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Abstract
Let X be a real reflexive separable Banach space with dual space X∗ and let L be a
dense subspace of X . We study a nonlinear eigenvalue problem of the type

0 ∈ Tx + λCx,

where T : D(T ) ⊂ X → 2X
∗
is a strongly quasibounded maximal monotone operator

and C : D(C)⊂ X → X∗ satisfies the condition (S+)D(C) with L ⊂ D(C). The method of
approach is to use a topological degree theory for (S+)L-perturbations of strongly
quasibounded maximal monotone operators, recently developed by Kartsatos and
Quarcoo. Moreover, applying degree theory, a variant of the Fredholm alternative on
the surjectivity of the operator λT + C is discussed, where we assume that λ is not an
eigenvalue for the pair (T ,C), T and C are positively homogeneous, and C satisfies the
condition (S+)L.

1 Introduction and preliminaries
A systematic theory of compact operators emerged from the theory of integral equations
of the form

Tx + λx = y, where Tx(t) =
∫ b

a
k
(
t, s,x(s)

)
ds.

Here, λ ∈ R is a parameter, y and k are given functions, and x is the unknown function.
Such equations play a role in the theory of differential equations. The study goes back to
Krasnosel’skii []. Moreover, the eigenvalue problem of the form

Tx + λCx = 

could be solved with the Galerkin method, where C is continuous, bounded, and of type
(S); see, e.g., [].
From now on, we concentrate on the class of maximal monotone operators, as a gener-

alization of linear self-adjoint operators. The theory of nonlinear maximal monotone op-
erators started with a pioneer work of Minty [] and has been extensively developed, with
applications to evolution equations and to variational inequalities of elliptic and parabolic
type; see [, ]. The eigenvalue problem for various types of nonlinear operators was in-
vestigated in [–]. As a key tool, topological degree theory was made frequent use of;
for instance, the Leray-Schauder degree and the Kartsatos-Skrypnik degree; see [–].
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Let X be a real reflexive Banach space with dual space X∗. We consider a nonlinear
eigenvalue problem of the form

 ∈ Tx + λCx, (E)

where T :D(T) ⊂ X → X∗ is a maximal monotone multi-valued operator and C :D(C) ⊂
X → X∗ is a single-valued operator. In the case where the operatorC or the resolvents ofT
are compact, it was studied in [, , ] by using the Leray-Schauder degree for compact
operators. When the operator C is densely defined and quasibounded and satisfies the
condition (S̃+), Kartsatos and Skrypnik [] solved the above problem (E) via the topological
degree for these operators given in [].
We are now focused on the quasiboundedness of the operator T instead of that of the

operator C. Actually, a strongly quasibounded operator due to Browder and Hess []
may not necessarily be bounded. One more thing to be considered is the condition (S+)L,
where L is a dense subspace of X with L ⊂ D(C). In fact, the condition (S+),L was first
introduced in [] and the structure of the class (S+)L or (S+)D(C) was discussed in [], as
a natural extension of the class (S+); see [, ].
In the present paper, the first goal is to study the above eigenvalue problem (E) for

strongly quasibounded maximal monotone operators, provided that the operator C satis-
fies the condition (S+)D(C). In addition, we assume the following property (P): For ε > ,
there exists a λ >  such that the inclusion

 ∈ Tx + λCx + εJx

has no solution in D(T) ∩ D(C) ∩ �, where � is a bounded open set in X and J is a nor-
malized duality operator. This property is closely related to the use of a topological tool
for finding the eigensolution on the boundary of �; see [, ]. To solve the above prob-
lem (E), we thus use the degree theory for densely defined (S+)L-perturbations of maximal
monotone operators introduced by Kartsatos and Quarcoo in []. Roughly speaking, the
degree function is based on the Kartsatos-Skrypnik degree [] of the densely defined op-
erators Tt + C, which is constant for all small values of t, where Tt is the approximant
introduced by Brézis et al. []. Such an approach was first used by Browder in []. The
second goal is to establish a variant of a Fredholm alternative result on the surjectivity for
the operator λT +C, where λ ≥  is not an eigenvalue for the pair (T ,C) and the operator
C satisfies the condition (S+)L; see [, ].
This paper is organized as follows: In Section , we give some eigenvalue results for

strongly quasibounded maximal monotone operators by applying the Kartsatos-Quarcoo
degree theory. Section  contains a version of the Fredholm alternative for positively ho-
mogeneous operators, with a regularization method by means of a duality operator Jϕ .
Let X be a real Banach space, X∗ its dual space with the usual dual pairing 〈·, ·〉, and

� a nonempty subset of X. Let �, int�, and ∂� denote the closure, the interior, and the
boundary of � in X, respectively. The symbol → (⇀) stands for strong (weak) conver-
gence. An operator A :� → X∗ is said to be bounded if Amaps bounded subsets of � into
bounded subsets of X∗. A is said to be demicontinuous if, for every x ∈ � and for every
sequence {xn} in � with xn → x, we have Axn ⇀ Ax.
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An operator T :D(T)⊂ X → X∗ is said to bemonotone if

〈
u∗ – v∗,x – y

〉 ≥  for every x, y ∈D(T) and every u∗ ∈ Tx, v∗ ∈ Ty,

where D(T) = {x ∈ X : Tx 
= ∅} denotes the effective domain of T .
The operator T is said to be maximal monotone if it is monotone and it follows from

