Chlodowsky variant of q-Bernstein-Schurer-Stancu operators

Tuba Vedi* and Mehmet Ali Özarslan

Correspondence:
tuba.vedi@emu.edu.tr Eastern Mediterranean University, Gazimagusa, Mersin, TRNC 10, Turkey

Abstract

It was Chlodowsky who considered non-trivial Bernstein operators, which help to approximate bounded continuous functions on the unbounded domain. In this paper, we introduce the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. By obtaining the first few moments of these operators, we prove Korovkin-type approximation theorems in different function spaces. Furthermore, we compute the error of the approximation by using the modulus of continuity and Lipschitz-type functionals. Then we obtain the degree of the approximation in terms of the modulus of continuity of the derivative of the function. Finally, we study the generalization of the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators and investigate their approximations.

MSC: Primary 41A10; 41A25; secondary 41A36
Keywords: Schurer-Stancu and Schurer Chlodowsky operators; modulus of continuity; Korovkin-type theorems; Lipschitz-type functionals; q-Bernstein operators

1 Introduction

The classical Bernstein-Chlodowsky operators were defined by Chlodowsky [1] as

$$
C_{n}(f ; x)=\sum_{r=0}^{n} f\left(\frac{r}{n} b_{n}\right)\binom{n}{r}\left(\frac{x}{b_{n}}\right)^{r}\left(1-\frac{x}{b_{n}}\right)^{n-r},
$$

where the function f is defined on $[0, \infty)$ and $\left(b_{n}\right)$ is a positive increasing sequence with $b_{n} \rightarrow \infty$ and $\frac{b_{n}}{n} \rightarrow 0$ as $n \rightarrow \infty$.

In 1968, Stancu [2] constructed and studied the Bernstein-Stancu operators, which were defined as

$$
P_{m}^{\alpha, \beta}(f ; x)=\sum_{k=0}^{m} f\left(\frac{k+\alpha}{m+\beta}\right)\binom{m}{k} x^{k}(1-x)^{m-k},
$$

where $\alpha, \beta \in \mathbb{R}$ such that $0 \leq \alpha \leq \beta$.
In 1987, Lupaș [3] introduced the q-based Bernstein operators and obtained the Korovkin-type approximation theorem. In 1996, other q-based Bernstein operators were defined by Phillips [4, 5]. During the last decade q-based operators have become an active research area (see [6-9]).

In 2011, the q-Bernstein-Schurer operators were defined by Muraru [10], for fixed $p \in \mathbb{N}_{0}$ and for all $x \in[0,1]$, by

$$
B_{n}^{p}(f ; q ; x)=\sum_{k=0}^{n+p} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{c}
n+p \tag{1.1}\\
k
\end{array}\right] x^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} x\right)
$$

where q is a positive real number and the function f is evaluated at the q-integers $\frac{[k]}{[n]}$. Recall that the q-integer of $k \in \mathbb{R}$ is [11]

$$
[k]= \begin{cases}\left(1-q^{k}\right) /(1-q), & q \neq 1 \\ k, & q=1\end{cases}
$$

the q-factorial is defined by

$$
[k]!= \begin{cases}{[k][k-1] \cdots[1],} & k=1,2,3, \ldots \\ 1, & k=0\end{cases}
$$

and q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[n-k]![k]!}
$$

for $n \geq 0, k \geq 0$. Note that the case $q \rightarrow 1^{-}$in (1.1), the operators defined by (1.1) were reduced to the operators considered by Schurer [12].
Some properties of the q-Bernstein-Schurer operators were investigated in [13]. We should notice that the case $p=0$ reduces to the q-Bernstein operators.

It should be noted that complex approximation properties of some Schurer-type operators were investigated in $[14,15]$ and [16].

Recently, Barbosu investigated Schurer-Stancu operators $S_{m, p}^{\alpha, \beta}: C[0,1+p] \rightarrow C[0,1]$ which were defined by [17] (see also [18])

$$
\begin{equation*}
S_{m, p}^{\alpha, \beta}(f ; x)=\sum_{k=0}^{m+p} f\left(\frac{k+\alpha}{m+\beta}\right)\binom{m+p}{k} x^{k}(1-x)^{m+p-k} \tag{1.2}
\end{equation*}
$$

where α and β are non-negative numbers which satisfy $0 \leq \alpha \leq \beta$ and also p is a nonnegative integer.

