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Abstract

In this paper, we study the higher-order Daehee polynomials of the second kind from
the umbral calculus viewpoint and give various identities of the higher-order Daehee
polynomials of the second kind arising from umbral calculus.

1 Introduction
Let k € Z~¢. The Daehee polynomials of the second kind of order k are defined by the
generating function to be

k [o¢]
(%) 1oy =Y D" v
n=0

n
nt

(see [1]).
When x = 0, DX = Dg,k)(O) are called the Daehee numbers of the second kind of order k.
The Stirling number of the first kind is defined by the falling factorial to be

@ =x(x 1) @=n+1)=y_ Sin " @)
1=0
Thus, by (2), we get
o0 !
(log(1 + t))m =m! ZSI(Z, m)% (3)
I=m

(see [2—4]), where m € Z.
For A € C with A #1, the Frobenius-Euler polynomials of order s (€ N) are given by

1-A
el — A

(see [1-18]).
When x =0, Hﬁf) ) = H,(f) (1]0) are called the Frobenius-Euler numbers of order s.
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As is well known, the Bernoulli polynomials of order k (€ N) are defined by the gener-

ating function to be

¢ k o0 " tn
Xt _
(et—1> e = EO:BH - ()
n=

(see [1-18]).

When x =0, Bﬁ,k) = Bﬁ,k)(O) are called the Bernoulli numbers of order k.

In this paper, we study the higher-order Daehee polynomials of the second kind with
umbral calculus viewpoint and give various identities of the higher-order Daehee polyno-

mials of the second kind arising from umbral calculus.

2 Umbral calculus

Let C be the complex number field and let F be the set of all formal power series

ok
F= :f(f) = Zﬂk%‘ﬂk EC}-
k=0 ’

Let P = C[x], and let P* be the vector space of all linear functionals on P. (L|p(x)) indi-
cates the action of the linear functional L on the polynomial p(x). Then the vector space
operations on P* are given by (L + M|p(x)) = (L|p(x)) + (M|p(x)), and (cL|p(x)) = ¢(L|p(x)),
where c is a complex constant in C. For f(¢) € F, the linear functional on P is defined by
(f(®)|x") = ay,. Then, in particular, we have

(tk|x”> =nld, . (n,k>0) (6)

(see [3,18]), where 6, is the Kronecker symbol.

Let f1.() = > roo <L‘k’§k> tk. By (6), we get (f;(£)|x") = (L|x"). That is, L = f;(t). The map

L+ f1(t) is a vector space isomorphism from P* onto . Henceforth, 7 denotes both

the algebra of the formal power series in ¢ and the vector space of all linear functionals
on P, and so an element f(£) of F will be thought of as both a formal power series and a
linear functional. We call F the umbral algebra and the umbral calculus is the study of the
umbral algebra. The order o(f(¢)) of the power series f(£) (# 0) is the smallest integer for
which the coefficient of t* does not vanish. If o(f(£)) = 0, then f(¢) is called an invertible
series; if o(f(£)) = 1, then f(¢) is called a delta series.

Let f(¢),g(¢) € F with o(f(¢)) = 1 and o(g(¢)) = 0. Then there exists a unique sequence
$,(x) (degs,(x) = n) such that (g(£)f(t)¥|s,(x)) = n!,x, for n,k > 0. The sequence s,(x)
is called the Sheffer sequence for (g(¢),f(¢)) which is denoted by s,(x) ~ (g(¢),f(¢)). For
f(t),g(¢) € F, we have

{f(e@®)Ip()) = [f©)lgB)p()) = (gOIf (E)p(x)). (7)

From (6), we note that
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and, by (8), we get

d*p(x)

tpw) =pP) = — = and &"p(x) =plx+))

(see [3, 18]).
For s,(x) ~ (g(¢),f(¢)), we have

ds,,

n-1
( >(f(t)|x” Dsi(),

=0

where f(¢) is the compositional inverse of f(t) with £(f(£)) = t. We have

oo Vl

0 - x)— forallx e C,
g(f ®) XO: n!

n

SOsu(x) =nsy1(x) (n=1),  sulx) = (g(f(t)) ey o,

j= 0

Sa@+9) =Y (’7 )s,»(x)pn,»(w,
=0
where Pn (x) = g(t)sn (x)
(f()lxp(x)) = (0 (D) Ip(x)),

with 9,f(¢) = 0 and

_ g
S"H(x)_(x_g(t )f/(t) n( ) (”20)

(see [3, 18]).