(x,u∗) ∈ X ×X∗ and

〈
u∗ – v∗,x – y

〉 ≥  for every y ∈D(T) and every v∗ ∈ Ty

that x ∈D(T) and u∗ ∈ Tx.
An operator T : D(T) ⊂ X → X∗ is said to be strongly quasibounded if for every S > 

there exists a constant K (S) >  such that for all x ∈D(T) with

‖x‖ ≤ S and
〈
u∗,x

〉 ≤ S,

where u∗ ∈ Tx, we have ‖u∗‖ ≤ K(S).
We say that T : D(T) ⊂ X → X∗ satisfies the condition (Sq) on a set M ⊂ D(T) if for

every sequence {xn} in M with xn ⇀ x and every sequence {u∗
n} with u∗

n → u∗ where
u∗
n ∈ Txn, we have xn → x.
We say that T : D(T) ⊂ X → X∗ satisfies the condition (S+) on a set M ⊂ D(T) if for

every sequence {xn} inM with

xn ⇀ x and lim sup
n→∞

〈Txn,xn – x〉 ≤ ,

we have xn → x.
Throughout this paper, X will always be an infinite-dimensional real reflexive separable

Banach space which has been renormed so that X and its dual X∗ are locally uniformly
convex.
An operator Jϕ : X → X∗ is said to be a duality operator if

〈Jϕx,x〉 = ϕ
(‖x‖)‖x‖ and ‖Jϕx‖ = ϕ

(‖x‖) for x ∈ X,

where ϕ : [,∞) → [,∞) is continuous, strictly increasing, ϕ() =  and ϕ(t) → ∞ as
t → ∞. When ϕ is the identity map I , J := JI is called a normalized duality operator.
It is described in [] that Jϕ is continuous, bounded, surjective, strictly monotone, max-

imal monotone, and that it satisfies the condition (S+) on X.
The following properties as regards maximal monotone operators will often be used,

taken from [, Lemma .], [, Lemma .], [, Lemma ], and [, Lemma D] in this
order.

Lemma . Let T :D(T)⊂ X → X∗ be a maximal monotone operator. Then the following
statements hold:
(a) For each t ∈ (,∞), the operator Tt ≡ (T– + tJ–)– : X → X∗ is bounded,

demicontinuous, and maximal monotone.
(b) If, in addition,  ∈ D(T) and  ∈ T(), then the operator (,∞)×X → X∗,

(t,x) �→ Ttx is continuous on (,∞)×X .
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Lemma . Let T : D(T) ⊂ X → X∗ and S : D(S) ⊂ X → X∗ be two maximal monotone
operators with  ∈ D(T)∩D(S) and  ∈ T()∩ S() such that T + S is maximal monotone.
Assume that there is a sequence {tn} in (,∞) with tn ↓  and a sequence {xn} in D(S) such
that xn ⇀ x ∈ X and Ttnxn +w∗

n ⇀ y∗
 ∈ X∗, where w∗

n ∈ Sxn. Then the following hold:
(a) The inequality lim infn→∞〈Ttnxn +w∗

n,xn – x〉 ≥  is true.
(b) If limn→∞〈Ttnxn +w∗

n,xn – x〉 = , then x ∈D(T + S) and y∗
 ∈ (T + S)x.

Lemma . Let T : D(T) ⊂ X → X∗ be a strongly quasibounded maximal monotone op-
erator such that  ∈D(T) and  ∈ T(). If {tn} is a sequence in (,∞) and {xn} is a sequence
in X such that

‖xn‖ ≤ S and 〈Ttnxn,xn〉 ≤ S,

where S, S are positive constants, then the sequence {Ttnxn} is bounded in X∗.

Let L be a dense subspace of X and let F (L) denote the class of all finite-dimensional
subspaces of L. Let {Fn} be a sequence in the class F (L) such that for each n ∈ N

Fn ⊂ Fn+, dimFn = n, and
⋃
n∈N

Fn = X. (.)

Set L{Fn} :=⋃
n∈N Fn.

Definition . Let C :D(C) ⊂ X → X∗ be a single-valued operator with L ⊂D(C).We say
that C satisfies the condition (S+),L if for every sequence {Fn} in F (L) satisfying equation
(.) and for every sequence {xn} in L with

xn ⇀ x, lim sup
n→∞

〈Cxn,xn〉 ≤ , and lim
n→∞〈Cxn, y〉 = 

for every y ∈ L{Fn}, we have xn → x,x ∈D(C), and Cx = .
We say that C satisfies the condition (S+)L if the operator Ch : D(C) → X∗, defined by

Chx := Cx – h, satisfies the condition (S+),L for every h ∈ X∗.
We say that the operator C satisfies the condition (S+),D(C) if it satisfies the condition

(S+),L with ‘{xn} ⊂ L’ replaced by ‘{xn} ⊂ D(C)’. We say that C satisfies the condition
(S+)D(C) if the operator Ch satisfies the condition (S+),D(C) for every h ∈ X∗.

It is obvious from Definition . that if the operator C satisfies the condition (S+)D(C),
then C satisfies the condition (S+)L. However, the converse is not true in general, as we see
in Example . of [].

2 The existence of eigenvalues
In this section, we deal with some eigenvalue results for strongly quasibounded maxi-
mal monotone operators in reflexive separable Banach spaces, based on a topological de-
gree theory for (S+)L-perturbations of maximal monotone operators due to Kartsatos and
Quarcoo [].
We establish the existence of an eigenvalue concerning (S+)D(C)-perturbations of strongly

quasibounded maximal monotone operators.
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Theorem . Let � be a bounded open set in X with  ∈ � and let L be a dense subspace
of X. Suppose that T :D(T)⊂ X → X∗ is a multi-valued operator and C :D(C) ⊂ X → X∗

is a single-valued operator with L ⊂D(C) such that
(t) T is maximal monotone and strongly quasibounded with  ∈D(T) and  ∈ T(),
(c) C satisfies the condition (S+)D(C),
(c) for every F ∈F (L) and v ∈ L, the function c(F , v) : F →R, defined by

c(F , v)(x) = 〈Cx, v〉, is continuous on F , and
(c) there exists a nondecreasing function ψ : [,∞) → [,∞) such that

〈Cx,x〉 ≥ –ψ
(‖x‖) for all x ∈D(C).