In 2008, Karsli and Gupta [19] defined the q-analogue of Chlodowsky operators by

$$
C_{n}(f ; q ; x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]} b_{n}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right), \quad 0 \leq x \leq b_{n},
$$

where $\left(b_{n}\right)$ has the same property of Bernstein-Chlodowsky operators.
Lately, the q-analogues of Bernstein-Schurer-Stancu operators were introduced by Agrawal et al. as [20]

$$
S_{n, p}^{\alpha, \beta}(f ; q ; x)=\sum_{k=0}^{n+p} f\left(\frac{[k]+\alpha}{[n]+\beta}\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} x\right)
$$

where α, β and p are non-negative integers such that $0 \leq \alpha \leq \beta$. For the first few moments, we have the following lemma.

Lemma 1.1 [20, p.7755] For the operator $S_{n, p}^{\alpha, \beta}(f ; q ; x)$, we have the following moments:
(i) $\quad S_{n, p}^{\alpha, \beta}(1 ; q ; x)=1$,
(ii) $S_{n, p}^{\alpha, \beta}(t ; q ; x)=\frac{[n+p] x+\alpha}{[n]+\beta}$,
(iii) $\quad S_{n, p}^{\alpha, \beta}\left(t^{2} ; q ; x\right)=\frac{1}{([n]+\beta)^{2}}\left([n+p]^{2} x^{2}+[n+p] x(1-x)+2 \alpha[n+p] x+\alpha^{2}\right)$.

The organization of the paper as follows.
In Section 2, we introduce the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators and investigate the moments of the operator. In Section 3, we study several Korovkintype theorems in different function spaces. In Section 4, we obtain the order of convergence of the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators by means of Lipschitz class functions and the first modulus of continuity. In addition, we calculate the degree of convergence of the approximation process in terms of the first modulus of continuity of the derivative of the function. In Section 5, we study the generalization of the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators and investigate their approximations.

2 Construction of the operators

We construct the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators as

$$
C_{n, p}^{(\alpha, \beta)}(f ; q ; x):=\sum_{k=0}^{n+p} f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)\left[\begin{array}{c}
n+p \tag{2.1}\\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right),
$$

where $n \in \mathbb{N}$ and $p \in \mathbb{N}_{0}$ and $\alpha, \beta \in \mathbb{R}$ with $0 \leq \alpha \leq \beta, 0 \leq x \leq b_{n}, 0<q<1$. Clearly, $C_{n, p}^{(\alpha, \beta)}$ is a linear and positive operator. Note that the cases $q \rightarrow 1$ and $p=0$ in (2.1) reduce to the Stancu-Chlodowsky polynomials [21].

Firstly, we obtain the following lemma, which will be used throughout the paper.
Lemma 2.1 Let $C_{n, p}^{(\alpha, \beta)}(f ; q ; x)$ be given in (2.1). Then the first few moments of the operators are
(i) $C_{n, p}^{(\alpha, \beta)}(1 ; q ; x)=1$,
(ii) $\quad C_{n, p}^{(\alpha, \beta)}(t ; q ; x)=\frac{[n+p] x+\alpha b_{n}}{[n]+\beta}$,
(iii) $\quad C_{n, p}^{(\alpha, \beta)}\left(t^{2} ; q ; x\right)=\frac{1}{([n]+\beta)^{2}}\left\{[n+p-1][n+p] q x^{2}+(2 \alpha+1)[n+p] b_{n} x+\alpha^{2} b_{n}^{2}\right\}$,
(iv) $\quad C_{n, p}^{(\alpha, \beta)}((t-x) ; q ; x)=\left(\frac{[n+p]}{[n]+\beta}-1\right) x+\frac{\alpha b_{n}}{[n]+\beta}$,
(v) $\quad C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right)=\left(\frac{[n+p-1][n+p] q}{([n]+\beta)^{2}}-2 \frac{[n+p]}{[n]+\beta}+1\right) x^{2}$

$$
+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}-\frac{2 \alpha}{[n]+\beta}\right) b_{n} x+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}}
$$

