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1 Introduction

A classical question in the theory of functional equations is the following: When is it true
that a function which approximately satisfies a functional equation must be close to an ex-
act solution of the equation? If the problem accepts a solution, we say that the equation is
stable. The first stability problem concerning group homomorphisms was raised by Ulam
[1] in 1940. In 1941, Hyers [2] gave a positive answer to the above question for additive
groups under the assumption that the groups are Banach spaces. Aoki [3] proved a gener-
alization of Hyers’ theorem for additive mappings and Rassias [4] proved a generalization

of Hyers’ theorem for linear mappings.

Theorem 1.1 (ThM Rassias) Let f : E — E' be a mapping from a normed vector space E
into a Banach space E' subject to the inequality ||f(x +y) — f(x) = fW)| < e(=]? + ||y1?),
forall x,y € E, where ¢ and p are constants with ¢ >0 and 0 < p < 1. Then the limit L(x) =

lim,,_mof(izx) exists, for all x € E, and L : E — E’ is the unique additive mapping which
satisfies
2¢e
x)—Lx)| < x|I7,
I -6 < 25

forallx € E. Also, if for each x € E the function f(tx) is continuous in t € R, then L is linear.

This new concept is known as a the Hyers-Ulam stability or the Hyers-Ulam-Rassias sta-
bility of functional equations. Furthermore, in 1994, a generalization of Rassias’ theorem
was obtained by Gavruta [5] by replacing the bound &(||x||” + ||y||”) by a general control
function ¢(x, y).
©2014 Park et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2014/1/209
mailto:azadi@yu.ac.ir
http://creativecommons.org/licenses/by/2.0

Park et al. Journal of Inequalities and Applications 2014, 2014:209 Page 2 of 17
http://www_.journalofinequalitiesandapplications.com/content/2014/1/209

In 1983, a generalized Hyers-Ulam stability problem for the quadratic functional equa-
tion was proved by Skof [6] for mappings f : X — Y, where X is a normed space and Y is
a Banach space. In 1984, Cholewa [7] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [8] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The readers are re-
ferred to [9-29] and references therein for detailed information on stability of functional
equations.

In 1897, Hensel [30] has introduced a normed space which does not have the Archime-
dean property. It turned out that non-Archimedean spaces have many nice applications
(see [31-35]).

Definition 1.1 By a non-Archimedean field we mean a field K equipped with a function
(valuation) |-| : K — [0, o0) such that, for all 7, s € K, the following conditions hold: (a) |r| =
0 if and only if r = 0; (b) |rs| = |r||s|; (c) |r + s| < max{|7]|,|s|}.

Clearly, by (b), |1| = |-1| =1 and so, by induction, it follows from (c) that |n| <1, for all

n>1.

Definition 1.2 Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | - |.

(1) A function || - || : X — R is a non-Archimedean norm (valuation) if it satisfies the
following conditions: (a) [lx|| = 0 if and only if x = 0, for all x € X; (b) ||rx| = |r|||lx]],
for all r € K and x € X; (c) the strong triangle inequality (ultra-metric) holds, that is,
llx + y|l < max{||x|l, |[y]l}, for all x,y € X.

(2) The space (X, || - ||) is called a non-Archimedean normed space (briefly, NAN-space).

Note that ||x, — %, || < max{||xj,q — ;| : m <j<n-1}, forall m,n € N with n > m.

Definition 1.3 Let (X, || - |) be a non-Archimedean normed space.
(a) A sequence {x,} is a Cauchy sequence in X if {x,,1 — x,} converges to zero in X.
(b) The non-Archimedean normed space (X, || - ||) is said to be complete if every Cauchy
sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key
property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all
x,y > 0, there exists a positive integer # such that x < ny.

Example 1.1 Fix a prime number p. For any nonzero rational number x, there exists a
unique positive integer 7, such that x = 7p", where a and b are positive integers not di-
visible by p. Then |x|, := p™ defines a non-Archimedean norm on Q. The completion of
Q with respect to the metric d(x,y) = |x — |, is denoted by Q,, which is called the p-adic
number field. In fact, Q, is the set of all formal series x = Z,foznx arp’, where |ay| <p - 1.
The addition and multiplication between any two elements of QQ, are defined naturally.
The norm |Z,f‘;nx akpk|p = p~™ is a non-Archimedean norm on Q, and Q, is a locally
compact field.

