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Abstract
We consider the problem of finding a function u from the boundary data u(x, 1) and
uy(x, 1), satisfying a nonhomogeneous elliptic equation

�u = f (x, y), x ∈R, 0 < y < 1.

The problem is shown to be ill-posed. In this paper, we apply the Fourier transform to
get an integral equation and give a regularized solution by directly perturbing this
equation in combination with truncating high frequencies. The error estimate
between the regularization solution and the exact solution is established. Finally, we
present a numerical result which shows the effectiveness of the proposed method.
MSC: 31A25; 34K29; 35J05; 35J25; 35J99; 42A38; 44A35
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1 Introduction
In this paper, we consider a problem of recovering the interior temperature from surface
data (or boundary data). In fact, the interior temperature of a body (e.g., the skin of a
missile) cannot be determined in several engineering contexts (see, e.g., [–]) and many
industrial applications. Hence, in order to get the distribution of interior temperature, we
have to use the measured temperature outside the surface. In optoelectronics, the deter-
mination of a radiation field surrounding a source of radiation (e.g., a light emitting diode)
is a frequently occurring problem. As a rule, experimental determination of the whole ra-
diation field is not possible. Practically, we are able to measure the electromagnetic field
only on some subset of physical space (e.g., on some surfaces). So, the problem arises how
to reconstruct the radiation field from such experimental data (see, for instance, []). In
the paper of Reginska [], the authors considered a physical problem which is connected
with the notion of light beams. Some applications of this model can be established inmore
detail in [].
Precisely, we consider a two-dimensional body represented by the domainR× (, ). Let

u(x, y) be the temperature of the body at (x, y) ∈ R × (, ), and let f ≡ f (x, y) be a given
source, we have the following nonhomogeneous equation:

�u = f (x, y), x ∈R,  < y < , ()
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where � = ∂

∂x +
∂

∂y . We assume that the temperature on the line y =  is known, i.e.,

u(x, ) = ϕ(x), ()

and that

∂u
∂y

(x, ) = ψ(x), ()

where ϕ(x),ψ(x) are given functions in L(R). The problem can be referred to as a sideways
elliptic problem and the interior measurement ϕ(x) is also called (in geology) the borehole
measurement.
The latter problem is a Cauchy elliptic problem in an infinite strip and is well known as

an ill-posed problem, i.e., solutions of the problem do not always exist and, whenever they
do exist, there is no continuous dependence on the given data. This makes the numerical
computations become difficult. So, ill-posed problems need to be regularized.
The homogeneous problem (f ≡ ) was studied with various methods in many papers.

Using the boundary element method, the homogeneous problems were considered in [,
, ] etc. Similarly, many methods have been investigated to solve the Cauchy problem
for a linear homogeneous elliptic equation such as the method of successive iterations
[, ], the optimization method [, ], the quasi-reversibility method [–], fourth-
order modified method [, ], Fourier truncation regularized (or spectral regularized
method) [–], etc. The number of papers devoted to the Cauchy problem for linear
homogeneous elliptic equation are very rich, for example, [, –] and the references
therein.
Although there are many papers on homogeneous cases, we only find a few papers on

nonhomogeneous sideways problems (for both parabolic and elliptic equations). Themain
aim of this paper is to present a simple and effective regularizationmethod, and investigate
the error estimate between the regularization solution and the exact solution. In a sense,
this paper is an extension of recent results in [, –, , ].
The paper is organized as follows. In Section , we present the formulation of theCauchy

problem for the elliptic equation and propose amodified regularizationmethod. The error
estimate is given based on two different a priori assumptions for the exact solution. Finally,
in Section ,we give a numerical example to demonstrate the effectiveness of our proposed
method.

