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Abstract
In the present paper we consider ageing properties in a deterioration model in which
the stochastic process measuring deterioration is a process with independent
increments. Preservation of increasing and decreasing failure rates, as well as
decreasing reversed hazard rate, is considered. We also take into account the
preservation of log-concave and log-convex densities. Our main results are based on
technical results concerning preservation of log-concave and log-convex functions
by positive linear operators, and they include the study of stochastic ordering
properties among the random variables in the process.
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1 Introduction
Deterioration models belong to the topics of interest in reliability theory. They aim to
describe how a mechanism deteriorates with age. A convenient way in modeling the un-
certainty in time-dependent deterioration is by regarding it as a stochastic process. That
is, deterioration in time of a device is described by a stochastic process (X(t), t ≥ ), in
which each X(t) represents the degree of deterioration at an instant t. Gamma processes
have beenmainly considered tomodel degradation in time [–]. Also, the so-called shock
models are appropriate if deterioration is caused due to external shocks occurring at cer-
tain instants in time (see, for instance, []). Although it seems more realistic to consider
processes with non-negative increments in order tomeasure deterioration, Brownianmo-
tion has also been considered (geometric, with drift, or alone as an additional term mea-
suring errors; see [, ], and the references therein). General Markovian processes have
also been considered (see [] and the references therein).
In a deterioration model, we assume that the system breaks down when the degree of

deterioration attains a certain non-negative threshold Y (which we will assume to be ran-
dom and independent of the process (X(t), t ≥ )), that is, the lifetime of the device is

ρ = inf
{
t ≥  : X(t)≥ Y

}
.
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As usual, for a random variable Y , we will denote by FY the distribution function of
this random variable and F̄Y :=  – FY will stand for its survival function. Also, from
now on, we shall use the words decreasing and increasing instead of non-increasing and
non-decreasing, respectively. We will assume that (X(t), t ≥ ) has increasing and right-
continuous paths. In this case, as in [, p.], we can write

F̄ρ(t) := P(ρ > t) = E
[
F̄Y

(
X(t)

)]
; Fρ(t) := P(ρ ≤ t) = E

[
FY

(
X(t)

)]
, t ≥ . ()

The analytical form of previous functions is usually not easy to deal with, although several
expressions are known for specific models (see [] for the geometric Brownian motion, as
well as for the gamma process when we have a fixed threshold). Then it seems natural to
study under which conditions ρ inherits from Y the common reliability properties stud-
ied in the literature. In reliability theory, the principal ageing properties considered for a
random variable involve the study of the log-concavity (positive ageing) or log-convexity
(negative ageing) of a certain function (which usually is the distribution function, survival
function or density function). For instance, if F̄Y is log-concave, the random variable is
said to be increasing failure rate (IFR), whereas if it is log-convex, we have the decreasing
failure rate property (DFR). Moreover, Y is said to be the decreasing reversed hazard rate
(DRHR) if FY is log-concave. We will recall the properties we are going to use in Defi-
nition ., although a more detailed discussion can be found in [, Ch. ], for instance.
In the context of deterioration models, preservation of common ageing properties for a
fixed threshold has been studied, for instance, in [] in a context of pure-jump processes.
As far as we know, the problem of a random threshold was firstly considered by Esary et
al. in a context of shock models [] and by Abdel-Hameed in several papers [, , ].
In [] a gamma wear process was considered, whereas in [, ] results are obtained for
a pure-jump wear processes. See also [] for a recent review. Our aim in this paper is
to address this question for processes with independent increments, thus including Lévy
processes. To this end, we use the representation given in () and apply techniques based
on the preservation of log-convexity and log-concavity by positive linear operators (see
[, ]). These techniques involve the study of stochastic order properties of the random
variables in the process. This approach is different from that used in [] for pure-jump
Lévy processes, which is based on the underlying Lévy measure of the process. Our re-
sults generalize previous ones for a compound Poisson process (see Remark .), as well
as for a gamma process (see Remark . and Remark .). On the other hand, it is usual
that preservation results of positive ageing properties (IFR, for instance) hold true under
more restrictive assumptions than their analogous negative ageing properties (DFR). This
can be seen in [], Theorem ., in which for the preservation of the IFR property the re-
quirement is a log-concave density for the Lévymeasure, whereas for the DFR property no
assumption on this density is needed. Our approach also gives different conditions for the
preservation of the IFR and DFR property (see Proposition .(a) and Corollary ., re-
spectively, in Section ).We also include preservation results concerning the DRHR prop-
erty (Proposition .(b)). This property is of recent interest and has not been dealt with in
the afore-mentioned papers. It should be pointed out that the flexibility of our approach
allows us to add deterministic trends without making an extra effort. This approach also
allows us to prove stronger results, having to do with the log-convexity or log-concavity
of the density function (Section ).
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2 Preliminaries
Asmentioned in the Introduction, the concept of log-concavity will play an important role
in our results. We first recall this concept.

Definition . Let I ⊆ R be a convex set. A function f : I → [,∞] is said to be log-
concave on I if for all x, y ∈ I and ≤ α ≤  it verifies that

f
(
αx + ( – α)y

) ≥ f (x)αf (y)–α , ()

or equivalently log f is concave (in the interval in which f is strictly positive).