Let 
 and ε be two given positive numbers.
(a) For a given ε > , assume the following property (P):

There exists a λ ∈ (,
] such that the inclusion

 ∈ Tx + λCx + εJx

has no solution in D(T +C)∩ �.
Then there exists a (λε ,xε) ∈ (,
]× (D(T +C)∩ ∂�) such that

 ∈ Txε + λεCxε + εJxε .

Here, D(T +C) denotes the intersection of D(T) and D(C).
(b) If property (P) is fulfilled for every ε ∈ (, ε], T satisfies the condition (Sq) on

D(T)∩ ∂�,  /∈ T(D(T)∩ ∂�), and the set C(D(C)∩ ∂�) is bounded, then the
inclusion

 ∈ Tx + λCx

has a solution (λ,x) in (,
]× (D(T +C)∩ ∂�).

Proof (a) Assume that the conclusion of (a) is not true. Then for every λ ∈ (,
], the
following boundary condition holds:

 /∈ Tx + λCx + εJx for all x ∈D(T +C)∩ ∂�. (.)

Considering a multi-valued map H given by

H(s,x) := Tx + s
Cx + εJx for s ∈ [, ],

the inclusion  ∈H(s,x) has no solution x in D(T +C)∩ ∂� for all s ∈ [, ]. Actually, this
holds for s = , in view of the injectivity of the operator T + εJ with  ∈ (T + εJ)(D(T)∩�).
Now we consider a single-valued map H given by

H(t, s,x) := Ttx + s
Cx + εJx for t ∈ (,∞) and s ∈ [, ].

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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We will first show that there exists a positive number t such that the equation

H(t, s,x) =  (.)

has no solution x inD(C)∩ ∂� for all t ∈ (, t] and all s ∈ [, ]. For s = , assertion (.) is
obvious because (Tt + εJ)x =  implies x = . Assume that assertion (.) does not hold for
any s ∈ (, ]. Then there exist sequences {tn} in (,∞), {sn} in (, ], and {xn} inD(C)∩ ∂�

such that tn ↓ , sn → s, xn ⇀ x, Jxn ⇀ j∗, and

Ttnxn + sn
Cxn + εJxn = , (.)

where s ∈ [, ], x ∈ X, and j∗ ∈ X∗. Let S be a positive upper bound for the bounded
sequence {‖xn‖}. Note that s ∈ (, ]. Indeed, if s = , then we have by the monotonicity
of Ttn with Ttn () = , equation (.), and (c)

ε‖xn‖ ≤ ε〈Jxn,xn〉 + 〈Ttnxn,xn〉 = –sn
〈Cxn,xn〉
≤ sn
ψ

(‖xn‖) ≤ sn
ψ(S)

and so xn →  ∈ �; but xn ∈ ∂�, which is a contradiction. Since we have the inequality

〈Ttnxn,xn〉 = –sn
〈Cxn,xn〉 – ε〈Jxn,xn〉 ≤ 
ψ(S),

Lemma . implies that the sequence {Ttnxn} is bounded in the reflexive Banach space X∗.
Passing to a subsequence, if necessary, we may suppose that Ttnxn ⇀ v∗ for some v∗ ∈ X∗.
Set

u∗ :=


s

(
v∗ + εj∗

)
.

By equation (.), we have Cxn ⇀ –u∗ and hence

lim
n→∞

〈
Cxn + u∗, y

〉
=  for every y ∈ L{Fn}. (.)

Recall that if two operators A :D(A) ⊂ X → X∗ and A :D(A) ⊂ X → X∗ are maximal
monotone and D(A) ∩ intD(A) 
= ∅, then the sum A + A : D(A) ∩D(A) → X∗ is also
maximal monotone; see [, Theorem .I]. Since T + εJ is thus maximal monotone and
Ttnxn + εJxn ⇀ v∗ + εj∗, Lemma .(a) says that

lim inf
n→∞ 〈Ttnxn + εJxn,xn – x〉 ≥ . (.)

From equations (.), (.), and the equality

〈
Cxn + u∗,xn

〉
=

〈
Cxn +


sn


(Ttnxn + εJxn),xn
〉
–

〈


sn

(Ttnxn + εJxn),xn – x

〉

–
〈


sn


(Ttnxn + εJxn),x
〉
+

〈
u∗,xn

〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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it follows that

lim sup
n→∞

〈
Cxn + u∗,xn

〉 ≤ – lim inf
n→∞


sn


〈Ttnxn + εJxn,xn – x〉

≤ . (.)

Since the operatorC satisfies the condition (S+)D(C), we find from equations (.) and (.)
that xn → x ∈D(C) andCx +u∗ = . Since limn→∞〈Ttnxn,xn–x〉 = , Lemma .(b) tells
us that x ∈D(T) and v∗ ∈ Tx. From Jxn ⇀ Jx = j∗, we get

v∗ + s
Cx + εj∗ =  or  ∈ Tx + s
Cx + εJx,

which contradicts our boundary condition equation (.). Consequently, we have proven
our first assertion: that there exists a number t >  such that

H(t, s,x) 
=  for any (t, s) ∈ (, t]× [, ] and all x ∈ D(C)∩ ∂�.