2 Regularization and error estimate
Let f̂ (ξ ) = √

π

∫ +∞
–∞ f (x)e–iξx dx be the Fourier transform of function f ∈ L(R). By taking

Fourier transformation with respect to variable x ∈R, we transform problem ()-() to the
following form:

û(ξ , y) =


ϕ̂(ξ )

[
e(–y)|ξ | + e(y–)|ξ |]

+


|ξ | ψ̂(ξ )
[
e(y–)|ξ | – e(–y)|ξ |]

+



∫ 

y


|ξ |

[
e(η–y)|ξ | – e–|y–η||ξ |]̂f (ξ ,η)dη
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=


ϕ̂(ξ )

[
e(–y)|ξ | + e(y–)|ξ |] + [

 – e(–y)|ξ |

|ξ |e(–y)|ξ |

]
e(–y)|ξ |ψ̂(ξ )

+
∫ 

y

[
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

]
e(η–y)|ξ |̂f (ξ ,η)dη. ()

In the present paper, by approximating (), we have a regularized solution uε(x, y), the
Fourier transform of which is

ûε(ξ , y) =
[


ϕ̂(ξ )

(


α(ε) + e(y–)|ξ | + e(y–)|ξ |
)

+
(
 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)
ψ̂(ξ )

α(ε) + e(y–)|ξ |

+
∫ 

y

(
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

)
f̂ (ξ ,η)

α(ε) + e(y–η)|ξ | dη

]
χ[–β(ε),β(ε)](ξ ) ()

or

uε(x, y) =



√
π

∫ +∞

–∞

[


ϕ̂(ξ )

(


α(ε) + e(y–)|ξ | + e(y–)|ξ |
)

+
(
 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)
ψ̂(ξ )

α(ε) + e(y–)|ξ |

+
∫ 

y

(
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

)
f̂ (ξ ,η)

α(ε) + e(y–η)|ξ | dη

]
χ[–β(ε),β(ε)](ξ )eiξx dξ . ()

Here, α(ε) and β(ε) are positive numbers (called regularization parameters) which depend
on ε. They will be chosen later such that α(ε) ∈ (, ) and β(ε) → +∞ when ε → . For
convenience, from now on, we denote α(ε) by α, and β(ε) by β .
In practice, the exact data (ϕex,ψex) ∈ L(R)× L(R) is given only by measurement. As-

sume that the exact data (ϕex,ψex) and the noisy data (ϕex,ψex) both belong to L(R) ×
L(R) and satisfy the following noise level

‖ϕε – ϕex‖ ≤ ε, ‖ψε –ψex‖ ≤ ε. ()

Let vex and vε be the solutions of problem () corresponding to the exact data (ϕex,ψex)
and the measured data (ϕε ,ψε), respectively. Here, we denote by ‖ · ‖ the norm on L(R).
By taking the Fourier transform of vex and vε , we have

v̂ex(ξ , y) =
[


ϕ̂ex(ξ )

(


α + e(y–)|ξ | + e(y–)|ξ |
)

+
(
 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)
ψ̂ex(ξ )

α + e(y–)|ξ |

+
∫ 

y

(
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

)
f̂ (ξ ,η)

α + e(y–η)|ξ | dη

]
χ[–β ,β](ξ ), ()
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v̂ε(ξ , y) =
[


ϕ̂ε(ξ )

(


α + e(y–)|ξ | + e(y–)|ξ |
)

+
(
 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)
ψ̂ε(ξ )

α + e(y–)|ξ |

+
∫ 

y

(
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

)
f̂ (ξ ,η)

α + e(y–η)|ξ | dη

]
χ[–β ,β](ξ ). ()

We first have the following lemma.

Lemma  (The stability of a solution of problem ()) Suppose that ϕex,ψex,ϕε ,ψε ∈ L(R)
and ‖ϕε – ϕex‖ ≤ ε, ‖ψε –ψex‖ ≤ ε. Then we have

∥∥̂vε(·, y) – v̂ex(·, y)
∥∥
 ≤ 

√


α(ε)
ε

for all y ∈ [, ).