Remark . If the inequality in the previous definition is reversed, we obtain the dual
concept of log-convexity.

Log-concavity is an important concept in reliability theory. Actually the principal age-
ing classes considered in the literature can be defined in terms of log-concavity or log-
convexity (see, for instance, [, Ch. ]).We recall the definitions of themain ageing classes
to be used along the paper.

Definition . Let X be a non-negative random variable. X is said to be:
(a) an increasing failure rate (IFR) if F̄X is log-concave on R;
(b) a decreasing reversed hazard rate (DRHR) if FX is log-concave on R;
(c) log-concave if X is absolutely continuous and its density fX is log-concave on (,∞).
If in parts (a) and (c) log-concavity is replaced by log-convexity we have the decreasing

failure rate (DFR) and log-convex ageing classes, respectively. For the DFR property the
log-convexity has to be restricted to [,∞).

Remark . It is interesting to point out that X log-concave ⇒ X IFR and DRHR, and
that X log-convex ⇒ X DFR ⇒ X DRHR (see [, p.]).

It is reasonable to assume that, in a deterioration process, each X(t) is non-negative, and
that the degree of deterioration increases with t (in a certain stochastic order). In the next
definition we recall the different stochastic orders we are going to use in our deterioration
models. For a more detailed discussion, see [, ], for instance.

Definition . Let X and Y be two random variables. X is said to be smaller than Y in
(i) the usual stochastic order (written as X ≤st Y ) if F̄X(x)≤ F̄Y (x), for all x ∈R;
(ii) the hazard rate order (X ≤hr Y ) if F̄Y (t)/F̄X(t) is increasing in t;
(iii) the reversed hazard rate order (X ≤rh Y ) if FY (t)/FX(t) is increasing in t;
(iv) the likelihood ratio order (X ≤lr Y ) if X and Y are absolutely continuous with

respect to some dominating measure μ, with respective densities fX and fY such
that fY (t)/fX(t) is increasing in t.

Remark . The relations among the previous stochastic orders are as follows (see [,
p.]):
• X ≤lr Y ⇒ X ≤hr Y and X ≤rh Y ;
• Either X ≤hr Y or X ≤rh Y ⇒ X ≤st Y .

http://www.journalofinequalitiesandapplications.com/content/2014/1/200
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For a given process (X(t), t ≥ ), we will use the notation X(t) ↑· to indicate that X(t) is
increasing in the · stochastic order, for all t ≥  (and X(t) ↓· if it is decreasing). From now
on, wewill use the notationX =st Y to indicate that two random variablesX and Y have the
same distribution. In next definition we will describe the properties we will assume for the
process (X(t), t ≥ ), which are slightlymore general than the ones defining a non-negative
Lévy process.

Definition . Let (X(t), t ≥ ) be a stochastic process. We will say that this process be-
longs to the class IPII (independent positive increasing increments) if it verifies:
. ≤ X(s)≤ X(t) a.s., for  ≤ s < t;
. the process has independent increments, that is: given  ≤ t < t < · · · < tn, the

random variables X(t),X(t) –X(t), . . . ,X(tn) –X(tn–) are independent;
. the increments of the process satisfy

X(t + h) –X(t) ↑st in t for any fixed h > ;

. (X(t), t ≥ ) is continuous in probability, that is, lims→t P(|X(t) –X(s)| > ε) = , for
all ε > .

If condition  is replaced by X(t+h)–X(t) ↓st in t, we will say that the process belongs to
the IPDI (independent positive decreasing increments), whereas if the process belongs
to IPDI ∩ IPII , that is,

X(u + h) –X(u) =st X(v + h) –X(v), u, v ≥ ,h > , ()

we will say that the process belongs to the IPSI class (independent positive stationary
increments).

Particular examples of processes satisfying the above properties, which will be used
along the paper, are the following:
• The standard Poisson process (N(t), t ≥ ), which is a process in the IPSI class such
that N() = , and such that, for each t > , N(t) has Poisson distribution of mean t
(see [, p.]).

• The standard gamma process (S(t), t ≥ ), which is a process in the IPSI class such
that S() = , and such that, for each t > , S(t) has gamma density
f (x) := �(t)–xt–e–x, x >  (see, for instance, [, p.]).

Remark. Note that the processes considered inDefinition . admit always a represen-
tation with right-continuous paths [, p.], so that the expressions given in () hold true.
Note also that ifX() = , theIPSI class coincideswith Lévy processeswith non-negative
increments (or subordinators [, p.]). In fact, the processes we are going to deal with
mainly (compound Poisson process, cf. [, p.] and gamma process) belong to this class.
Moreover, it is readily seen (we include the proof of this fact in Lemma .) that for a given
process (X(t), t ≥ ) in the IPSI class, the time-transformed process (X(a(t)), t ≥ ),
with a being an increasing and convex function, belongs to the IPII class, whereas if a
is increasing and concave, the process belongs to the IPDI class. We will use this fact in
order to obtain results concerning non-homogeneous Poisson processes (Proposition .)
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and non-homogeneous gamma processes (Proposition .), which are time-transformed
versions of the standard Poisson and gamma processes, respectively.