Let us assume that s, (x) ~ (g(¢),f(¢)) and r,(x) ~ (h(2), [(t)). Then we see that

Sn(x) = Z Cn,mrm(x) (I/I > 0);

where

h(f(t))
Cn,m =
< (f(®) )"

°)

(see [3, 18]).

3 Higher-order Daehee polynomials of the second kind
By (1), we see that

A el —1\F
D(nk)(x)'v(( " ),et—1>.

)

(10)

(11)

12)

(13)

(14)

(15)

(16)

17)

(18)

Page3of 13


http://www.journalofinequalitiesandapplications.com/content/2014/1/195

Kim and Kim Journal of Inequalities and Applications 2014, 2014:195
http://www.journalofinequalitiesandapplications.com/content/2014/1/195

From (18), we have

t k
(et—;l) DP@) ~ (Le-1) and (@), ~ (Le ~1). (19)

By (19), we get

+ k
DO () = (ei_l) ()

n tt k
:ZSl(n,m)( = ) 2"
e el -1

= Z S1(n, m)ek BW (x)
m=0

= Z S1(n,m)B® (x + k). (20)
m=0

From (12) and (18), we have

n

k
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where
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Z <m>t x }>

)

t
m=0

k+j
i (222)

n—j p © (k4 ‘
= (1) ( (> (= ) %51(1 sk jk )

m = +k+j)!

n-j ,
= (n); <k>(n —j)m((ki&(n +k—mk+))(n—j—m)!

= \m n+k—m)!
i=Ayy: Sin+k—mk+j

:(n),z(l;)(n—f)m 1 +(,;k_’ff) ) (22)
m=0 k+j

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 1 Forn € Z-y and k > 1, we have

-S| ()55 (3o St
=0

j=0 m k+j
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By (1) and (6), we get

k
5, ()
in{k,n}

0<r<min
_ k y
- X }(r)m)rwzq_r (7)o

0<r<min{k,n

xn—r>

KSi(+k k),
<t |xn T m>
0<l<2n—:r—m (l + k)'
=y ) nrm+k)S(n—r 71+ K K)(3)om. (23)
0<r<mn0<m<n-r )

Therefore, by (23), we obtain the following theorem.

Theorem 2 For n > 0, we have

D)
=2 { ) %SI(”—V—ka)}(x)m
0<m=<n *0<r<n-m ( k )
ky\ ( n-r
- Z{ > ) r+k,k>}(x)nm.
0<m=<n ‘0<r<m-m ( k )

From (12) and (18), we have
(¢ - l)ﬁﬁlk) (%) = nlA);k_)l(x) (24)
and
(e —1) k)(x) Dk x+1)— D )(x).
Thus, by (24), we get
DPw +1) - DP@) =D, (x)  (n=1). (25)

From (15) and (18), we derive the following equation:
et—-1-t AR
DY () =[x+ kti e "D’ (x)

(ef-1)

A e —1-t.
=xD®(x —1) + ke (k)

), (26)
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where

ltA

pw
t(et_ ) ()

k

<y 2{() Z e

0<j<n 0<m=<n-j k+j

x Si(n +k—m,k +j)}xj
T () ¥ e
0=j=<n J 0<m=n-j (n+kk+;'m)
ef—1-+¢t .
tlet —1)

-y (1) 3 )

0<j<n J 0<m=<n-j k+j

x Si(n+k—m,k +j)et

t—l—t J+1
x Si(n+k—m,k +j)e et x
et-1 Jj+1

y Si(n+k—m,k+j)
j+1

S

0<j<n / 0<m=<n-j k+j

e‘t(x”l — Bﬂl(x))

Si(n+k—m,k+j)

x , et ((x-1Y*" = Bja(x - 1)).

j+1

Therefore, from (26) and (27), we obtain the following theorem.