Proof From () and (), we have

∥∥̂vε(·, y) – v̂ex(·, y)
∥∥


=
∫ +∞

–∞

∣∣̂vε(ξ , y) – v̂ex(ξ , y)
∣∣ dξ

=
∫ +∞

–∞

∣∣̂vε(ξ , y) – v̂ex(ξ , y)
∣∣χ[–β ,β](ξ )dξ

=
∫ +∞

–∞

∣∣∣∣ 
(


α + e–(y–)|ξ | + e(y–)|ξ |

)[
ϕ̂ε(ξ ) – ϕ̂ex(ξ )

]
+

(
 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)


α + e(y–)|ξ |
[
ψ̂ε(ξ ) – ψ̂ex(ξ )

]∣∣∣∣χ[–β ,β](ξ )dξ . ()

Using the inequality e|x|–
|x| ≤ e|x|, we obtain

∣∣∣∣  – e(–y)|ξ |

|ξ |e(–y)|ξ |

∣∣∣∣ ≤  for  ≤ y < . ()

Note that α(ε) ∈ (, ), e(y–)|ξ | ≤  for  < y < , then from () and () we get

∥∥̂vε(·, y) – v̂ex(·, y)
∥∥


≤
∫ +∞

–∞

[



(

α
+ 

)∣∣ϕ̂ε(ξ ) – ϕ̂ex(ξ )
∣∣ + 

α

∣∣ψ̂ε(ξ ) – ψ̂ex(ξ )
∣∣]

dξ

≤ 
α

∫ +∞

–∞

(∣∣ϕ̂ε(ξ ) – ϕ̂ex(ξ )
∣∣ + ∣∣ψ̂ε(ξ ) – ψ̂ex(ξ )

∣∣) dξ

≤ 
α

∫ +∞

–∞

(∣∣ϕ̂ε(ξ ) – ϕ̂ex(ξ )
∣∣ + ∣∣ψ̂ε(ξ ) – ψ̂ex(ξ )

∣∣)dξ

=

α

(‖ϕ̂ε – ϕ̂ex‖ + ‖ψ̂ε – ψ̂ex‖
)
.
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Applying the inequality
√
a + b ≤ a + b for a,b≥ , we obtain

∥∥̂vε(·, y) – v̂ex(·, y)
∥∥
 ≤

√


α

(‖ϕ̂ε – ϕ̂ex‖ + ‖ψ̂ε – ψ̂ex‖
)

≤ 
√


α
ε.

This completes the proof of Lemma . �

Theorem  Assume that uex is the exact solution of problem ()-() corresponding to the
exact data ϕex,ψex ∈ L(R) and that ϕε ,ψε ∈ L(R) are the measured data satisfying ‖ϕε –
ϕex‖ ≤ ε, ‖ψε – ψex‖ ≤ ε. Moreover, if we assume in addition that ∂

∂xuex ∈ L(R) and∫ 


∫ +∞
–∞ |̂f (ξ ,η)| dξ dη < ∞. Then, with α = ε/ and β = ln 

ε/
, we can construct from ϕε ,

ψε a function vε ∈ L(R) for every  ≤ y < 

∥∥vε(·, y) – uex(·, y)
∥∥
 ≤ C

ln 
ε

,

where

C = 
√
 +

√
M + 

∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥

,

M =


∥∥ϕ̂ex(ξ )

∥∥
 +

∥∥ψ̂ex(ξ )
∥∥
 +

√∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη.

Proof From (), we have

ûex(ξ , y) =


ϕ̂ex(ξ )

(
e(–y)|ξ | + e(y–)|ξ |) +(

 – e(–y)|ξ |

|ξ |e(–y)|ξ |

)
e(–y)|ξ |ψ̂ex(ξ )

+
∫ 

y

(
e(η–y)|ξ | – 
|ξ |e(η–y)|ξ |

)
e(η–y)|ξ |̂f (ξ ,η)dη. ()

Taking into account () and (), we get

∥∥̂vex(·, y) – ûex(·, y)
∥∥


=
∫ +∞

–∞

∣∣̂vex(ξ , y) – ûex(ξ , y)
∣∣ dξ

=
∫ +∞

–∞

∣∣̂vex(ξ , y) – ûex(ξ , y)
∣∣χ[–β ,β](ξ )dξ

+
∫ +∞

–∞

∣∣̂vex(ξ , y) – ûex(ξ , y)
∣∣χ(–∞,–β)∪(β ,+∞)(ξ )dξ

=
∫ +∞

–∞

∣∣̂vex(ξ , y) – ûex(ξ , y)
∣∣χ[–β ,β](ξ )dξ

+
∫ +∞

–∞

∣∣̂uex(ξ , y)∣∣χ(–∞,–β)∪(β ,+∞)(ξ )dξ .
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Moreover, one has, for ≤ y < ,