In Section 3, we adopt the usual terminology, notions and conventions of the theory
of random normed spaces as in [36]. Throughout this paper, let A* denote the set of all
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probability distribution functions F : RU [-00, +00] — [0,1] such that F is left-continuous
and nondecreasing on R and F(0) = 0, F(+o0) = 1. It is clear that the set D* = {F € A" :
I"F(—00) =1}, where I"f(x) = lim,_, - f(¢), is a subset of A*. The set A" is partially ordered
by the usual point-wise ordering of functions, that is, F < G if and only if F(¢) < G(¢), for
all £ € R. For any a > 0, the element H,(¢) of D* is defined by

0, ift<a,
Ha(t) =
1, ift>a.

We can easily show that the maximal element in A* is the distribution function Hy(t).

Definition 1.4 A function T : [0,1]*> — [0,1] is a continuous triangular norm (briefly, a ¢-
norm) if T satisfies the following conditions: (a) T is commutative and associative; (b) T is
continuous; (c) T'(x,1) = x, for all x € [0,1]; (d) T'(x,y) < T(z,w) whenever x < zand y < w,

for all x,y,z,w € [0,1].

Three typical examples of continuous ¢-norms are as follows: Tp(x,y) = xy, Tmax(%,) =
max{a + b — 1,0}, Ty (x,y) = min(a, b). Recall that, if T is a £-norm and {x,,} is a sequence
in [0,1], then T7,x; is defined recursively by 7> %, = x; and T7,x; = T(T?7'x;,x,), for all
n>2. T x; is defined by T2 %4,

Definition 1.5 A random normed space (briefly, RN -space) is a triple (X, u, T), where X
is a vector space, T is a continuous ¢-norm and u : X — D* is a mapping such that the
following conditions hold:

(@) px(t) = Ho(2), for all £ > 0 if and only if x = 0;

(b) fax(t) = px(%), forall € R with o #0, x € X and ¢ > 0;

le|

(©) syt +8) = T(1a(£), 1y (s)), for all x,y € X and £,5s > 0.

Every normed space (X, || - ||) defines a random normed space (X, i, Tpr), where w,(£) =
Wt\un’ for all £ > 0 and T} is the minimum ¢-norm. This space X is called the induced
random normed space.

If the t-norm T is such that sup,_,; T(a,a) = 1, then every RN-space (X,u,T) is a
metrizable linear topological space with the topology t (called the u-topology or the (¢, §)-
topology, where ¢ > 0 and A € (0,1)) induced by the base {U(g, 1)} of neighborhoods of 0,

where
U(e,A) = {xeX:,ux(s) > l—k}.

Definition 1.6 Let (X, i, T) be an RN-space.
(a) A sequence {x,} in X is said to be convergent to a point x € X (write x,, — x as
n — o0) if lim,_, o0 ty,-x(¢) =1, for all £ > 0.
(b) A sequence {x,} in X is called a Cauchy sequence in X if lim,,—, oo f4x,—x,, (£) = 1, for all
t>0.
(c) The RN-space (X, u, T) is said to be complete if every Cauchy sequence in X is

convergent.
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Theorem 1.2 If (X, 1, T) is RN-space and {x,} is a sequence such that x, — x, then
1imy; s o ha, () = pax(2).

Definition 1.7 Let X beaset. A functiond : X x X — [0, 00] is called a generalized metric
on X if d satisfies the following conditions:

(@) d(x,y)=0ifand onlyifx =y, for allx,y € X;

(b) d(x,y) =d(y,x), forall x,y € X;

(c) d(x,z) <d(x,y)+d(y,z), foral x,9,z € X.

Theorem 1.3 ([37, 38]) Let (X,d) be a complete generalized metric space and J : X — X
be a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x € X, either
d(J"x,J" %) = oo, for all nonnegative integers n, or there exists a positive integer ny such
that

(@) d(J"x,]"1x) < oo, for all ny > no;

(b) the sequence {J"x} converges to a fixed point y* of J;

(c) y* is the unique fixed point of ] in the set Y = {y € X : d(J™x,y) < oo};

(d) d.y*) <D forallyey.

In this paper, using the fixed point and direct methods, we prove the HUR-approxima-

tion of the following CJA functional equation:

2f(x 2= Z) /W) +/0) +/() 1y

in various normed spaces.

2 NAN-stability
In this section, we deal with the stability problem for the Cauchy-Jensen additive func-

tional equation (1.1) in non-Archimedean normed spaces.

