Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Transl., Ser. II., vol. 139. Am. Math. Soc., Providence (1994)
- 16. Browder, FE, Hess, P: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251-294 (1972)
- 17. Berkovits, J. On the degree theory for densely defined mappings of class $(S_+)_L$. Abstr. Appl. Anal. 4, 141-152 (1999)
- 18. Kartsatos, AG, Quarcoo, J: A new topological degree theory for densely defined (S₊)_L-perturbations of multivalued maximal monotone operators in reflexive separable Banach spaces. Nonlinear Anal. **69**, 2339-2354 (2008)
- 19. Brézis, H, Crandall, MG, Pazy, A: Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure Appl. Math. 23, 123-144 (1970)
- 20. Kim, I-S, Bae, J-H: Eigenvalue results for pseudomonotone perturbations of maximal monotone operators. Cent. Eur. J. Math. 11, 851-864 (2013)
- Petryshyn, WV: Approximation-Solvability of Nonlinear Functional and Differential Equations. Dekker, New York (1993)
- Adhikari, DR, Kartsatos, AG: Topological degree theories and nonlinear operator equations in Banach spaces. Nonlinear Anal. 69, 1235-1255 (2008)
- Browder, FE: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773 (1983)
- 24. Schmitt, K, Sim, I: Bifurcation problems associated with generalized Laplacians. Adv. Differ. Equ. 9, 797-828 (2004)

10.1186/1029-242X-2014-21

Cite this article as: Kim and Bae: Eigenvalues of quasibounded maximal monotone operators. *Journal of Inequalities and Applications* 2014, 2014:21

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com