∣∣∣∣ 
α + e(y–)|ξ | – e(–y)|ξ |

∣∣∣∣ ≤ αe|ξ |. ()

By a similar way, we also have

∣∣∣∣ 
α + e(y–η)|ξ | – e(η–y)|ξ |

∣∣∣∣ ≤ αe|ξ | for  < y < η < . ()

Moreover, using the inequality e|x|–
|x| ≤ e|x|, we have

∣∣∣∣  – e(η–y)|ξ |

|ξ |e(η–y)|ξ |

∣∣∣∣ ≤  for  < y < η < . ()

From (), (), (), (), (), we obtain

∥∥̂vex(·, y) – ûex(·, y)
∥∥


≤
∫ +∞

–∞

(


αe|ξ |∣∣ϕ̂ex(ξ )

∣∣ + αe|ξ |∣∣ψ̂ex(ξ )
∣∣ + αe|ξ |

∫ 



∣∣̂f (ξ ,η)∣∣dη

)

χ[–β ,β](ξ )dξ

+
∫ +∞

–∞


|ξ |
∣∣ξ ûex(ξ , y)∣∣χ(–∞,–β)∪(β ,+∞)(ξ )dξ .

It follows from (a + b + c) ≤ (a + b + c) that

∥∥̂vex(·, y) – ûex(·, y)
∥∥


≤ 


α
∫ +∞

–∞
e|ξ |∣∣ϕ̂ex(ξ )

∣∣χ[–β ,β](ξ )dξ

+ α
∫ +∞

–∞
e|ξ |∣∣ψ̂ex(ξ )

∣∣χ[–β ,β](ξ )dξ

+ α
∫ +∞

–∞

(∫ 



∣∣̂f (ξ ,η)∣∣dη

)

e|ξ |χ[–β ,β](ξ )dξ

+
∫ +∞

–∞


|ξ |
∣∣ξ ûex(ξ , y)∣∣χ(–∞,–β)∪(β ,+∞)(ξ )dξ

≤ 


αeβ

∫ +∞

–∞

∣∣ϕ̂ex(ξ )
∣∣χ[–β ,β](ξ )dξ + αeβ

∫ +∞

–∞

∣∣ψ̂ex(ξ )
∣∣χ[–β ,β](ξ )dξ

+ αeβ

∫ +∞

–∞

(∫ 



∣∣̂f (ξ ,η)∣∣ dη

)
χ[–β ,β](ξ )dξ

+

β

∫ +∞

–∞

∣∣ξ ûex(ξ , y)∣∣χ(–∞,–β)∪(β ,+∞)(ξ )dξ

≤ 


αeβ
∥∥ϕ̂ex(ξ )

∥∥
 + αeβ

∥∥ψ̂ex(ξ )
∥∥


+ αeβ

∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη +

β

∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥


.
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Applying the inequality
√
a + b + c + d ≤ a + b + c + d for a,b, c,d ≥ , we obtain

∥∥̂vex(·, y) – ûex(·, y)
∥∥


≤ √
αeβ

(


∥∥ϕ̂ex(ξ )

∥∥
 +

∥∥ψ̂ex(ξ )
∥∥
 +

√∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη

)

+

β

∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥

. ()

According to the triangle inequality,

∥∥̂vε(·, y) – ûex(·, y)
∥∥
 ≤ ∥∥̂vε(·, y) – v̂ex(·, y)

∥∥
 +

∥∥̂vex(·, y) – ûex(·, y)
∥∥


so using Parseval’s equality, () and Lemma , we get

∥∥vε(·, y) – uex(·, y)
∥∥


≤ 
√


α
ε +

√
αeβ

(


∥∥ϕ̂ex(ξ )

∥∥
 +

∥∥ψ̂ex(ξ )
∥∥
 +

√∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη

)

+

β

∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥

.