Proof Using Lemma 1.1 and considering the following facts:

$$
\begin{aligned}
& C_{n, p}^{\alpha, \beta}(1 ; q ; x)=S_{n, p}^{\alpha, \beta}\left(1 ; q ; \frac{x}{b_{n}}\right) \\
& C_{n, p}^{\alpha, \beta}(t ; q ; x)=b_{n} S_{n, p}^{\alpha, \beta}\left(t ; q ; \frac{x}{b_{n}}\right) \\
& C_{n, p}^{\alpha, \beta}\left(t^{2} ; q ; x\right)=b_{n}^{2} S_{n, p}^{\alpha, \beta}\left(t^{2} ; q ; \frac{x}{b_{n}}\right),
\end{aligned}
$$

we get the assertions (i), (ii), and (iii).
Using the linearity of the operators, we have

$$
\begin{aligned}
C_{n, p}^{(\alpha, \beta)}((t-x) ; q ; x) & =C_{n, p}^{(\alpha, \beta)}(t ; q ; x)-x C_{n, p}^{(\alpha, \beta)}(1 ; q ; x) \\
& =\left(\frac{[n+p]}{[n]+\beta}-1\right) x+\frac{\alpha b_{n}}{[n]+\beta} .
\end{aligned}
$$

So, we get (iv).
Similar computations give

$$
C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right)=C_{n, p}^{(\alpha, \beta)}\left(t^{2} ; q ; x\right)-2 x C_{n, p}^{(\alpha, \beta)}(t ; q ; x)+x^{2} C_{n, p}^{(\alpha, \beta)}(1 ; q ; x)
$$

Then we have

$$
\begin{aligned}
C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right)= & \left(\frac{[n+p-1][n+p]}{([n]+\beta)^{2}} q-2 \frac{[n+p]}{[n]+\beta}+1\right) x^{2} \\
& +\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}-2 \frac{\alpha}{[n]+\beta}\right) b_{n} x+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}}
\end{aligned}
$$

This proves (v).
Lemma 2.2 For each fixed $q \in(0,1)$, we have

$$
\frac{[n+p-1][n+p]}{([n]+\beta)^{2}} q-2 \frac{[n+p]}{[n]+\beta}+1 \leq \frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} .
$$

Proof Since $[n+p-1][n+p] q \leq[n+p]^{2}$ we get

$$
\frac{[n+p-1][n+p]}{([n]+\beta)^{2}} q-2 \frac{[n+p]}{[n]+\beta}+1 \leq\left(\frac{[n+p]}{[n]+\beta}-1\right)^{2} .
$$

If we calculate the right-hand side of the above inequality, we get the following:

$$
\begin{aligned}
& \frac{[n+p-1][n+p]}{([n]+\beta)^{2}} q-2 \frac{[n+p]}{[n]+\beta}+1 \\
& \quad \leq \frac{1}{([n]+\beta)^{2}}\left\{\frac{\left(1-q^{n+p}\right)^{2}}{(1-q)^{2}}-2 \frac{\left(1-q^{n+p}\right)\left(1-q^{n}\right)}{(1-q)^{2}}-2 \beta \frac{\left(1-q^{n+p}\right)}{1-q}+\frac{\left(1-q^{n}\right)^{2}}{(1-q)^{2}}\right. \\
& \left.\quad+2 \beta \frac{\left(1-q^{n}\right)}{1-q}+\beta^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{([n]+\beta)^{2}}\left\{\frac{q^{2 n}\left(q^{2 p}-2 q^{p}+1\right)}{(1-q)^{2}}+2 \beta \frac{q^{n}\left(q^{p}-1\right)}{1-q}+\beta^{2}\right\} \\
& =\frac{1}{([n]+\beta)^{2}}\left\{\frac{q^{2 n}\left(1-q^{p}\right)^{2}}{(1-q)^{2}}-2 \beta \frac{q^{n}\left(1-q^{p}\right)}{1-q}+\beta^{2}\right\} \\
& =\frac{1}{([n]+\beta)^{2}}\left\{q^{2 n}[p]^{2}-2 \beta q^{n}[p]+\beta^{2}\right\}=\frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} .
\end{aligned}
$$

Remark 2.1 As a consequence of Lemma 2.1 and Lemma 2.2, we have

$$
\begin{equation*}
C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right) \leq \frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} x^{2}+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}\right) b_{n} x+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}} \tag{2.2}
\end{equation*}
$$

Lemma 2.3 For the second central moment we have the following estimate:

$$
\begin{aligned}
& \sup _{0 \leq x \leq b_{n}} C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right) \\
& \quad \leq \frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} b_{n}^{2}+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}\right) b_{n}^{2}+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}}
\end{aligned}
$$

Proof Taking supremum over $\left[0, b_{n}\right]$ in (2.2) we get the result.