Finally, we state a technical result, which can be found in [] and will play an important
role in our proofs.

Theorem . ([], Thm. .) Let (X(t), t ≥ ) be a stochastic process satisfying condition
 in Definition .. Let f be the set of measurable functions f : [,∞) → [,∞) such that
Ef [X(t)] <∞, t ≥ . Let T be an operator defined as

Tf (t) = Ef
[
X(t)

]
, t ≥ .

Assume that the following assumptions are verified:
. f is log-concave;
. Tf is continuous on (,∞).
(a) Further assume that f is decreasing. If (X(t), t ≥ ) is in the class IPII and X(t) ↑rh,

then Tf is a log-concave and decreasing function on (,∞).
(b) Further assume that f is increasing. If (X(t), t ≥ ) is in the class IPDI and X(t) ↑hr

then Tf is a log-concave and increasing function on (,∞).
(c) If (X(t), t ≥ ) is in the class IPSI and X(t) ↑lr, then Tf is a log-concave function on

(,∞).

Remark . If Tf is continuous at the origin we can extend the log-concavity property
to the interval [,∞), as () at  as endpoint can be deduced by taking the limit as x ↓ .

Remark . In [], Thm. .(c) there is an additional condition. If, for f : [,∞) →
[,∞), we call J := {x ≥  | f (x) > } (which is an interval if f is log-concave), the addi-
tional condition was that the set J∗ := {t >  | P(X(t) ∈ J) > } had to be an interval. But the
previous condition is always verified if X(t) ↑lr, so that it does not need to be checked. In
the next lemma we give the proof of this fact.

Lemma . Let (X(t), t ≥ ) be a stochastic process such that X(t) ↑lr and let J ⊆ R be an
interval. Then J∗ := {t ≥  | P(X(t) ∈ J) > } is an interval.

Proof To show the assertion we will prove that

P
(
X(t) ∈ J

)
P
(
X(t) ∈ J

)
> ,  ≤ t < t ⇒ P

(
X(t) ∈ J

)
>  for all t < t < t.

We will use a reduction to absurd argument. Assume that P(X(t) ∈ J)P(X(t) ∈ J) > , but
P(X(t) ∈ J) = , for some t < t < t.Wewill use the property (cf. [, p.]) that if X ≤lr X,
and A and B are Borel sets in [,∞), then

P(X ∈ B)P(X ∈ A)≤ P(X ∈ A)P(X ∈ B), if A≤ B, ()

where A ≤ B means that x ≤ y for all x ∈ A and y ∈ B. We will denote by Jc+ the set of real
numbers above J and by Jc– the set of real numbers below J . Using our assumption, and

http://www.journalofinequalitiesandapplications.com/content/2014/1/200


Sangüesa et al. Journal of Inequalities and Applications 2014, 2014:200 Page 6 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/200

applying () with X := X(t), X := X(t), A = Jc– and B = J , we obtain

P
(
X(t) ∈ J

)
P
(
X(t) ∈ Jc–

)
=  ⇒ P

(
X(t) ∈ Jc–

)
= , ()

whereas () with X := X(t), X := X(t), A = J and B = Jc+ implies that

P
(
X(t) ∈ Jc+

)
P
(
X(t) ∈ J

)
=  ⇒ P

(
X(t) ∈ Jc+

)
= . ()

Then () and () are contradictory with the fact that P(X(t) ∈ J) = , and the conclusion
follows. �

3 Preservation of IFR, DRHR, and DFR classes for wear processes with
independent increments

In order to ensure the continuity condition in Theorem., wewill assume that Y does not
have common points with positive mass with (X(t), t > ). This can be stated as follows:

P
(
X(t) ∈D

)
=  for all t > ,where D :=

{
x ≥  | P(Y = x) > 

}
. ()

Our first results, concerning to the classes IFR and DRHR, are based on the following.

Proposition . Let (X(t), t ≥ ) be a wear process with random threshold Y satisfying
condition (). Let ρ be the failure time of the device. Then we have:
(a) If (X(t), t ≥ ) is in the IPII class with X() = , X(t) ↑rh and Y is IFR, then ρ is

IFR.
(b) If (X(t), t ≥ ) is in the IPDI class, X(t) ↑hr and Y is DRHR, then ρ is DRHR.

Proof Condition () and () ensures us that Fρ and F̄ρ are continuous functions on (,∞)
[, Lem. .]. The fact that Fρ and F̄ρ are right-continuous and condition  in Defini-
tion . allow us to extend the continuity to [,∞).
To show part (a), the IFR condition for Y means that F̄Y is log-concave. Thus, by (),

Theorem .(a) and Remark . we find that F̄ρ is log-concave on [,∞). To extend this
property toR, note that an IFR distribution cannot have positive mass at  (see [, p.]).
The fact that X() =  guarantees this property for ρ , as by () F̄ρ() = F̄Y () = . Thus, us-
ing this property, the log-concavity property for F̄ρ is extended toR, thus showing part (a).
For part (b), the DRHR condition for Y means that FY is log-concave, and by (), Theo-

rem .(b), and Remark . we find that Fρ is log-concave on [,∞). As Fρ(t) = , t < ,
the log-concavity property is trivially extended to R. �

Remark . Recall that X ≤lr Y implies both X ≤hr Y and X ≤rh Y . So that X(t) ↑lr, to-
gether with (X(t), t ≥ ) in the class IPSI and X() =  are sufficient conditions for the
preservation of both the IFR and the DRHR property.