Theorem 2.1 Let X be a non-Archimedean normed space and Y is a complete non-

Archimedean space. Let ¢ : X3 — [0,00) be a function such that there exists an a < 1 with

o222 < 2e@rna) 1)
2272 12|

forallx,y,z€ X. Let f : X — Y be a mapping satisfying

<92, (2.2)

Y

Hzf(“g”) ~f@®) -f6) —f(2)

forall x,y,z € X. Then there exists a unique additive mapping I : X — Y such that
[f () = 3@, < gl 22,0)(12] - 2[a) 7, (2.3)

forallx € X.
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Proof Putting y = 2x and z = x in (2.1), we get |[f(2x) — 2f (x)||y < ¢(x,2x,x), for all x € X.

So
o)

for all x € X. Consider the set S:= {/: X — Y} and introduce the generalized metric on S:

< 12 ap(x, 2%, %), (2.4)
Y

digh) = inf _[g()~h(x)], < s 2%)

for all x € X, where, as usual, inf¢ = +00. It is easy to show that (S,d) is complete (see
[39]). Now we consider the linear mapping J : S — S such that Jg(x) := 2¢(3), for all x € X.
Let g, 1 € S be given such that d(g, /) = . Then ||g(x) — h(x) ||y < ep(x,2x,x), for all x € X.
Hence

X X
) - Jh(x) |, = H2g<§> - 2h(§)

for all x € X. So d(g, i) = ¢ implies that d(Jg, /i) < ae. This means that d(Jg, Jh) < ad(g, h),
for all g, € S. It follows from (2.4) that d(f,Jf) < |2|*a. By Theorem 1.3, there exists a
mapping J : X — Y satisfying the following:

S o Sw(x; 2xrx)1
Y

(1) J is a fixed point of ], i.e.,

S(x) = 2%(’%) 2.5)

for all x € X. The mapping < is a unique fixed point of J in the set M = {g € S: d(h, g) < 00}.
This implies that J is a unique mapping satisfying (2.5) such that there exists a 1 € (0, 00)
satisfying ||f(x) — Ix)|ly < pe(x, 2x,x), for all x € X;

(2) d(J"f,3J) — 0 as n — oo. This implies the equality

lim 2"f(ﬁ) - (), (2.6)
n—00 on
forall x € X;

(3) d(f,3) < %, which implies the inequality d(f,3) < a(|2| — |2|e)~!. This implies
that the inequalities (2.3) holds. It follows from (2.1) and (2.2) that
‘ 23(’”;“’) ~ () - 3() - ()
- lim 12f (5ar) = fGo) —f Ga) =Gl

n— 00 |2|*”

Y

< lim &"p(x,y,2) =0,
n—00

forall x,y,z € X. S0 23(*3%) = J(x) + I(y) + (2), for all x,,z € X. Hence I : X — Y is an
CJA mapping and we get the desired results. O

Page 5 of 17
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Corollary 2.1 Let 0 be a positive real number and r is a real number with 0 <r < 1. Let
f:X — Y be a mapping satisfying

H%(x+y+z)—f@)aﬂw—f&)

<O(llxl” + Iyl" + l1zI1"), 2.7)
Y

or all x,y,z € X. Then there exists a unique CJA mapping 3 : X — Y such that
Y g
-1
[f@@) - 3@, < 12162+ 121) (1217 = 1217) " I,
forallx € X.

Proof The proof follows from Theorem 2.1 by taking ¢(x,y,z) = (||x]|” + |[y|" + |Iz||"), for

all x,7,z € X. Then we can choose o = [2|'™" and we get the desired result. 0

Theorem 2.2 Let X be a non-Archimedean normed space and Y is a complete non-
Archimedean space. Let ¢ : X3 — [0, 00) be a _function such that there exists an o < 1 with
o, 3,2) < 12lap(3,3,5), for all x,y,z € X. Let f : X — Y be a mapping satisfying (2.2).
Then there exists a unique CJA mapping 3 : X — Y such that

[f @) -3@)], < o 200(12] - 21e) 7, (2.8)
forallx € X.