In the next step, we want to show that for each fixed t ∈ (, t], the degree d(H(t, s, ·),
�, ) is independent of s ∈ [, ], where d denotes theKartsatos-Skrypnik degree from [].
Fix t ∈ (, t]. For s ∈ [, ], let As :D(As) ⊂ X → X∗ be defined by

Asx :=H(t, s,x) = Ttx + s
Cx + εJx,

where D(As) = X for s =  and D(As) = D(C) for s ∈ (, ]. First of all, for every finite-
dimensional space F ⊂ L{Fj} and every v ∈ L{Fj}, the function ã(F , v) : F × [, ] → R,
defined by ã(F , v)(x, s) = 〈Asx, v〉, is continuous on F × [, ] because the operators Tt and
J are continuous and C satisfies the condition (c). To show that the family {As} satisfies
the condition (S+)(s),L, we assume that {sn} is a sequence in [, ] and {xn} is a sequence in
L{Fn} such that sn → s, xn ⇀ x, and

lim sup
n→∞

〈Asnxn,xn〉 ≤  and lim
n→∞〈Asnxn, y〉 =  (.)

for every y ∈ L{Fn}, where s ∈ [, ] and x ∈ X. By Lemma .(a), the sequence {Ttxn} is
bounded in X∗. So we may suppose without loss of generality that Ttxn ⇀ v∗ and Jxn ⇀ j∗

for some v∗, j∗ ∈ X∗. There are two cases to consider. If s = , then we have

ε‖xn‖ ≤ ε〈Jxn,xn〉 + 〈Ttxn,xn〉 ≤ 〈Asnxn,xn〉 + sn
ψ(S),

which implies along with equation (.)

ε lim sup
n→∞

‖xn‖ ≤ lim
n→∞ sn
ψ(S) = ,

where S is an upper bound for the sequence {‖xn‖}. Hence it follows that xn → , x =  ∈
X =D(As ), and Asx = . Now let s ∈ (, ]. Wemay suppose that sn >  for all n ∈N. Set

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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s̃n := /(sn
) and s̃ := /(s
). The relation (.) can be expressed in the form

lim sup
n→∞

〈
Cxn + s̃n(Tt + εJ)xn,xn

〉 ≤ ,

lim
n→∞

〈
Cxn + s̃n(Tt + εJ)xn, y

〉
=  for every y ∈ L{Fn}.

(.)

From the second part of equation (.), it is obvious that

lim
n→∞

〈
Cxn + s̃

(
v∗ + εj∗

)
, y

〉
=  for every y ∈ L{Fn}. (.)

By the monotonicity of the operator Tt + εJ , we have

lim inf
n→∞

〈
(Tt + εJ)xn,xn – x

〉 ≥ lim inf
n→∞

〈
(Tt + εJ)x,xn – x

〉
= . (.)

Hence it follows from the first part of equation (.) and from equation (.) that

lim sup
n→∞

〈
Cxn + s̃

(
v∗ + εj∗

)
,xn

〉 ≤ – lim inf
n→∞ s̃n

〈
(Tt + εJ)xn,xn – x

〉

≤ . (.)

Since the operator C satisfies the condition (S+)L, we find from equations (.) and (.)
that

xn → x, x ∈D(C) =D(As ) and Cx + s̃
(
v∗ + εj∗

)
= .

By the demicontinuity of the operators Tt and J , we have

Ttxn ⇀ Ttx = v∗ and Jxn ⇀ Jx = j∗

and hence

Asx = Ttx + s
Cx + εJx = .

Consequently, the family {As} satisfies the condition (S+)(s),L, as required.
Since As(x) 
=  for all (s,x) ∈ [, ]× (D(As)∩ ∂�), we see, in view of Theorem A of [],

that the degree d(As,�, ) is independent of the choice of s ∈ [, ]. Until now, we have
shown that for each fixed t ∈ (, t], the degree d(H(t, s, ·),�, ) is constant for all s ∈ [, ].
Notice that T + εJ is maximal monotone and strongly quasibounded,  ∈ (T + εJ)(), and

H(s,x) = (T + εJ)x + s
Cx 
�  for all s ∈ [, ] and all x ∈D(T +C)∩ ∂�.

Combining this with our first assertion above, Theorem  of [] says that for each fixed
s ∈ [, ], the degree d(Tt + s
C + εJ ,�, ) is constant for all t ∈ (, t]. If deg denotes the
degree introduced in [], then for every s ∈ [, ], we have

deg(T + s
C + εJ ,�, ) = d(Tt + s
C + εJ ,�, ) for t ∈ (, t]

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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and hence

deg(T + s
C + εJ ,�, ) = d(As,�, ) = d(A,�, )

= d(Tt + εJ ,�, ) = ,

where the last equality follows fromTheorem  in []. Thus, for all s ∈ (, ], the inclusion

 ∈ Tx + s
Cx + εJx

has a solution in D(T + C) ∩ �, which contradicts property (P). We conclude that state-
ment (a) is true.
(b) Let {εn} be a sequence in (, ε] such that εn → . According to statement (a), there

exists a sequence {(λεn ,xεn )} in (,
]× (D(T +C)∩ ∂�) such that

u∗
εn + λεnCxεn + εnJxεn = ,

where u∗
εn ∈ Txεn . If we set λn := λεn , xn := xεn , and u∗

n := u∗
εn , it can be rewritten in the form

u∗
n + λnCxn + εnJxn = . (.)