In our next results we provide conditions to check log-concavity when wemodify a pro-
cess (X(t), t ≥ ) in the IPSI class by adding a deterministic trend and applying a time
transformation. To this end, let ai : [,∞) → [,∞), i = ,  be two increasing and contin-
uous functions. Consider the modified process:

X∗(t) = a(t) +X
(
a(t)

)
, t ≥ . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/200
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First of all we have the following.

Lemma . Let (X(t), t ≥ ) be a process in the IPSI class. Consider (X∗(t), t ≥ ) as
defined above. Then we have:
(a) If a and a are increasing and convex functions, then (X∗(t), t ≥ ) is in the IPII

class.
(b) If a and a are increasing and concave functions, then (X∗(t), t ≥ ) is in the IPDI

class.

Proof To show part (a), note that conditions , , and  in Definition . are clear by the
corresponding ones for (X(t), t ≥ ), taking into account that a and a are increasing and
continuous. To verify condition , call

ih(t) := a(t + h) – a(t), Ih(t) := X
(
a(t + h)

)
–X

(
a(t)

)
, t ≥ ,h > . ()

We have

X∗(t + h) –X∗(t) = ih(t) + Ih(t). ()

Our aim is to show that

ih(s) ≤ ih(t), Ih(s) ≤st Ih(t),  ≤ s < t,h > . ()

The first inequality is obvious, as a is convex. For the second inequality, call h(t) = a(t +
h) –a(t), t ≥ . As a is convex, we see that h(·) is increasing. On the other hand if we use
() for the (X(t), t ≥ ) process with u = a(s), v = a(t) and h = h(s), we obtain

Ih(s) = X
(
a(s) + h(s)

)
–X

(
a(s)

)
=st X

(
a(t) + h(s)

)
–X

(
a(t)

)
≤st X

(
a(t) + h(t)

)
–X

(
a(t)

)
= Ih(t),

in which, in the last inequality, we have used that h is increasing and condition  for the
(X(t), t ≥ ) process (non-negative increments a.e.). This proves the second inequality in
(). Thus, as the stochastic order is preserved under addition of a non-negative constant,
we deduce from () and () that

X∗(s + h) –X∗(s) = ih(s) + Ih(s)≤st ih(t) + Ih(t) = X∗(t + h) –X∗(t),  ≤ s < t,

so that condition  is proved, thus concluding part (a).
Part (b) is proved taking into account that the inequalities in () are reversed if ai, i = , 

are concave functions. �

Using the two previous results we have the following result concerning a non-homoge-
neous compound Poisson process.

Proposition . Let X∗(t) be a non-homogeneous compound Poisson wear process, that
is,

X∗(t) =
N∗(t)∑
i=

Xi,

http://www.journalofinequalitiesandapplications.com/content/2014/1/200
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in which (N∗(t), t ≥ ) is a non-homogeneous Poisson process with mean function (a(t) :=
E[N∗(t)], t ≥ ) and (Xn)n=,,... is a sequence of independent non-negative identically dis-
tributed random variables, independent of the process. Assume that Y , the random thresh-
old and (X∗(t), t ≥ ) satisfy condition (). Let ρ be the lifetime of the device. We have the
following.
(a) Assume that a is a convex function with a() = , Xi are DRHR and Y is IFR. Then

ρ is IFR.
(b) Assume that a is a concave function, Xi are IFR and Y is DRHR. Then ρ is DRHR.

Proof Part (a) follows by Proposition .(a). First of all, note that (X∗(t), t ≥ ) is in the
IPII class. Actually, for a non-homogeneous Poisson process,N∗(t) =N(a(t)), in which
(N(t), t ≥ ) is a standard Poisson process. Thus, X(t) =

∑N(t)
i= Xi is a compound Poisson

process and therefore it is in the IPSI class, as mentioned in Remark .. As X∗(t) =
X(a(t)), the assertion follows by Lemma .(a). Secondly we will prove that X∗(t) ↑rh.
This follows as, if s < t, then N(a(s)) ≤lr N(a(t)) (cf. [, p.]) and, by this property we
deduce for X being DRHR

N(a(s))∑
i=

Xi ≤rh

N(a(t))∑
i=

Xi

(see [, Thm. .C.]). Hence, the hypotheses in Proposition .(a) are satisfied. Proof of
part (b) is similar, using Proposition .(b), taking into account Lemma .(b) and again
[, Thm. .C.]). �

Remark . Asmentioned before, Abdel-Hameed gave general conditions for a Lévy pro-
cess in order to preserve the IFR property (see [, Thm. .(i)]). In particular for a com-
pound Poisson process these conditions require that X be log-concave (as the Lévy mea-
sure in the compound Poisson process is proportional to the distribution of X). Thus, in
this case, Proposition .(b) gives more general assumptions, under the requirement of
X to be DRHR. Note that the class DRHR contains, in particular, both log-concave and
log-convex distributions. In fact, X being log-concave implies that X is both IFR and
DRHR (recall Remark .), so that, for a homogeneous Poisson process, this is a sufficient
condition for the preservation of both the IFR and the DRHR property.