Proof Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1. Now
we consider the linear mapping J : S — S such that Jg(x) := €29 for all x € X. Let ghes
be given such that d(g, #) = ¢. Then ||g(x) — h(x) ||y < ep(, 2x,x), for all x € X. Hence

- 12| - ep(x, 2%, x)

Vgx) - nx) ||, = = 2] ,

H g(2x) h(2x)
2

for all x € X. So d(g, h) = ¢ implies that d(Jg, /i) < ae. This means that d(Jg, Jh) < ad(g, h),
for all g,k € S. It follows from (2.4) that d(f,Jf) < |2|™}. By Theorem 1.3, there exists a
mapping J : X — Y satisfying the following:

(1) Y is a fixed point of ], i.e.,

oY

J(2x)
2

for all x € X. The mapping 3 is a unique fixed point of / in the set M = {g € S : d(h, g) < 00}.
This implies that J is a unique mapping satisfying (2.9) such that there exists a u € (0, 00)

satisfying ||f(x) — I()|ly < ue(x, 2x,x), for all x € X;
(2) d(J*f,3) — 0 as n — oo. This implies the equality lim,,, oo f‘;:x) = J(x), for all x € X;
(3)d(f,3) < %, which implies the inequality d(f, J) < (|2] - |2|a)~!. This implies that
the inequalities (2.8) holds. The rest of the proof is similar to the proof of Theorem 2.1.
O
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Corollary 2.2 Let 6 be a positive real number and r is a real number with r > 1. Let f :
X — Y be a mapping satisfying (2.7). Then there exists a unique CJA mapping I: X — Y
such that

[f ) = 3@, <62+ 121") (12 - |2|r)_1||x||r,
forallx e X.

Proof The proof follows from Theorem 2.2 by taking ¢(x,7,2) = (|x||” + ||lyI" + |lz]|"), for
all x,y,z € X. Then we can choose o = |2|"~! and we get the desired result. O

Theorem 2.3 Let G be an additive semigroup and X is a non-Archimedean Banach space.
Assume that ) : G> — [0, +00) be a function such that

tim 24 2, 2L, 2 ) 2o, (2.10)
n—00 n°Qnt on

forall x,y,z € G. Suppose that, for any x € G, the limit

i NER2
£(x) - nli{lgo (?511?31 |2| A(Z/Hl’ 2/(’ 2k+1> (211)

exists and f : G — X be a mapping satisfying

Hzf(" e Z) ) -f0) (@)

<A, 9,2). (2.12)
X

Then the limit I(x) := lim,,_. oo 2"f (35) exists, for all x € G, and defines an CJA mapping
J: G — X such that

If(x) - 3@ | < £(x). (2.13)

Moreover, if limy_, o lim,,_, oo MaXj<kcps) |2|")»(2,i‘+1, 2’2, 2k+1) 0 then 3 is the unique CJA
mapping satisfying (2.13).

Proof Putting y = 2x and z = x in (2.12), we get
If(2x) = 2f ()], < A(x, 2%, %), (2.14)

for all x € G. Replacing x by -7t in (2.14), we obtain

nl X on ", X X X
2+f(ﬁ) f( >H<|| <2n+1,§,2n+1>, (2.15)

Thus, it follows from (2.10) and (2.15) that the sequence {2"f(35)},>1 is a Cauchy sequence.
Since X is complete, it follows that {2"f(55)},>1 is convergent. Set I(x) := lim,, . o0 2"f (3).

By induction on #, one can show that

”f( ) ~f ()| = max 12/F2 <i hl i) (2.16)

2k+17 9k’ gk+1



http://www.journalofinequalitiesandapplications.com/content/2014/1/209

Park et al. Journal of Inequalities and Applications 2014, 2014:209 Page 8 of 17
http://www_.journalofinequalitiesandapplications.com/content/2014/1/209

for all » > 1 and x € G. By taking n — 0o in (2.16) and using (2.11), one obtains (2.13). By
(2.10) and (2.12), we get

23(’”;”) ~3) -3() - ()

r(59) ()~ (3) 1 (5)

z
< 1im |2| x(ﬁ Y —)=0,
Hn— 00 27[ 2VI 2}’1

|

forallx,y,z € X. So

s(’”g”) =3 + 30) + 3. (2.17)
Letting x =y =z = 0 in (2.17), we get J(0) = 0. Letting z = x + y in (2.17), we get J(x + y) =

J(x) + J(y), for all x,y € X. Hence the mapping J: X — Y is Cauchy additive.
To prove the uniqueness property of 3, let i be another mapping satisfying (2.13). Then