The choice of α = ε/ and β = ln 
ε/

leads to

∥∥vε(·, y) – uex(·, y)
∥∥
 ≤ C

ln 
ε

,

where

C = 
√
 +

√
M + 

∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥

,

M =


∥∥ϕ̂ex(ξ )

∥∥
 +

∥∥ψ̂ex(ξ )
∥∥
 +

√∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη.

This completes the proof of Theorem . �

Remark Theorem  gives a good approximation not only in the case  < y <  but also in
the case y = .
If we choose α = εk ,  < k < , and eβα = εm,m < k, then β =

√


εk–m
and

∥∥vε(·, y) – uex(·, y)
∥∥


≤ 
√
ε–k +

√
εm

(


∥∥ϕ̂ex(ξ )

∥∥
 +

∥∥ψ̂ex(ξ )
∥∥
 +

√∫ 



∫ +∞

–∞

∣∣̂f (ξ ,η)∣∣ dξ dη

)

+
√

εk–m
∥∥∥∥ ∂

∂x
uex(·, y)

∥∥∥∥

.

Let k = 
 and m = 

 , we have Theorem .
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3 Numerical experiment
In this section, we present a simple example intended to demonstrate the usefulness of
the approach. The test was performed using Matlab .. The numerical example was con-
structed in the following way: first we selected the initial data u(x, ) = ϕ(x) and ∂u

∂y (x, ) =
ψ(x). We have the following problem

�u = f (x, y), x ∈R,  < y < ,

where u satisfies

u(x, ) = ϕ(x),

∂u
∂y

(x, ) = ψ(x).

Let ϕε(x, y), ψε be the disturbed measure data such that ‖ϕ(x) – ϕε(x)‖ ≤ ε, ‖ψ(x) –
ψε(x)‖ ≤ ε.
For example, we take

f (x, y) = –
(
 – x – y

)
e–x

–y ,

ϕ(x) = e–x
–,

ψ(x) = –e–x
–,

ϕε(x) = ϕ(x) + ε · rand(),
ψε(x) =ψ(x) + ε · rand().

In the numerical experiment, we always fix the interval  ≤ x≤ .
For an exact data function ϕ(x), its discrete noisy version is

ϕε(x) = ϕ(x) + ε · rand(),

where

ϕ =
(
ϕ(x), . . . ,ϕ(xN )

)
, xj = – +

(j – )
N – 

, j = , , . . . ,N ,

and

ε =
∥∥ϕε – ϕ

∥∥ =

√√√√ 
N

N∑
j=

∣∣ϕ(xj) – ϕε(xj)
∣∣.

The function rand(·) generates arrays of random numbers whose elements are normally
distributed with mean , variance σ  = , and SD σ = . N is the total test points at x-axis.
In our computations, we always takeN = . Let us define the error estimate δi,ε between
the exact solution u(·, y) and regularized solutions ui,ε(·, y) at given value y

δi,ε(y) =
∥∥u(·, y) – ui,ε(·, y)∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/19
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Table 1 Error estimations for the first regularization solution (δ1,ε ) and the second regularization solution (δ2,ε )

y ε = 10–1 ε = 10–3 ε = 10–5 ε = 10–7

δ1,ε δ2,ε δ1,ε δ2,ε δ1,ε δ2,ε δ1,ε δ2,ε

0.0 2.570E–01 1.035E+01 2.147E–01 1.903E+00 2.147E–01 2.987E–01 2.147E–01 2.158E–01
0.1 3.037E+00 1.080E+01 1.852E+00 2.321E+00 1.335E+00 3.359E–01 1.053E+00 1.964E–01
0.2 5.033E+00 1.101E+01 3.108E+00 2.799E+00 2.261E+00 4.275E–01 1.788E+00 1.825E–01
0.3 6.252E+00 1.098E+01 3.954E+00 3.289E+00 2.910E+00 5.756E–01 2.316E+00 1.902E–01
0.4 6.932E+00 1.075E+01 4.497E+00 3.751E+00 3.348E+00 7.574E–01 2.682E+00 2.319E–01
0.5 7.236E+00 1.037E+01 4.815E+00 4.156E+00 3.624E+00 4.868E–04 2.920E+00 2.954E–01
0.6 7.280E+00 9.873E+00 4.965E+00 4.483E+00 3.775E+00 9.559E–01 3.061E+00 3.703E–01
0.7 7.143E+00 9.308E+00 4.990E+00 4.725E+00 3.833E+00 1.359E+00 3.125E+00 4.508E–01
0.8 6.885E+00 8.702E+00 4.925E+00 4.877E+00 3.818E+00 1.548E+00 3.131E+00 5.327E–01
0.9 6.548E+00 8.082E+00 4.793E+00 4.943E+00 3.751E+00 1.721E+00 3.092E+00 6.135E–01
1.0 6.162E+00 7.464E+00 4.615E+00 4.930E+00 3.644E+00 1.874E+00 3.019E+00 6.910E–01
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Table 2 Relative error estimations for the first method (σ 1,ε ) and second regularization solution (σ 2,ε )