The next result provides preservation properties for the modified process (X∗(t), t ≥ )
when the random variables in the process satisfy appropriate ageing properties. This, in
particular, will allow us to deal with non-homogeneous gamma deterioration processes
with trend.

Proposition . Let (X(t), t ≥ ) be a process in the IPSI class. Consider a wear process
in which (X∗(t), t ≥ ) is as in (). Assume that Y , the random threshold and (X∗(t), t ≥ )
satisfy condition (). Let ρ be the lifetime of the device.We have the following.
(a) Assume that X(t) are DRHR for all t and X() = . Further, assume that a and a are

increasing and convex functions, with a() = a() =  and Y is IFR. Then ρ is IFR.
(b) Assume that X(t) are IFR for all t, ai, i = ,  are increasing and concave functions

and Y is DRHR. Then ρ is DRHR.
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Proof Part (a) will follow using Proposition .(a). First of all, (X∗(t), t ≥ ) is in the IPII
class due to Lemma.(a). To show thatX∗(t) ↑rh, note that, ifX(t) has theDRHRproperty,
then X(t) ↑rh (this is an immediate application of [, Lem. .B.] and the property of
stationary and independent increments for (X(t), t ≥ )). Then we have for s < t

a(s) +X
(
a(s)

) ≤rh a(t) +X
(
a(s)

) ≤rh a(t) +X
(
a(t)

)
. ()

The first inequality is obtained using Lemma [, Lem. .B.]) with X := a(s), Y := a(t)
and Z := X(a(s)), whereas the last inequality follows as the rh order is preserved by in-
creasing transforms [, Thm. .B.]). Thus, the conditions in Proposition .(a) follow,
since X∗() = , which proves part (a).
The proof of part (b) is very similar, using Proposition .(b). Note that by Lemma .(b)

we find that (X∗(t), t ≥ ) is in the IPDI class. Moreover, X(t) ↑hr by [, Lem. .B.].
In this case, () holds if we replace the rh order by the hr order, using in this case [,
Lem. .B.] and [, Lem. .B.]. �

Corollary . Let (S(t), t ≥ ) be a gammawear process.Consider a wear process in which
(S∗(t), t ≥ ) is as in (). Let ρ be the lifetime of the device.
(a) If a and a are increasing and convex functions, with a() = a() =  and Y is IFR,

then ρ is IFR.
(b) If a(t) =  (no trend), a is increasing and concave and Y is DRHR, then ρ is DRHR.

Proof Part (a) is an immediate application of Proposition .(a). First of all note that a
gamma process is in the IPSI class (recall Remark .). Moreover, the random variables
in (S(t), t ≥ ) are absolutely continuous, so that condition () is satisfied. Finally, note that
in a gamma process, the S(t) are DRHR. This follows recalling Remark . as, if t ≤ , S(t)
has log-convex density, whereas if t ≥ , S(t) has log-concave density (see [, p.]). Then
the conditions in Proposition .(a) hold and the result follows.
Part (b) follows as a consequence of Proposition .(b). In fact, note that S(t) ↑lr (see

[, p.]), and this implies immediately that S∗(t) ↑lr. Thus, the conditions in Proposi-
tion .(b) follow as, recalling Remark ., S∗(t) ↑hr and, using Lemma .(b), (S∗(t), t ≥ )
is in the IPDI class. �

Remark . Abdel-Hameed [] proved the IFR property for non-homogeneus gamma
wear process, when themean function is convex. Observe that the previous result extends
this one, by adding a convex deterministic trend.

Remark . Note that, for the gamma process, we cannot proceed in a similar way to
obtain a preservation result for the DRHR property, when we have a deterministic trend.
In fact, if the IFR condition for X(t) in Proposition .(b) is not satisfied, we cannot ensure
that X∗(t) ↑hr. In fact, take S∗(t) = t + S(t), a gamma process with linear trend. It is readily
seen by calculus that S∗(s)�hr S∗(t) if  < s < t <  (the interval in which the IFR property
fails).

Now, we focus on the DFR property. This property will follow immediately as a con-
sequence of part (a) in Proposition . (part (b) will be used in the preservation of log-
convex densities). Themethod of proof (with similar ideas to that in [, Thm. .]) differs
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substantially from the one used to obtain the preservation of the IFR property. In fact, for
the DFR property we only need the stochastic ordering among the variables in the model,
whereas for the IFR preservation property a stronger order (the rh one) was required in
Proposition .(b).