&),
()M

. . k X X X
< lim lim max [2|"A 1 oF or =0,
Jj—> 00 n—>00 j<k<n+j 2k+17 Dk D+l

we have

|36 - 9@ =

’

< lim [2]" max{
k— 00

J

for all x € G. Therefore, I = . This completes the proof. d

Corollary 2.3 Let & : [0,00) — [0,00) be a function satisfying & (157) < &(15)6(0), § (557) <
|%—‘,for all t > 0. Assume that k >0 and f : G — X be a mapping such that

k(& (1al) + £ (Iyl) +&(l21))

Hzf(“y ) 1610~

Y

forall x,y,z € G. Then there exists a unique CJA mapping 3 : G — X such that

If ) = @) < 1217 (2 + 121)& (Ix1)-

Proof If we define A : G® — [0,00) by A(x,y,2) := k(§(|x]) + £(ly]) + £(z])), then we have
lim,_, o |2|”A(2n, 3> 31) = 0, for all x, 5,z € G. On the other hand, it follows that £(x) =
12]71(2 + |2])& (|x|) exists, for all x € G. Also, we have

lim lim max |2|kx(i,ﬁ,i> lim |2|1)\< X x)
I*)

j—> 00 H—>00 j<k<n+j 2k+17 9k’ 9k+1 2/+1 2/ 2j+1

Thus, applying Theorem 2.3, we have the conclusion. This completes the proof. d
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Theorem 2.4 Let G be an additive semigroup and X is a non-Archimedean Banach space.
Assume that A : G> — [0,+00) be a function such that lim,_, o % =0, for all
x,9,z € G. Suppose that, for any x € G, the limit

A(2Kx, 2K+, 2K y)

£(x) = nlin;o onglfﬁq 2 (2.18)
exists and f : G — X be a mapping satisfying (2.12). Then the limit J(x) := limn%oof(izx)
exists, for all x € G, and

£(x)
”f(x) - 3(x) ” = 20 (2.19)

22K, 2k 15 0k )

Sor all x € G. Moreover, if lim;_, o, lim,,_, oo MaX; <k <y =0, then 3 is the unique

[2/¥
CJA mapping satisfying (2.19).
Proof 1t follows from (2.14) that
2 Ax, 2x,
H/(x) 2 < . 2x x), (2.20)
2 x 2]
for all x € G. Replacing x by 2"x in (2.20), we obtain
f(2”x) f(2" 1) - (27, 2"k, 27x) 2.21)
on+l X |2|n+1
(2"x)

Thus it follows from (2.21) that the sequence {f }u>1 is convergent. Set J(x) :=
). On the other hand, it follows from (2.21) that

p<k<q{

lim,, oo & zn

q-1 f(2k+1x) f(2"x) f(2k+1x) f(2"x)

Hf (2Px%)  f(27x)

24 2k+1 - 2k 2k+1 2k
k=p
- 1 M(2Kx, 2K+, 2K x)
|2|p<k<q 2|k ’

forall x € G and p,q > 0 with g > p > 0. Letting p = 0, taking g — oo in the last inequality

and using (2.18), we obtain (2.19).
The rest of the proof is similar to the proof of Theorem 2.3. This completes the proof.
O

Corollary 2.4 Let & : [0,00) — [0,00) be a function satisfying £(|12|t) < &(12])&(8), £(|12]) <
2|, for all t > 0. Let k >0 and f : G — X be a mapping satisfying

“zf(" +y ”) @ -1 ) ~£@)| = (E(%1) - £(1) - £ (121)),

forall x,y,z € G. Then there exists a unique CJA mapping I : G — X such that

If @) - 36| < & (121)°.
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Proof 1f we define A : G> — [0, 00) by A(x,3,2) := k(§(|x]) - £(|y]) - £(|z])) and apply Theo-
rem 2.4, then we get the conclusion. O

3 RNS-stability
In this section, using the fixed point and direct methods, we prove the HUR-approximation

of the functional equation (1.1) in random normed spaces.