3 Korovkin-type approximation theorem

In this section, we prove Korovkin-type approximation theorem for the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. Denote by C_{ρ} the space of all continuous functions f, satisfying the condition

$$
|f(x)| \leq M_{f} \rho(x), \quad-\infty<x<\infty .
$$

Obviously, C_{ρ} is a linear normed space with the norm

$$
\|f\|_{\rho}=\sup _{-\infty<x<\infty} \frac{|f(x)|}{\rho(x)} .
$$

In studying the weighted approximation, the following theorem is crucial.

Theorem 3.1 (See [22]) There exists a sequence of positive linear operators T_{n}, acting from C_{ρ} to C_{ρ}, satisfying the conditions

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|T_{n}(1 ; x)-1\right\|_{\rho}=0 \tag{3.1}\\
& \lim _{n \rightarrow \infty}\left\|T_{n}(\phi ; x)-\phi\right\|_{\rho}=0 \tag{3.2}\\
& \lim _{n \rightarrow \infty}\left\|T_{n}\left(\phi^{2} ; x\right)-\phi^{2}\right\|_{\rho}=0 \tag{3.3}
\end{align*}
$$

where $\phi(x)$ is continuous and increasing function on $(-\infty, \infty)$ such that $\lim _{x \rightarrow \pm \infty} \phi(x)=$ $\pm \infty$ and $\rho(x)=1+\phi^{2}$ and there exists a functionf ${ }^{*} \in C_{\rho}$ for which $\overline{\lim _{n \rightarrow \infty}}\left\|T_{n} f^{*}-f^{*}\right\|_{\rho}>0$.

The following theorem has been given in [22] and will be used in the investigation of the approximation properties of $C_{n, p}^{(\alpha, \beta)}(f ; q ; x)$ in weighted spaces.

Theorem 3.2 (See [22]) The conditions (3.1), (3.2), (3.3) imply $\lim _{n \rightarrow \infty}\left\|T_{n} f-f\right\|_{\rho}=0$ for any function f belonging to the subset C_{ρ}^{0} of C_{ρ} for which

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{\rho(x)}
$$

exists finitely.

Particularly, choosing $\rho(x)=1+x^{2}$ and applying Theorem 3.2 to the operators

$$
T_{n}^{\alpha, \beta}(f ; q ; x)= \begin{cases}C_{n, p}^{(\alpha, \beta)}(f ; q ; x) & \text { if } 0 \leq x \leq b_{n} \\ f(x) & \text { if } x \notin\left[0, b_{n}\right]\end{cases}
$$

we can state the following theorem.

Theorem 3.3 For all $f \in C_{1+x^{2}}^{0}$ we have

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq b_{n}} \frac{\left|T_{n}^{\alpha, \beta}\left(f ; q_{n} ; x\right)-f(x)\right|}{1+x^{2}}=0
$$

provided that $q:=\left(q_{n}\right)$ with $0<q_{n}<1, \lim _{n \rightarrow \infty} q_{n}=1$ and $\lim _{n \rightarrow \infty} \frac{b_{n}}{[n]}=0$ as $n \rightarrow \infty$.

Proof In the proof we directly use Theorem 3.2. Obviously, by Lemma 2.1(i), (ii), and (iii) we get the following inequalities, respectively:

$$
\begin{aligned}
\sup _{0 \leq x \leq b_{n}} \frac{\left|T_{n}^{\alpha, \beta}\left(t ; q_{n} ; x\right)-x\right|}{1+x^{2}} & \leq \sup _{0 \leq x \leq b_{n}} \frac{\left|\left(\frac{[n+p]}{[n]+\beta}-1\right)\right| x+\frac{\alpha b_{n}}{[n]+\beta}}{\left(1+x^{2}\right)} \\
& \leq\left|\frac{[n+p]}{[n]+\beta}-1\right|+\frac{\alpha b_{n}}{[n]+\beta} \rightarrow 0
\end{aligned}
$$