Theorem 3 Forn=> 0,k > 1, we have

A (k
DY ()

0<j<n 0<m<n-j k+j

Si(n+k—m,k+j)

x , {(x-1y*" = Bja(x-1)}.

j+1
Now, we observe that

e -1

(1)

—L

D (x)

n n

() -
:; (n+k)51(n+k]+k)e e 1)( x+ kY

j+k
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" (n) e -1-t .
= S k k DeZ = "y
2 ey S 0

(5 ) Sk 40 g

=Gl

_ (1) Sin+kj+k) ((x+ k=1 = Bjy(x + k- 1)). (28)

prl VAR

Thus, by (28), we get

DY (x) = xDP (x - 1)+kZ ) Si(n+k,j+k)

j=0 (7:15) j+1

(e + k= 1Y = B+ k-1)).

From (10) and (18), we note that

n-1 (_l)n—l—l R

¥, DP (). (29)

Z DR () = it
ax" =

By (6) and (18), we see that

)
“m%x» (n=>1)

log(l + t))

&
=

1+ty

| °)
- ((1+”°g1”><1 f)
|

( (1+t)10g(1+t > )
<((1+t 10g1+t)) Ly

)
)
)

<log(1 +1)+1-

= yDn—l(y - 1)

k-1
_M«Qiﬁgﬂﬂ» A+ 1y

—yD l(y 1)+ <(M) 1+t)y‘log(1+t)x”>

t
x”>

k-1
+£«91@§Qﬂg A+ 1y
n
x”>

t
=Dy -1 + Dkl(y) k)(y)

_/_(<<(1+t)log(1+t)>k(1+t)y
n
k Z (~1)L(n), <<(1+t)10g(1+t) k=1

1 +t)10g(1+t))x_">

t n

t
. )(1+t)y
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Thus, by (30), we get
A A k A
DOy = D (g _ 1) 4 k-1
w @) nik (@ )+n+k @)
+ S (M- 0w (31)
n+k o= l el

Therefore, by (31), we obtain the following theorem.

Theorem 4 Forn=> 0, k > 1, we have

N no A k -
D) = — kfofjl(x ~D+ —— D)
k n A (k-
S > (-1)“( . (- 1)1D* V().

1<i<n

Now, we compute ((w)k(log(l +1))"|x") in two different ways:

k
<<(1 +t)log(l + t)) (log(1 + t))m x">

t
k
= <<%tg(l+t)) ‘(log(l + t))mx”>

! 1+8)log(l+2)\F
= 2 —lm ,51(l+m,m)(n)z+m<<7( +0)logl1 + )) x”""”>
Oflfn—m( +m)! t
= Z m!(ln )Sl(l+m,m)f)£lk_)[_m
0<i<n-m +m
e )
= Z m.(l)Sl(n—l,m)Dl. (32)
0<l<n-m
On the other hand,
1+ 1) log(l k m
<<7( +0) (;g( +t)> (log(1+t)) x">

k
- <8t<(7(1 +7) l(;g(l * t)> (log(1 + t))m) x”‘1>

- /<<<(1 + 1) log(1 + t)>k‘1<10g(1 1) +1- COREED
¢ t

)(log(l + t))m

xn—1>

xn1>

<<(1 +1)log(l +¢)
" t

k
> 1+ (log(1 + t))m_1
x”>
x”>

~ §<((l+t)log(1+t)

n t

k-1
) (log(1 + L‘))erl

.\ £<<(1+t)10g(1+t)

n t

k-1
) (log(1 + 1))
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k
_ §<(7(1 +1) 1‘;g(1 * t)) (log(1 + £))” x>

k
J(M) 1+ 1) (log(1+ )"

, x”"1>. (33)

Thus, by (33), we get

k
n +k<<(1 +t)log(1 + t)) (log(l . t))m

xn
n t

k-1
_ £<<(1 + t) log(l + t)) (log(l + t))m+l

n t

k-1
. E<<(1 +t)log(1 + t)) (log(l . t))m

)
)

k

n t

x”_1>. (34)

From (34), we derive the following equation:

" Z k Z m! (7) Si(n—1, m)f)gk)

0<l<n-m

k )
== Y (m+ 1)!(’2)51(;1 —Lm+1)D*Y
n

0<i<n-m-1

k n A (k—
+Z Z m!(l)Sl(n—l,m)DE D

Therefore, by (35), we obtain the following theorem.