Notice that the sequence {u∗
n} is bounded in X∗. This follows from the strong quasibound-

edness of the operator T together with the inequality

〈
u∗
n,xn

〉
= –λn〈Cxn,xn〉 – εn〈Jxn,xn〉 ≤ 
ψ(S),

where S is an upper bound for the sequence {‖xn‖}. From equation (.), {λnCxn} is
bounded in X∗. Without loss of generality, we may suppose that

λn → λ, xn ⇀ x, and u∗
n ⇀ u∗

, (.)

where λ ∈ [,
], x ∈ X, and u∗
 ∈ X∗. Note that the limit λ belongs to (,
]. In fact, if

λ = , then the boundedness of the set C(D(C) ∩ ∂�) implies that λnCxn →  and so by
equation (.) u∗

n → . Since the maximal monotone operator T satisfies the condition
(Sq) onD(T)∩∂�, we find from equation (.) and Lemma .(b) that xn → x ∈ ∂�, x ∈
D(T), and  ∈ Tx, which contradicts the hypothesis that  /∈ T(D(T) ∩ ∂�). As Cxn ⇀

(–/λ)u∗
, we have

lim
n→∞

〈
Cxn +


λ

u∗
, y

〉
=  for every y ∈ L{Fn}. (.)

From equation (.) it follows that

lim sup
n→∞

〈
Cxn +


λ

u∗
,xn

〉
≤ –


λ

lim inf
n→∞

〈
u∗
n + εnJxn,xn – x

〉

≤ , (.)

where the last inequality follows from Lemma .(a). Since the operator C satisfies the
condition (S+)D(C), we obtain from equations (.) and (.) xn → x ∈ D(C) and λCx +

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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u∗
 = . By the maximal monotonicity of the operator T , we have x ∈ D(T) and u∗

 ∈ Tx.
We conclude that

 ∈ Tx + λCx and x ∈D(T +C)∩ ∂�.

This completes the proof. �

Remark . (a) In Theorem ., it is inevitable that the set C(D(C) ∩ ∂�) is assumed to
be bounded because it does not hold in general that if λn →  then λnCxn → .
(b) When C is quasibounded and satisfies the condition (S̃+), it was studied in [, The-

orem ] by using Kartsatos-Skrypnik degree theory for (S̃+)-perturbations of maximal
monotone operators developed in []. For the case where C is generalized pseudomono-
tone in place of the condition (S̃+), we refer to [, Theorem .].

From Theorem ., we get the following eigenvalue result in the case when the operator
C satisfies the condition (S+).

Corollary . Let T , �, L, 
, ε be as in Theorem .. Suppose that C : X → X∗ is a
strongly quasibounded demicontinuous operator such that
(c′) C satisfies the condition (S+) on X ,
(c) for every F ∈ F (L) and v ∈ L, the function c(F , v) : F → R, defined by c(F , v)(x) =

〈Cx, v〉, is continuous on F , and
(c) there exists a nondecreasing function ψ : [,∞) → [,∞) such that

〈Cx,x〉 ≥ –ψ
(‖x‖) for all x ∈ X.

Then the following statements hold:
(a) If property (P) is fulfilled for a given ε > , then there exists a

(λε ,xε) ∈ (,
]× (D(T)∩ ∂�) such that  ∈ Txε + λεCxε + εJxε .
(b) If property (P) is fulfilled for every ε ∈ (, ε], T satisfies the condition (Sq) on

D(T)∩ ∂� and  /∈ T(D(T)∩ ∂�), then the inclusion  ∈ Tx + λCx has a solution in
(,
]× (D(T)∩ ∂�).

Proof Statement (a) follows immediately from Theorem . if we only show that the op-
erator C satisfies the condition (S+)D(C) with D(C) = X. To do this, let h ∈ X∗ be given and
suppose that {xn} is any sequence in X such that

xn ⇀ x, lim sup
n→∞

〈Cxn – h,xn〉 ≤ , and lim
n→∞〈Cxn – h, y〉 =  (.)

for every y ∈ L{Fn}. Then {〈Cxn,xn〉} is obviously bounded from above. By the strong qua-
siboundedness of the operator C, the sequence {Cxn} is bounded in X∗. Since L{Fn} is
dense in the reflexive Banach space X, it follows from the third one of equation (.) that
Cxn ⇀ h. Hence we obtain from the first and second one of equation (.)

lim sup
n→∞

〈Cxn,xn – x〉

≤ lim sup
n→∞

〈Cxn – h,xn〉 – lim
n→∞〈Cxn – h,x〉 + lim

n→∞〈h,xn – x〉 ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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Since C satisfies the condition (S+) on X and is demicontinuous, we have

xn → x ∈ X and Cx – h = .

Thus, the operator C satisfies the condition (S+)D(C) with D(C) = X.
(b) Let {εn} be a sequence in (, ε] such that εn → . In view of (a), there exists a se-

quence {(λn,xn)} in (,
]× (D(T)∩ ∂�) such that

u∗
n + λnCxn + εnJxn = , (.)

where u∗
n ∈ Txn. Notice that the sequence {Cxn} is bounded in X∗ and so is {u∗

n}. This
follows from the strong quasiboundedness of the operator C and the inequality

〈Cxn,xn〉 = –

λn

〈
u∗
n,xn

〉
–

εn

λn
〈Jxn,xn〉 ≤ .

We may suppose that λn → λ, xn ⇀ x, and u∗
n ⇀ u∗

, where λ ∈ [,
], x ∈ X, and
u∗
 ∈ X∗. Note that λ belongs to (,
]. Indeed, if λ = , then we have by the boundedness

of {Cxn} and equation (.) u∗
n →  and hence by the condition (Sq) xn → x ∈ D(T)

and  ∈ Tx, which contradicts the hypothesis  /∈ T(D(T) ∩ ∂�). The rest of the proof
proceeds analogously as in the proof of Theorem .. �

Remark . (a) The boundedness assumption on the set C(D(C)∩ ∂�) is unnecessary in
Corollary ., provided that the operator C is strongly quasibounded.
(b) An analogous result to Corollary . can be found in [, Corollary ], where the

operator C is supposed to be bounded.