Theorem 3.1 Let X be a real linear space, (Z, i, min) be an RN-space and ¢ : X> — Z be

a function such that there exists 0 < o < % such that

t

X z
2272 o

orall x,y,z€ X and t > 0 and lim,,_, o, 1/ (&) =1, forall x,y,ze X and t > 0. Let
y v 3 y

(Z,2,2%
nvznrzn

%)

(Y, u, min) be a complete RN-space. If f : X — Y be a mapping such that

i
Hap(=22) s £5) 1)) Z Ky (E)s (3.2)

forall x,y,z€ X and t > 0. Then the limit I(x) = lim,_, o 2”f(2in) exists, for all x € X, and
defines a unique CJA mapping I : X — Y such that

(1-2a)t
I @-ae) () = L) (7()[ , (3.3)

forallx e X and t > 0.

Proof Putting y = 2x and z = x in (3.2), we see that

s @202 @) (8) = Wiz (2)- (3.4)

Replacing x by 7 in (3.4), we obtain

t
Haf ()= (B) Z 1y %) (8) Z By (;) (3.5)

for all x € X. Replacing x by 55 in (3.5) and using (3.1), we obtain

t t
/ /
Mgy O Z Ry 2 a0 (2—) ) <—2nan+1>

and so

n-1 n-1
k, k+1 k k+1
'u“2”f(ziy,)—f(x) (ZZ akt t) = MZZ;(I) 2k+1f(2kx+1 )2kf(2%)<22 akt t)

k=0 k=0
> n-1 k  k+1
= Tk:O (M2k+lf(2/:(T)_2kf(2ik)(2 o t))

-1
> T]}::() (H’:a(x,Zx,x)(t)) = /’L;(xlx,x)(t)’
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This implies that

t
Hoang()-f 109(8) = M:p(x 2xx)<T)' (3.6)
7 Zk:o 2kak+1

Replacing x by 5; in (3.6), we obtain

t
’
Harpp(s)-227(25) () Z (a0 <—Z+p T ) (37)

Since limy, ;oo /L:p(x,%x)(m) 1, it follows that {2"f(Z)}%, is a Cauchy se-
=P

quence in a complete RN-space (Y, 1, min) and so there exists a point J(x) € ¥ such that
lim,,, o0 2"f(35) = J(x). Fix x € X and put p = 0 in (3.7) and so, for any & > 0,

t
3w (E+€) = T( Is(x)-2 (%) (8),M;(x,2x,x)<W>)‘ (3.8)

Taking n — oo in (3.8), we get fiy()_fx(t + &) = ,u(p(x 2) (1-2a)t

by
taking & — 0 in the previous 1nequahty, we get

a- 2a)t>

S)~f @) (£) = /""Ip(x,Zx,x)( ”

Replacing x, y and z by 57, 37 and 5 in (3.2), respectively, we get

t
Mﬂﬂf(’%)_znf(zin)_znﬂzln 2nfin(t)>ﬂ ininin (2;1)

for all x,y,z € X and ¢ > 0. Since lim,,_, » I’L;,(L 5z
(1.1). On the other hand

”'2”’2}’1
~f % n+l n
23 5 J(x) = lim 2 f — lim 2f

This implies that J : X — Y is an CJA mapping. To prove the uniqueness of the CJA map-

)(2%,) =1, we conclude that J satisfies

)

0.

ping 3, assume that there exists another CJA mapping i : X — Y which satisfies (3.3).
Then we have

M- () = nlingo Han()-2mt( ) (0)

. . t t
= nll?olomm{/‘ﬂ‘ (302" (5i) (2) Mot (3 2%*)%(’;)(5)}
. (1-2a)t . (1-2a)t
b Mw( ) on s Mg 250 gn )

o, 2M)(<12,,i"i, ) = 1. Therefore, we have py@-nw () =1, for all ¢ > 0, and so

J(x) = N(x). This completes the proof. a

Since lim,,_, oo pt/
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Corollary 3.1 Let X be a real normed linear space, (Z, ', min) be an RN-space and
(Y, u, min) be a complete RN-space. Let r be a positive real number with r > 1, zy € Z and
f:X — Y be a mapping satisfying

/
Hap(=22) s £5)—£0)(E) Z H(air syl iinyz (£ (3.9)

Jorall x,y € X and t > 0. Then the limit 3(x) = lim,, . 2"f(35) exists, for all x € X, and
defines a unique CJA mapping I : X — Y such that

(2" -2)¢
/
Mt @-3@)(8) = oz, <ﬁ )

forallxe X and t>0.