y ε = 10–1 ε = 10–3 ε = 10–5 ε = 10–7

δ1,ε δ2,ε δ1,ε δ2,ε δ1,ε δ2,ε δ1,ε δ2,ε

0.0 1.174E–05 2.111E–02 7.783E–06 7.117E–04 7.782E–06 1.619E–05 7.782E–06 7.862E–06
0.1 2.219E–03 2.810E–02 8.234E–04 1.295E–03 4.269E–04 2.561E–05 2.646E–04 7.954E–06
0.2 7.447E–03 3.563E–02 2.838E–03 2.302E–03 1.501E–03 5.188E–05 9.381E–04 8.393E–06
0.3 1.404E–02 4.328E–02 5.614E–03 3.884E–03 3.040E–03 1.168E–04 1.924E–03 1.140E–05
0.4 2.108E–02 5.068E–02 8.872E–03 6.172E–03 4.915E–03 2.491E–04 3.152E–03 2.175E–05
0.5 2.807E–02 5.759E–02 1.242E–02 9.252E–03 7.034E–03 4.869E–04 4.568E–03 4.465E–05
0.6 3.469E–02 6.381E–02 1.614E–02 1.316E–02 9.328E–03 8.769E–04 6.131E–03 8.743E–05
0.7 4.080E–02 6.927E–02 1.991E–02 1.785E–02 1.174E–02 1.474E–03 7.807E–03 1.599E–04
0.8 4.630E–02 7.396E–02 2.368E–02 2.323E–02 1.424E–02 2.337E–03 9.571E–03 2.744E–04
0.9 5.115E–02 7.791E–02 2.740E–02 2.914E–02 1.678E–02 3.529E–03 1.140E–02 4.459E–04
1.0 5.532E–02 8.118E–02 3.103E–02 3.541E–02 1.934E–02 5.111E–03 1.328E–02 6.925E–04
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Figure 1 2D graphs of section cut at y = 0.5 of the exact solution u(x,y) and regularized solutions
ui,ε (x,y).

Here, ui,ε regularized solutions are calculated by the first regularization solution (i = )
with α = ε/, β = –

lnε and the second regularization (i = ) with α = ε/, β = –
ln ε

.
Table  shows the error estimate between the exact solution and the regularized solu-

tions. In the table, we see that when ε = – the error estimations of the first method are
slightly better than the error estimations of the second method. However, starting from
ε = –, the second method gradually gives much better results.
Because the error estimations in L are relatively big, it is difficult to see the effectiveness

of our methods. For a better illustration, we define the relative error estimate between
exact solution and regularized solutions as follows:

σ i,ε(y) =

√∑I
k= |ui,ε(xk , y) – u(xk , y)|√∑I

k= |u(xk , y)|
.
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Figure 2 3D graphs of the exact solution u(x,y) and regularized solutions ui,ε (x,y).

Table  shows the relative error estimations between the exact solution and the first reg-
ularized solution (σ ,ε) and by the second regularization solution (σ ,ε ). Obviously from
the table, our proposed method is stable and effective.
We also present some graphical representations of the exact solution and regularized

solutions. Figure  is the -D representation of these solutions, and Figure  shows some
graphs of section cut at value y = ., with ε = –i, i = , , . From the graphs, we see that
the second method gives very precise solution when ε = –.
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