We close this section by exhibiting a simple example of operators A satisfying the con-
dition (S+)D(A).
Let G be a bounded open set in R

N . Let  < p < ∞ and X = W ,p
 (G). Define the two

operators A,A : X → X∗ by

〈Au, v〉 =
N∑
i=

∫
G

∣∣∣∣ ∂u
∂xi

∣∣∣∣
p–

∂u
∂xi

∂v
∂xi

dx,

〈Au, v〉 =
∫
G

|u|p–uvdx.

Then the operatorA is clearly bounded and continuous, and it satisfies the condition (S+)
on X. The operator A is compact; see [, Theorem .] and [, Proposition .]. In
particular, the sum A := A +A satisfies the condition (S+)D(A) with D(A) = X.

3 Fredholm alternative
In this section, we present a variant of the Fredholm alternative for strongly quasibounded
maximal monotone operators, by applying Kartsatos-Quarcoo degree theory as in Sec-
tion .
Given γ > , an operator A : D(A) ⊂ X → X∗ is said to be positively homogeneous of

degree γ on a set M ⊂ D(A) if A(rx) = rγAx for all x ∈ M and all r > . For example, the

http://www.journalofinequalitiesandapplications.com/content/2014/1/21
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duality operator Jϕ : X → X∗ is positively homogeneous of degree γ on X if ϕ(t) = tγ for
t ∈ [,∞). In addition, the operators A and A given at the end of Section  are positively
homogeneous of degree p –  on X =W ,p

 (G).

Theorem . Let L be a dense subspace of X and let λ,γ ∈ [,∞) be given. Suppose that
T : D(T) = L → X∗ is an operator and C : D(C) ⊂ X → X∗ is an operator with L ⊂ D(C)
and C() =  such that
(t) T is maximal monotone and strongly quasibounded with T() = ,
(t) λTx +Cx +μJϕx =  implies x =  for every μ ≥ , where ϕ(t) = tγ ,
(c) C satisfies the condition (S+)L,
(c) for every F ∈F (L) and v ∈ L, the function c(F , v) : F →R, defined by

c(F , v)(x) = 〈Cx, v〉, is continuous on F , and
(c) there exists a nondecreasing function ψ : [,∞) → [,∞) such that

〈Cx,x〉 ≥ –ψ
(‖x‖) for all x ∈D(C).

If the operators T and C are positively homogeneous of degree γ on L, then the operator
λT +C is surjective.

Proof Let p∗ be an arbitrary but fixed element ofX∗. For each fixed ε > , consider a family
of operators At :D(At) ⊂ X → X∗, t ∈ [, ] given by

At(x) :=H(t,x) := t
(
λTx +Cx + εJϕx – p∗) + ( – t)εJϕx,

where D(At) = X for t =  and D(At) = L for t ∈ (, ]. The first aim is to prove that the set
of all solutions of the equation H(t,x) =  is bounded, independent of t ∈ [, ]. If t = ,
thenH(,x) = εJϕx =  implies x = . It suffices to show that {(t,x) ∈ (, ]×L :H(t,x) = }
is bounded. Assume the contrary; then there exist sequences {tn} in (, ] and {xn} in L
such that tn → t ∈ [, ], ‖xn‖ → ∞, and

tn
(
λTxn +Cxn + εJϕxn – p∗) + ( – tn)εJϕxn = ,

which can be written as

λTxn +Cxn – p∗ +
ε

tn
Jϕxn = . (.)

Wemay suppose that ‖xn‖ ≥  for all n ∈ N. Since the operators T , C, and Jϕ are positively
homogeneous of degree γ , it follows from equation (.) that

λT
(

xn
‖xn‖

)
+C

(
xn

‖xn‖
)
–


‖xn‖γ

p∗ +
ε

tn
Jϕ

(
xn

‖xn‖
)
= .

Setting un := xn/‖xn‖ and qn := /tn, we have ‖un‖ = , qn > , and

λTun +Cun –


‖xn‖γ
p∗ + qnεJϕun = . (.)
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Then we obtain from equation (.) and (c)

λ〈Tun,un〉 = –〈Cun,un〉 + 
‖xn‖γ

〈
p∗,un

〉
– qnε〈Jϕun,un〉

≤ ψ() +
∥∥p∗∥∥.

Hence the strong quasiboundedness of T implies that the sequence {Tun} is bounded
in X∗. There are two cases to consider. If t = , then qn → ∞, 〈Jϕun,un〉 = , and the
monotonicity of T with T() =  implies

 ≤ λ〈Tun,un〉 ≤ ψ() +
∥∥p∗∥∥ – qnε → –∞,

which is a contradiction. Now let t >  and set q := /t. Without loss of generality, we
may suppose that

un ⇀ u, Tun ⇀ v∗, and Jϕun ⇀ j∗,

where u ∈ X, v∗ ∈ X∗, and j∗ ∈ X∗. By equation (.), we have Cun ⇀ –λv∗ – qεj∗ and
hence

lim
n→∞

〈
Cun + λv∗ + qεj∗, y

〉
=  for every y ∈ L{Fn}. (.)

Since the operator λT + qεJϕ is maximal monotone, we have

lim inf
n→∞ 〈λTun + qnεJϕun,un – u〉 ≥ . (.)

In fact, if equation (.) is false, then there is a subsequence of {un}, denoted again by {un},
such that

lim
n→∞〈λTun + qnεJϕun,un – u〉 < .

Hence it is clear that

lim sup
n→∞

〈λTun + qnεJϕun,un〉 <
〈
λv∗ + qεj∗,u

〉
. (.)