Proof Leta =27 and ¢ : X> — Z be a mapping defined by ¢(x, y,z) = (||| + |1 + llz]|")zo-
Then, from Theorem 3.1, the conclusion follows. O

Theorem 3.2 Let X be a real linear space, (Z, i/, min) be an RN-space and ¢ : X> — Z be
a function such that there exists 0 < « < 2 such that ,u;)(lezy,ZZ)(t) > u;(p(x,y’z)(t),for allx e X
andt >0, and

Jim gm0 (272) = 1,
forall x,y,z€ X and t > 0. Let (Y, u, min) be a complete RN-space. If f : X — Y be a map-
ping satisfying (3.2). Then the limit J(x) = lim,,—, oo f%:x) exists, for all x € X, and defines a
unique CJA mapping S : X — Y such that

17300 = My (2 = 0)2), (3.10)
forallxe X and t > 0.
Proof 1t follows from (3.4) that

e g, (0 = Poz,20) (22)- (3.11)

Replacing x by 2"x in (3.11), we obtain

L 2n+1t
/ n+
:u“f(ZV‘*lx) _f(2”x) (t) > M(p(2”x,2”+lx,2”x) (2 t) > Mw(x,Zx,x) ( o ) .

n
on+l P

The rest of the proof is similar to the proof of Theorem 3.1. d

Corollary 3.2 Let X be a real normed linear space, (Z, /', min) be an RN-space and
(Y, u, min) be a complete RN-space. Let r be a positive real number with 0 <r<1,zy € Z
and f : X — Y be a mapping satisfying (3.9). Then the limit J(x) = lim,_, « A %:x) exists, for
all x € X, and defines a unique CJA mapping I : X — Y such that

2-2"¢
!
Mf(x)—ﬁ(x)(t) Z Mjxppzo (m )

forallx e X and t > 0.
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Proof Leta =2"and ¢ : X3 — Z be a mapping defined by ¢(x,,2) = (||x[|” + ly|” + llz]|")zo-
Then, from Theorem 3.2, the conclusion follows. O

Theorem 3.3 Let X be a linear space, (Y, i, Tyr) be a complete RN-space and ® be a map-
ping from X3 to D* (®(x,,z) is denoted by ®@,,, ) such that there exists 0 < o < % such that

cD2ac,2y,22(t) S cDx,y,z(at): (312)
forallx,y,ze X andt>0. Let f : X — Y be a mapping satisfying
Mg 22 1) ) 0)(8) = Payz(t), (3.13)

Jorallx,y,z € Xand t > 0. Then, for all x € X, 3(x) := lim,,,  2"f (53) existsand 3 : X — Y
is a unique CJA mapping such that

M) -3 () = P (@), (3.14)
forallx e X and t > 0.
Proof Putting y = 2x and z = x in (3.13), we have

af(3)—f () () = Pun (é), (3.15)

for all x € X and ¢ > 0. Consider the set S := {g: X — Y} and the generalized metric d in §
defined by

dlf,g) = ) inf | [1g()-neo () = Proxn(t), ¥x € X, £ > 0}, (3.16)

€(0,00)

where infJ = +00. It is easy to show that (S, d) is complete (see [39], Lemma 2.1). Now, we
consider a linear mapping J : (S,d) — (S, d) such that

Jh(x) i= 2h<%‘), (3.17)

for all x € X. First, we prove that / is a strictly contractive mapping with the Lipschitz con-
stant 2c. In fact, let g, 1 € S be such that d(g, 1) < &. Then we have pg() () (6t) = Py 2xx(8),
forallx € X and ¢t > 0, and so

Wigto)—thtx) (REL) = [hog(x) an(z)(2aet) = Wg(x) p(x)(et)

> Py,

X
)

(at)
Z qu,Zx,x(t)’
for all x € X and ¢ > 0. Thus d(g, h) < ¢ implies that d(Jg,/h) < 2. This means that

d(Jg,Jh) <2ad(g, h), for all g, h € S. It follows from (3.15) that d(f, Jf) < o. By Theorem 1.3,
there exists a mapping A : X — Y satisfying the following:
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(1) J is a fixed point of ], that is,

1
w(%) - 336, (3.18)

for all x € X. The mapping 3 is a unique fixed point of J in the set 2 = {h € S: d(g, h) < 00}.
This implies that J is a unique mapping satisfying (3.18) such that there exists u € (0, 00)
satisfying (-5 (Ut) > Pyoxn(t), forallx € X and £ > 0.

(2) dJ"f,3) — 0 as n — oo. This implies the equality lim, . 2"f(57) = S(x), for all
xeX.