and

$$
\begin{aligned}
& \sup _{0 \leq x \leq b_{n}} \frac{\left|T_{n}^{\alpha, \beta}\left(t^{2} ; q_{n} ; x\right)-x^{2}\right|}{1+x^{2}} \\
& \quad \leq \sup _{0 \leq x \leq b_{n}} \frac{\left|[n+p-1][n+p] q_{n}-([n]+\beta)^{2}\right| x^{2}+(2 \alpha+1)[n+p] b_{n} x+\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}\left(1+x^{2}\right)} \\
& \quad \leq \frac{\left|[n+p-1][n+p] q_{n}-([n]+\beta)^{2}\right|+(2 \alpha+1)[n+p] b_{n}+\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}} \rightarrow 0
\end{aligned}
$$

is satisfied since $\lim _{n \rightarrow \infty} q_{n}=1$ and $\frac{b_{n}}{[n]} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 3.4 Let A be a positive real number independent of n and f be a continuous function which vanishes on $[A, \infty]$. Assume that $q:=\left(q_{n}\right)$ with $0<q_{n}<1, \lim _{n \rightarrow \infty} q_{n}^{n}=K<\infty$ and $\lim _{n \rightarrow \infty} \frac{b_{n}^{2}}{[n]}=0$. Then we have

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(f ; q_{n} ; x\right)-f(x)\right|=0 .
$$

Proof From the hypothesis on f, one can write $|f(x)| \leq M(M>0)$. For arbitrary small $\varepsilon>0$, we have

$$
\left|f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)-f(x)\right|<\varepsilon+\frac{2 M}{\delta^{2}}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2},
$$

where $x \in\left[0, b_{n}\right]$ and $\delta=\delta(\varepsilon)$ are independent of n. With the help of the following equality:

$$
\sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)=C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q_{n} ; x\right)
$$

we get by Theorem 3.3 and Remark 2.1

$$
\begin{aligned}
& \sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(f ; q_{n} ; x\right)-f(x)\right| \\
& \quad \leq \varepsilon+\frac{2 M}{\delta^{2}}\left[\frac{\left(q_{n}^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} b_{n}^{2}+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}\right) b_{n}^{2}+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}}\right] .
\end{aligned}
$$

Since $\frac{b_{n}^{2}}{[n]} \rightarrow 0$ as $n \rightarrow \infty$, we have the desired result.
Theorem 3.5 Letf be a continuous function on the semi-axis $[0, \infty)$ and

$$
\lim _{x \rightarrow \infty} f(x)=k_{f}<\infty .
$$

Assume that $q:=\left(q_{n}\right)$ with $0<q_{n}<1, \lim _{n \rightarrow \infty} q_{n}=1, \lim _{n \rightarrow \infty} q_{n}^{n}=K<\infty$, and $\lim _{n \rightarrow \infty} \frac{b_{n}^{2}}{[n]}=$ 0. Then

$$
\lim _{x \rightarrow \infty} \sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(f ; q_{n} ; x\right)-f(x)\right|=0
$$

Proof The proof will be given along the lines of the proof of Theorem 2.5 in [23]. Clearly, it is sufficient to prove the theorem for the case $k_{f}=0$. Since $\lim _{x \rightarrow \infty} f(x)=0$, given any $\varepsilon>0$ we can find a point x_{0} such that

$$
\begin{equation*}
|f(x)| \leq \varepsilon, \quad x \geq x_{0} \tag{3.4}
\end{equation*}
$$

For any fixed $c>0$, define an auxiliary function as follows:

$$
g(x)= \begin{cases}f(x), & 0 \leq x \leq x_{0} \\ f\left(x_{0}\right)-\frac{f\left(x_{0}\right)}{c}\left(x-x_{0}\right), & x_{0} \leq x \leq x_{0}+c \\ 0, & x \geq x_{0}+c\end{cases}
$$

Then for sufficiently large n in such a way that $b_{n} \geq x_{0}+c$ and in view of $\sup _{x_{0} \leq x \leq x_{0}+c}|g(x)|=$ $\left|f\left(x_{0}\right)\right|$, we have

$$
\begin{aligned}
\sup _{0 \leq x \leq b_{n}}|f(x)-g(x)| & \leq \sup _{x_{0} \leq x \leq x_{0}+c}|f(x)-g(x)|+\sup _{b_{n} \geq x \geq x_{0}+c}|f(x)| \\
& \leq 2 \sup _{x_{0} \leq x \leq x_{0}+c}|f(x)|+\sup _{b_{n} \geq x \geq x_{0}+c}|f(x)| .
\end{aligned}
$$