For every u ∈D(T), we have, by the monotonicity of the operator λT + qnεJϕ ,

lim inf
n→∞ 〈λTun + qnεJϕun,un〉

≥ lim inf
n→∞

[〈λTun + qnεJϕun,u〉 + 〈λTu + qnεJϕu,un – u〉]

=
〈
λv∗ + qεj∗,u

〉
+ 〈λTu + qεJϕu,u – u〉,

which implies along with equation (.)

〈
λv∗ + qεj∗ – (λTu + qεJϕu),u – u

〉
> . (.)
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By the maximal monotonicity of λT + qεJϕ , we have u ∈ D(T) and (λT + qεJϕ)u =
λv∗+qεj∗. Letting u = u ∈D(T) in equation (.), we get a contradiction. Thus, equation
(.) is true.
Furthermore, equation (.) implies, because of (/‖xn‖γ )p∗ → , that

lim inf
n→∞

〈
λTun –


‖xn‖γ

p∗ + qnεJϕun,un – u
〉
≥ . (.)

From equations (.), (.), and the equality

〈
Cun + λv∗ + qεj∗,un

〉

=
〈
Cun + λTun –


‖xn‖γ

p∗ + qnεJϕun,un
〉

–
〈
λTun –


‖xn‖γ

p∗ + qnεJϕun,un – u
〉

–
〈
λTun –


‖xn‖γ

p∗ + qnεJϕun,u
〉
+

〈
λv∗ + qεj∗,un

〉

it follows that

lim sup
n→∞

〈
Cun + λv∗ + qεj∗,un

〉

≤ – lim inf
n→∞

〈
λTun –


‖xn‖γ

p∗ + qnεJϕun,un – u
〉

≤ . (.)

Since the operator C satisfies the condition (S+)L, we obtain from equations (.) and (.)

un → u, u ∈D(C), and Cu + λv∗ + qεj∗ = .

Since T is maximal monotone and Jϕ is continuous, Lemma .(b) implies that

u ∈D(T), Tu = v∗, and Jϕu = j∗.

Therefore, we obtain

λTu +Cu + qεJϕu =  and ‖u‖ = ,

which contradicts hypothesis (t) with μ = qε. Thus, we have shown that {(t,x) ∈ [, ]×
L :H(t,x) = } is bounded.
So we can choose an open ball Br() in X of radius r >  centered at the origin  so that

{
x ∈ L :H(t,x) =  for some t ∈ [, ]

} ⊂ Br().

Thismeans thatH(t,x) = At(x) 
=  for all (t,x) ∈ [, ]× (D(At)∩∂Br()). Note that the op-
erator T̃ε := λT +εJϕ is maximal monotone, strongly quasibounded, T̃ε() = , and the op-
erator C̃ := C–p∗ satisfies the condition (S+)L and other conditionswith c̃(F , v)(x) := 〈C̃x, v〉
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for x ∈ F and 〈C̃x,x〉 ≥ –ψ̃(‖x‖) for x ∈D(C̃), where ψ̃(t) := ( + ‖p∗‖)max{ψ(t), t}. More-
over, we know from Section  that the operator εJϕ is continuous, bounded and strictly
monotone, and that it satisfies the condition (S+), and 〈εJϕx,x〉 = ε‖x‖γ+ for x ∈ X.
Using the homotopy invariance property of the degree stated in [, Theorem ], we

have

deg
(
λT +C + εJϕ – p∗,Br(), 

)
= deg

(
εJϕ ,Br(), 

)
= . (.)

Applying equation (.) with ε = /n, there exists a sequence {xn} in L such that

λTxn +Cxn +

n
Jϕxn = p∗. (.)

Next, we show that the sequence {xn} is bounded in X. Indeed, assume on the contrary
that there is a subsequence of {xn}, denoted by {xn}, such that ‖xn‖ → ∞. Dividing both
sides of equation (.) by ‖xn‖γ and setting un := xn/‖xn‖ and w∗

n := λTun +Cun, we get

λTun +Cun +

n
Jϕun =


‖xn‖γ

p∗

and so w∗
n → . Since λ〈Tun,un〉 = –〈Cun,un〉 + 〈w∗

n,un〉 ≤ ψ() + ‖w∗
n‖ for all n ∈ N, it

follows from (t) that the sequence {Tun} is bounded in X∗. Wemay suppose that un ⇀ u
and Tun ⇀ v∗ for some u ∈ X and some v∗ ∈ X∗. As in the proof of equations (.) and
(.) above, we can show that

lim sup
n→∞

〈
Cun + λv∗,un

〉 ≤  and lim
n→∞

〈
Cun + λv∗, y

〉
= 

for every y ∈ L{Fn}. Since the operator C satisfies the condition (S+)L, we obtain

un → u, u ∈D(C), and Cu + λv∗ = .

By Lemma .(b), we have u ∈D(T) and Tu = v∗ and hence

λTu +Cu =  and ‖u‖ = ,

which contradicts hypothesis (t) with μ = . Therefore, the sequence {xn} is bounded
in X.
Combining this with equation (.), we know from (c) and (t) that the sequence {Txn}

is also bounded in X∗. Thus we may suppose that xn ⇀ x and Txn ⇀ v∗
 for some x ∈ X

and some v∗
 ∈ X∗. From Cxn ⇀ –λv∗

 + p∗ and the maximal monotonicity of the opera-
tor T , we get as before

lim sup
n→∞

〈
Cxn + λv∗

 – p∗,xn
〉 ≤  and lim

n→∞
〈
Cxn + λv∗

 – p∗, y
〉
= 

for every y ∈ L{Fn}. Since the operator C satisfies the condition (S+)L and T is maximal
monotone, we conclude that

x ∈ D(λT +C) and λTx +Cx = p∗.
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As p∗ ∈ X∗ was arbitrary, this says that the operator λT + C is surjective. This completes
the proof. �

Remark . An analogous result to Theorem . was investigated in [, Theorem .],
where themethod was to use Kartsatos-Skrypnik degree theory for quasibounded densely
defined (S̃+)-perturbations of maximal monotone operators, developed in []; see also [,
Theorem ].