Proposition . Let (X(t), t ≥ ) be a wear process. Assume that (X(t), t ≥ ) is in the
IPDI class.We have the following.
(a) Let G : [,∞)→ [,∞) be a decreasing and log-convex function, with G(x) > , x ≥ 

and right-continuous at x = . Then EG[X(t)] is a log-convex function on [,∞).
(b) Let G : (,∞)→ [,∞) be a decreasing and log-convex function, with G(x) > ,

x > . Assume that P(X(t) = ) =  and that EG[X(t)] < ∞, for all t > . Then
EG[X(t)] is a log-convex function on (,∞).

Proof Let I = [,∞) (case (a)) or I = (,∞) (case (b)). Note that the log-convexity of G on
I implies that G is continuous on I . Thus, using conditions  and  in Definition . and
similar arguments as in [, Lem. .], our conditions ensure the continuity of TG(t) :=
EG[X(t)] on I . Note that this last function is log-convex if and only if h = logTG(t) is
convex. But using the fact (see [, Exer. , p.]) that for a continuous function h we have

h is convex ⇔ h
(
s + t


)
≤ h(s) + h(t)


, s < t,

then we see, using h = logTG(t) and taking anti-logarithms, that

TG(t) is log-convex ⇔ TG
(
s + t


)
≤ TG(s)/TG(t)/, s < t. ()

On the other hand, let s < t. Define U := X((s + t)/) – X(s) and V := X(t) – X((s + t)/).
Using the property of independent increments, we can write

TG
(
s + t


)
= E

[
G

(
X(s) +U

)]
=

∫ ∞


E
[
G(z +U)

]
dFX(s)(z). ()

CallGz(·) := G(z+·)
G(z) , z ∈ I . Note thatGz is a decreasing and log-convex function on [,∞),

with Gz(x) > , x ≥ , due to assumptions on G. Using this property we can easily show
that

E
[
G(z +U)

] ≤G/(z)E/[G(z +U +V )
]
. ()

Indeed, as Gz is log-convex and Gz() = , we have Gz(x + y) ≥ Gz(x)Gz(y), x, y ≥  (this
follows as Gz(x+ y) is TP (see [, p.])). Using this property and the fact that U and V
are independent, we can write

E
[
Gz(U +V )

] ≥ E
[
Gz(U)

]
E
[
Gz(V )

] ≥ E[Gz(U)
]
,

the last inequality due to the fact that the process is in the IPDI class (and therefore
V ≤st U) and that Gz is decreasing. From the previous inequality we deduce easily ().
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Using (), () and Cauchy-Schwarz inequality, we obtain

TG
(
s + t


)
≤

∫ ∞


G/(z)E/[G(z +U +V )

]
dFX(s)(z)

≤ E/[G(
X(s)

)]
E/[G(

X(t)
)]

= TG/(s)TG/(t).

Thus, from () we deduce the log-convexity of TG(t) = EG(X(t)). �

As an immediate consequence of part (a) in the previous result, we have the following.

Corollary . Let (X(t), t ≥ ) be a process in the IPSI class. Consider a wear process
in which (X∗(t), t ≥ ) is as in (), with a and a being increasing and concave functions.
Assume that Y , the random threshold and (X∗(t), t ≥ ) satisfy condition (). Let ρ be the
lifetime of the device. If Y is DFR, then ρ is DFR.

Proof The result is immediate by Proposition .. First of all, our conditions ensure
that (X∗(t), t ≥ ) is in the IPDI class, due to Lemma .(b). Secondly, due to (), we
have F̄ρ(t) = E[F̄Y (X∗(t))]. As Y is DFR, then G := F̄Y satisfies assumptions on Proposi-
tion .(a), from which we deduce the log-convexity of F̄ρ . �

Remark . Observe that this result generalizes Theorem .(iii) and Theorem . in
[], as we are able to add a deterministic trend.

4 Preservation of log-concave and log-convex classes for subordinators
The previous approach allows us to show the preservation of log-concave and log-convex
classes under certain assumptions of the wear process (X(t), t ≥ ). First of all, assume that
this process is a subordinator (recall Remark .) and that the process is also centered (that
is, E[X(t)] = t). In this case, it is well known (cf. [, p.]) that the Laplace transform of
(X(t), t ≥ ) can be written as

Ee–uX(t) = e–tuψ(u), ψ(u) := Ee–uUT , u ≥ , ()

whereU and T are independent random variables such thatU is uniformly distributed on
[, ] andT is non-negative. The random variableT , which determines the process, will be
called the characteristic random variable of (X(t), t ≥ ). Using this fact, if we consider U
and T as before, being independent of (X(t), t ≥ ), for any absolutely continuous random
variable Y , we have the following identity (cf. [, Prop. ]):

d
dt

EFY
(
X(t)

)
= EfY

(
X(t) +UT

)
, t > , ()

provided that the expectation on the right-hand side is finite. Observe that the process
(X(t), t ≥ ), where X(t) = X(t) + UT , belongs to the IPSI class. Therefore, as an im-
mediate consequence of () and Proposition .(b), the log-convexity of ρ is guaranteed,
provided that Y has the analogous property. Moreover, if we transform a centered subor-
dinator (X(t), t ≥ ) into a wear process X∗(t) := X(a(t)), in which a(t) is an increasing
and differentiable function, the chain rule allows us to write

d
dt

EFY
(
X∗(t)

)
= a′

(t)EfY
(
X

(
a(t)

)
+UT

)
, t > . ()
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Note firstly that, for results concerning log-concavity or log-convexity we will always as-
sume that a() = , in order to guarantee that ρ does not have positive mass at , and
therefore it is an absolutely continuous random variable. In fact, note that under this as-
sumption, we have by (), and by the fact that X() =  (as the process is a centered sub-
ordinator), P(ρ = ) = EFY (X()) = FY () = .
With respect to log-convexity, we have the following result.