(3)d(f,3) < ’i(leﬁ with f* € €, which implies the inequality d(f, J) < 5 and so

(1-2a)t
Mf(x)—?s(x)(t) > cDx,Zx,x(T »

for all x € X and ¢ > 0. This implies that the inequality (3.14) holds. On the other hand

t
Hampsey g2 O Z P a2 (2n>
forallx,y,z € X, £ >0and n > 1. By (3.12), we know that ® A (Zin) > CDx,y,z(ﬁ). Since

lim,— o0 xyz( ) 1,forallx,y,z € Xand ¢t > 0, we have uzm xeysz) s(x)—?s(y)—;‘s(z)(t) =1, for
allx,y,ze X and ¢t > 0. Thus the mapping J : X — Y satisfying (1 1) Furthermore

I(2x) — 23(x) = nlingo 2”f<2 > 2711;11010 2”f< )

= 2[)1{33"7(%) _nlggozf( )}

=0.

This completes the proof. g

Corollary 3.3 Let X be a real normed space, 0 > 0 and r be a real number with r > 1. Let
f:X — Y be a mapping satisfying

t

XHy+z , 3.19
Haf G55 S 01 ()—t+9(||x||f+||y||f+||z||r> (3.19)

Jorallx,y,z€ X andt > 0. Then J(x) = lim,_,  2"f (557 exists, forallx € X,and 3 : X — Y
is a unique CJA mapping such that

(2" -2)t
3w = ,
(21 =2)t+ (27 +2)0 x|
forallxe X and t>0.
Proof The proof follows from Theorem 3.3 if we take ®,,,.(¢) = WM’ for all

x,9,z € X and £ > 0. In fact, if we choose o = 277, then we get the desired result. O
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Theorem 3.4 Let X be a linear space, (Y, u, Ty;) be a complete RN-space and ® be a
mapping from X3 to D* (®(x,y,2) is denoted by ®b,.,2) such that for some 0 < o < 2,
() < Dyy (at), forall x,y,z € X and t > 0. Let f : X — Y be a mapping satisfying

Dy,
2722

(3.13). Then the limit 3(x) := limnﬁooﬂ;:x) exists, for all x € X, and 3 : X — Y is a unique

CJA mapping such that

:uf(x)—ﬁ(x)(t) > (Dx,2x,x((2 - Ol)t), (320)
forallxe X and t>0.

Proof Putting y = 2x and z = x in (3.13), we have

M/@—f(x)(t) > ¢x,2x,x(2t): (321)

for all x € X and ¢ > 0. Let (S,d) be the generalized metric space defined in the proof
of Theorem 3.1. Now, we consider a linear mapping J : (S,d) — (S,d) such that Jh(x) :=
%h(2x), for all x € X. It follows from (3.21) that d(f, Jf) < % By Theorem 1.3, there exists a
mapping J: X — Y satisfying the following:

(1) 3 is a fixed point of ], that is,

J(2x) = 23(x), (3.22)

for all x € X. The mapping 3 is a unique fixed point of J in the set 2 = {h € S: d(g, h) < 00}.
This implies that < is a unique mapping satisfying (3.22) such that there exists u € (0, 00)
satisfying (-5 (Ut) > Pyox(t), forallx € X and £ > 0.
(2) d(J"f,3) — 0 as n — oo. This implies the equality
f(2"x)

nlggo 21 = 3@,

for all x € X.

(3)d(f,3) < dl(f{%f ) with f € @, which implies the inequality /Lf(x)_g(x)(ﬁ) > D, 0, x(t), for

all x € X and ¢ > 0. This implies that the inequality (3.20) holds. The rest of the proof is
similar to the proof of Theorem 3.3. O

Corollary 3.4 Let X be a real normed space, 0 > 0 and r be a real number with 0 <r < 1.

f2"%)
on

Letf : X — Y be a mapping satisfying (3.19). Then the limit J(x) = lim,—, » exists, for

allx e X, and I : X — Y is a unique CJA mapping such that

(2-2)¢
(2=2"t+ (2" +2)0|x|I”’

Mf)-360(£) >

forallxe X and t>0.

Proof The proof follows from Theorem 3.4 if we take &, .(¢) = 5 for all

t
6 ([lxl1"+ [y 17+ 121"
x,9,z € X and ¢ > 0. In fact, if we choose « = 27, then we get the desired result. O
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