As a particular case of Theorem ., we have another surjectivity result.

Corollary . Let L, T , and C be the same as in Theorem ., except that hypothesis (t)
is replaced by

(t′) 〈λTx +Cx,x〉 ≥  for all x ∈ L.

If λ is not an eigenvalue for the pair (T ,C), that is, λTx + Cx =  implies x = , then the
operator λT +C is surjective.

Proof Noting that

〈λTx +Cx +μJϕx,x〉 ≥ μ〈Jϕx,x〉 = μ‖x‖γ+ ≥ 

for every x ∈ L and μ > , it is clear that hypothesis (t) in Theorem . is satisfied. Apply
Theorem .. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KI conceived of the study and drafted the manuscript. BI participated in coordination. All authors approved the final
manuscript.

Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology (NRF-2012-0008345).

Received: 11 October 2013 Accepted: 16 December 2013 Published: 14 Jan 2014

References
1. Krasnosel’skii, MA: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon, New York (1964)
2. Zeidler, E: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization. Springer, New

York (1985)
3. Minty, G: Monotone operators in Hilbert spaces. Duke Math. J. 29, 341-346 (1962)
4. Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Nonlinear Functional

Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968), pp. 1-308. Am. Math. Soc., Providence (1976)
5. Zeidler, E: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, New York

(1990)
6. Guan, Z, Kartsatos, AG: On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators

in Banach spaces. Nonlinear Anal. 27, 125-141 (1996)
7. Kartsatos, AG: New results in the perturbation theory of maximal monotone andm-accretive operators in Banach

spaces. Trans. Am. Math. Soc. 348, 1663-1707 (1996)
8. Kartsatos, AG, Skrypnik, IV: Normalized eigenvectors for nonlinear abstract and elliptic operators. J. Differ. Equ. 155,

443-475 (1999)
9. Kartsatos, AG, Skrypnik, IV: On the eigenvalue problem for perturbed nonlinear maximal monotone operators in

reflexive Banach spaces. Trans. Am. Math. Soc. 358, 3851-3881 (2006)
10. Li, H-X, Huang, F-L: On the nonlinear eigenvalue problem for perturbations of monotone and accretive operators in

Banach spaces. Sichuan Daxue Xuebao (J. Sichuan Univ.) 37, 303-309 (2000)
11. Browder, FE: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1-39 (1983)

http://www.journalofinequalitiesandapplications.com/content/2014/1/21


Kim and Bae Journal of Inequalities and Applications 2014, 2014:21 Page 17 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/21

12. Kartsatos, AG, Skrypnik, IV: Topological degree theories for densely defined mappings involving operators of type
(S+). Adv. Differ. Equ. 4, 413-456 (1999)

13. Kartsatos, AG, Skrypnik, IV: A new topological degree theory for densely defined quasibounded (S̃+)-perturbations of
multivalued maximal monotone operators in reflexive Banach spaces. Abstr. Appl. Anal. 2005, 121-158 (2005)

14. Skrypnik, IV: Nonlinear Higher Order Elliptic Equations. Naukova Dumka, Kiev (1973) (Russian)
15. Skrypnik, IV: Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Transl., Ser. II., vol. 139. Am. Math.

Soc., Providence (1994)
16. Browder, FE, Hess, P: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251-294 (1972)
17. Berkovits, J: On the degree theory for densely defined mappings of class (S+)L . Abstr. Appl. Anal. 4, 141-152 (1999)
18. Kartsatos, AG, Quarcoo, J: A new topological degree theory for densely defined (S+)L-perturbations of multivalued

maximal monotone operators in reflexive separable Banach spaces. Nonlinear Anal. 69, 2339-2354 (2008)
19. Brézis, H, Crandall, MG, Pazy, A: Perturbations of nonlinear maximal monotone sets in Banach space. Commun. Pure

Appl. Math. 23, 123-144 (1970)
20. Kim, I-S, Bae, J-H: Eigenvalue results for pseudomonotone perturbations of maximal monotone operators. Cent. Eur. J.

Math. 11, 851-864 (2013)
21. Petryshyn, WV: Approximation-Solvability of Nonlinear Functional and Differential Equations. Dekker, New York

(1993)
22. Adhikari, DR, Kartsatos, AG: Topological degree theories and nonlinear operator equations in Banach spaces.

Nonlinear Anal. 69, 1235-1255 (2008)
23. Browder, FE: Degree of mapping for nonlinear mappings of monotone type. Proc. Natl. Acad. Sci. USA 80, 1771-1773

(1983)
24. Schmitt, K, Sim, I: Bifurcation problems associated with generalized Laplacians. Adv. Differ. Equ. 9, 797-828 (2004)

10.1186/1029-242X-2014-21
Cite this article as: Kim and Bae: Eigenvalues of quasibounded maximal monotone operators. Journal of Inequalities
and Applications 2014, 2014:21

http://www.journalofinequalitiesandapplications.com/content/2014/1/21

	Eigenvalues of quasibounded maximal monotone operators
	Abstract
	Introduction and preliminaries
	The existence of eigenvalues
	Fredholm alternative
	Competing interests
	Authors' contributions
	Acknowledgements
	References