Proposition . Let (X(t), t ≥ ) be a centered subordinator. Consider a wear process in
which (X∗(t), t ≥ ) is defined as X∗(t) = X(a(t)), and let Y be the random threshold. Let
ρ be the lifetime of the device. If Y is log-convex and a is differentiable, with a() = , a′



being non-negative, decreasing, and log-convex, then ρ is log-convex.

Proof Applying () and (), we have

d
dt

Fρ(t) =
d
dt

EFY
(
X∗(t)

)
= a′

(t)EfY
(
X

(
a(t)

)
+UT

)
. ()

The conditions about a guarantee that this function is concave, and therefore by
Lemma .(b), the process (X(a(t))+UT , t ≥ ) is in the IPDI class. As Y is log-convex,
then fY is log-convex, decreasing, and strictly positive on (,∞) (see [, Prop. C., p.]).
Thus, we can apply Proposition .(b), so that the second factor in () is a log-convex
function, and the result follows for the log-convexity of a′

, as the product of log-convex
functions is log-convex. �

Remark . The previous result guarantees, obviously, the preservation of the log-
convexity for a process in the IPSI class (X∗(t), t ≥ ) in which E[X∗(t)] = λt, as (X(t) :=
X∗(t/λ), t ≥ ) is a centered subordinator and in this case a(t) = λt. A non-trivial ex-
ample of a function a satisfying the hypotheses in the previous results is such that
a(t) =

∫ t
 e

–uuα– du, t > , with  < α ≤ .

For the preservation of log-concavity, stronger assumptions, concerning stochastic or-
dering properties of the derived process, are needed. For this reason we present specific
examples in which these properties can be checked. First of all, we present a log-concavity
result for the compound Poisson process.

Proposition . Let (X∗(t), t ≥ ) be a compound Poisson process, that is,

X∗(t) =
N∗(t)∑
i=

Xi,

in which (N∗(t), t ≥ ) is a homogeneous Poisson process, and (Xn)n=,,... is a sequence of
independent, identically distributed non-negative random variables, having finite mean
and being independent of the process. Let Y be a log-concave random threshold and let ρ

be the lifetime of the device. If X is log-concave, then ρ is log-concave.

Proof Let μ := E[X] and let (N(t), t > ) be a Poisson process of rate /μ. Then X(t) :=∑N(t)
i= Xi is a centered subordinator, and therefore () holds true. Let ψX (u) := Ee–uX be
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the Laplace transform of X. Taking into account that the Laplace transform of X(t) is
given by Ee–uX(t) = exp(–(t/μ)( –ψX (u))) (cf. [, p.]), we obtain

 –ψX (u)
μ

= uψUT (u) ⇒ ψUT (u) =
 –ψX (u)

μu
.

Let Xe be a random variable having the equilibrium distribution of X (cf. [, p.]), that
is, fXe (x) = F̄X (x)/μ. It is readily seen using integration by parts that ψXe (u) = (μu)–( –
ψX (u)), and therefore UT =st Xe. As we have X∗(t) =st X(μλt), in which λ is the rate of
(N∗(t), t ≥ ), we have, using (),

d
dt

E
[
FY

(
X∗(t)

)]
= μλEfY

(N(μλt)∑
i=

Xi +Xe

)
, t > . ()

The process (
∑N(μλt)

i= Xi +Xe, t ≥ ) is in the IPSI class. Moreover, as X is log-concave,∑N(μλt)
i= Xi ↑lr [, Thm. .C.]. On the other hand, if X is log-concave, then it is IFR, and,

therefore, Xe is log-concave. Thus,
∑N(μλt)

i= Xi + Xe ↑lr [, p. ], and by Theorem .(c),
the expression in () is a log-concave function, so that the conclusion holds. �

We consider now a partial result for the gamma process. It is well known that, in this
case, T is an exponential random variable (cf. [, p.]). On the other hand, the density
of UT , using the product distribution formula, can be written as

fUT (x) =
∫ 




u
e–x/u du =

∫ ∞


v–e–xv dv. ()

Note that the previous expression shows us that fUT is completely monotone, and hence-
forth log-convex [, p.]. Thus, UT is log-convex. The log-convexity of this random
variable allows us to give the following result, under the assumption of a log-concave de-
creasing density of Y .

Proposition . Let (S(t), t ≥ ) be a gamma wear process. Consider a wear process in
which (S∗(t) = S(a(t)), t ≥ ). Let Y be the random threshold, and let ρ be the lifetime of
the device. If Y has a log-concave and decreasing density, a is differentiable,with a() = ,
a′
 being non-negative, increasing, and log-concave, then ρ is log-concave.