Theorem 5 Forn—1>m > 1, we have

n-m

Z (l;) Si(n—1, m)f)gk)

1=0

_k(m+1) n A (k=1)
=— > (l)Sl(n—l,m+1)Dl

0<l<n-m-1

k n A(k-1)
+m Z <l>51(n—l,m)Dl

- (" B 1)51(71 —1-1,m-1)DP(-1),

For DX (x) ~ ((“":T‘tl)k, ! 1), and (x), ~ (1,€e’ — 1), let us assume that

DY@ =Y Com@ (36)

m=0
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Then, by (16) and (17), we get

o2 e
e
e

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 6 For n > 0, we have

D= 3 (1)D e,

0<m=n

- m!<:1)b5,k_’m<:1).

0<m=<n

Now, we consider the following two Sheffer sequences:

t k
Aoy (L)
) (( tet),e—l)

t_)\' s
H,is>(x|x)~(<e )t) seN, 1 € Cwith A #1.

Let

and

DP@) =Y ComHS (x12).

m=0

Here

1 (1+¢)log(l+1)
ml(1— ) << t

1 " /s »
ml(1— 1) ; (’> 1 - )7 (n);

k
X <<—(1 +0) I(t)g(l * t)> (log(1 + )" x”-}'>

n-m n-m }
= C)(l A) ’(n ( )Sl(l+m,m)D el
j=0

n—m H—m—j ]
P> (,)( ! )(n),»(l—x)fsl(n- j— L, m)DY

Therefore, by (39) and (40), we obtain the following theorem.

k
) (log(l + t))m(l - L+ 0)f|x

(37)

(38)

(39)

(40)
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Theorem 7 Forn >0,k >1and ) € C with A #1, we have

n n—m n—m—j .
- E{EE (o
m=0

j=0 [=0

x (1=2)78y(n—j—1,m)D}" }Hfj) (x| 1).

We consider the following two Sheffer sequences:

¢ k t s
pro=((%) <) me=((7) o)

Here

1/ ( )

Cnm=_<7l°gt (log( +1))" >
’ m!\ (= )X
(1+¢) log(1+¢)

1 (Tomoams)’
= _<(1 n t)sw(log(l +1)" |«
! ST
(1+¢) log(1+£)

Case 1. For s > k, we have

1 t sk m .
Cim = %<<Wg(l+ﬂ) (10g(1 + t)) }(1 +1)°x >

t s—k -
Rz Z <l> <<(l+t ]Og(l+t)) ‘(10g(1+t)) X 1>

0<]<n

Z <’)(l’1)} Sl(l: WZ)

0<j<n-m m<l<n—j

n-j 4 o n—j-1
X( ! ><<(1+t)log<1+t)> g >

ELE O s

0<j<n-mm<Il<n-j

where Cfs_k) is the ith Cauchy number of the second kind of order s — k (see [14]).

Case 2. For s = k, we have

Cum = %((log(l + t))ml(l + t)sx”>

> ()

1 m
= %<(log(1 +1))

(42)
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<,)(n), > A

0<j<n-m m=<l<oco

<’) (n);S1(n - j, m). (44)

0<j<n-m

Case 3. For s < k, we have

Coo = i<((1 +t)log(1 +¢)
m! t

k-s
) (log(1 + )" |1+ t)sx”>

-y > )(" ’) Sl DL, (45)

0<j<n-m m<i<n-j
Therefore, by (41), (42), (43), (44), and (45), we obtain the following theorem.

Theorem 8 Let n > 0, we have:

(I) Fors >k, we have

DPw= 3" {

0<m=n

> GC7)

x (1);S1 (L, m)éf_f_’,}sﬁﬁ ().

0<j<n-m m<l<n-j

(II) For s = k, we have

Oy =Y {

0<m=<n

(’> (n);S1(n -}, m)} BY)(x).

0<j<n-m

(IIT) For s < k, we have

OEEY {

0<m=<n

> GC7)

x () (L, m)D” ,}B“ ().

0<j<n-m m<I<n-j
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