Proof The derived process for (S(t), t ≥ ) in this case is (S(t) := S(t)+UT , t ≥ ), in which
the density of UT is given in (). Therefore, by (), we obtain

d
dt

E
[
FY

(
S∗(t)

)]
= a′

(t)EfY
(
S
(
a(t)

)
+UT

)
, t > . ()

Our conditions guarantee that a is convex, and thus (S(a(t)) +UT , t ≥ ) is in the IPII
class, thanks to Lemma .(a). Moreover, S(a(t)) +UT is DRHR for all t ≥ . This follows
as UT has a log-convex density, and therefore it is DRHR (recall Remark .). Moreover,
S(a(t)) is always DRHR (as its density is either log-concave or log-convex). Thus, the
DRHR property for S(a(t)) +UT follows, as this property is closed under convolution [,
p.]. Then it follows easily [, Lem. .B.]) that S(a(t))+UT ↑rh. Thus, the conclusion
follows by () and Theorem .(a). �
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Remark . The conditions in the previous result are quite restrictive. However, the ran-
dom threshold Y will have a log-concave decreasing density if it has an exponential dis-
tribution, or a uniform distribution on the interval (,a), for some a > . On the other
hand, the function a(t) = ect – , t ≥  or a(t) = ct, t ≥  for c >  verifies the conditions
in Proposition ..

If the random variables in the derived process were ordered in the likelihood ratio order,
thenwe could generalize the previous result, by using Theorem .(c). The technical prob-
lem is the complexity of the density of S(t) +UT (we can find integral expressions, but we
are not able to find a closed-form expression). As a partial result we are able to check the
preservation of log-concavity on the interval [,∞). The next lemma will be very useful to
this end.

Lemma . The random variable S() +UT , in which S() and T are exponential random
variables with mean  and U is uniform (all of them independent), is log-concave.

Proof Let (Ni(t), t ≥ ), i = ,  be two independent standard Poisson processes. Applying
[, Thm. ., p.], to check the log-concavity of S() +UT one can check equivalently
the discrete log-concavity of N(θ (S() +UT)), for all θ > . The property of independent
and stationary increments for the Poisson processes implies that

N
(
θ
(
S() +UT

))
=st N

(
θS()

)
+N(θUT). ()

The first term has a geometric distribution with parameter p := θ (θ + )– (see [, p.],
for instance), that is,

P
(
N

(
θS()

)
= k

)
=

θ k

(θ + )k+
, k = , , . . . . ()

As the second summand in () is in distribution like the first one, replacing the parameter
θ by the random variable θU , we have

pk := P
(
N(θUT) = k

)
=

∫ 



(uθ )k

(uθ + )k+
du, k = , , . . . . ()

Thus in () we have the convolution of a geometric random variable with a random vari-
able having probability mass function as given above. In [, Lem. .] it was shown that
a sufficient condition for a geometric convolution like in () to be log-concave is that
pk+p–k ≤ θ (θ + )–, k = , , . . . . But taking into account that uθ (uθ + )– ≤ θ (θ + )–, for
all  ≤ u≤ , we have

pk+
pk

=

∫ 


(uθ )k+
(uθ+)k+ du∫ 


(uθ )k

(uθ+)k+ du
≤ θ

θ + 
, k = , , . . . ,

thus showing the discrete log-concavity for N(θ (S() + UT)) and, therefore, the log-
concavity for S() +UT . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/200


Sangüesa et al. Journal of Inequalities and Applications 2014, 2014:200 Page 15 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/200

Proposition . Let (S(t), t ≥ ) be a gammawear process. Let Y be the random threshold,
and let ρ be the lifetime of the device. If Y has a log-concave density, then ρ is log-concave
on [,∞).

Proof Consider the stochastic process (S∗(t), t ≥ ), in which S∗(t) = S(t + ). Using (),
we obtain

d
dt

E
[
FY

(
S(t)

)]
= EfY

(
S(t) +UT

)
= EfY

(
S∗(t – ) +UT

)
, t ≥ . ()

Consider now the stochastic process S∗
 (t) := S(t + ) +UT , t ≥ . Note that S∗

 (t) ↑lr. This
follows as S∗

 (t) =st S() +UT + S′(t), in which S′(t) is a gamma random variable of shape
parameter t independent of S() +UT . Thus, for ≤ t < t, we have S′(t) ≤lr S′(t) As by
Lemma . S() +UT is log-concave, we have S() +UT + S′(t)≤lr S() +UT + S′(t) (see
[, p.]), thus proving the likelihood ratio order assumption. Then, by Theorem .(c)
f (t) := EfY (S∗(t) + UT), t > , is a log-concave function, and so is (), as if f (t), t >  is
a log-concave function on (,∞), then g(t) := f (t – ), t >  is a log-concave function on
(,∞). Then the conclusion follows by the log-concavity of () and (). �

Remark . If we could extend the fact that S(t) + UT ↑lr from t ≥  to t ≥ , then we
could prove the preservation of log-concavity on (,∞). However, due to the technical
complexity of the density function S(t) + UT we are not able, at this point, to prove or
disprove this fact.
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