We have from (3.4)

$$
\sup _{0 \leq x \leq b_{n}}|f(x)-g(x)| \leq 3 \varepsilon
$$

Now, we can write

$$
\begin{aligned}
& \sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(f ; q_{n} ; x\right)-f(x)\right| \\
& \leq \sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(|f-g| ; q_{n} ; x\right)\right|+\sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(g ; q_{n} ; x\right)-g(x)\right| \\
&+\sup _{0 \leq x \leq b_{n}}|f(x)-g(x)| \\
& \leq 6 \varepsilon+\sup _{0 \leq x \leq b_{n}}\left|C_{n, p}^{(\alpha, \beta)}\left(g ; q_{n} ; x\right)-g(x)\right|,
\end{aligned}
$$

where $g(x)=0$ for $x_{0}+c \leq x \leq b_{n}$. By Lemma 3.4, we obtain the result.

4 Order of convergence

In this section, we compute the rate of convergence of the operators in terms of the elements of Lipschitz classes and the modulus of continuity of the function. Additionally, we calculate the order of convergence in terms of the first modulus of continuity of the derivative of the function.
Now, we give the rate of convergence of the operators $C_{n, p}^{(\alpha, \beta)}$ in terms of the Lipschitz class $\operatorname{Lip}_{M}(\gamma)$, for $0<\gamma \leq 1$. Let $C_{B}[0, \infty)$ denote the space of bounded continuous functions on $[0, \infty)$. A function $f \in C_{B}[0, \infty)$ belongs to $\operatorname{Lip}_{M}(\gamma)$ if

$$
|f(t)-f(x)| \leq M|t-x|^{\gamma} \quad(t, x \in[0, \infty))
$$

is satisfied.

Theorem 4.1 Let $f \in \operatorname{Lip}_{M}(\gamma)$

$$
\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \leq M\left(\lambda_{n}(x)\right)^{\gamma / 2}
$$

where $\lambda_{n, q}(x)=\left(\frac{\left(q_{n}^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}}\right) x^{2}+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}-\frac{2 \alpha}{[n]+\beta}\right) b_{n} x+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}}$.
Proof Considering the monotonicity and the linearity of the operators, and taking into account that $f \in \operatorname{Lip}_{M}(\gamma)$,

$$
\begin{aligned}
& \left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \quad=\left|\sum_{k=0}^{n+p}\left(f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)-f(x)\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right| \\
& \quad \leq \sum_{k=0}^{n+p}\left|f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)-f(x)\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \quad \leq M \sum_{k=0}^{n+p}\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|^{\gamma}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) .
\end{aligned}
$$

Using Hölder's inequality with $p=\frac{2}{\gamma}$ and $q=\frac{2}{2-\gamma}$, we get by the statement (2.2)

$$
\begin{aligned}
&\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \leq M \sum_{k=0}^{n+p}\left\{\left[\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right]^{\frac{\gamma}{2}}\right. \\
&\left.\times\left[\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k+1} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right]^{\frac{2-\gamma}{2}}\right\} \\
& \leq M\left[\left\{\sum_{k=0}^{n+p}\left[\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right]\right\}^{\frac{\gamma}{2}}\right. \\
& \times\left\{\sum _ { k = 0 } ^ { n + p } \left[\left[\begin{array}{c}
\left.\left.\left.n+p]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right]\right\}^{\frac{2-\gamma}{\gamma}}\right] \\
=
\end{array}\right.\right.\right. \\
& \leq M\left[C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right)\right]^{\frac{\gamma}{2}} \\
& \leq M\left(\lambda_{n, q}(x)\right)^{\frac{\gamma}{2}} .
\end{aligned}
$$

Now we give the rate of convergence of the operators by means of the modulus of continuity which is denoted by $\omega(f ; \delta)$. Let $f \in C_{B}[0, \infty)$ and $x \geq 0$. Then the definition of the modulus of continuity of f is given by

$$
\begin{equation*}
\omega(f ; \delta)=\max _{\substack{|t-x| \leq \delta \\ t, x \in[0, \infty)}}|f(t)-f(x)| . \tag{4.1}
\end{equation*}
$$

It follows that for any $\delta>0$ the inequality

$$
\begin{equation*}
|f(x)-f(y)| \leq \omega(f ; \delta)\left(\frac{|x-y|}{\delta}+1\right) \tag{4.2}
\end{equation*}
$$

is satisfied [24].

Theorem 4.2 Iff $\in C_{B}[0, \infty)$, we have

$$
\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\lambda_{n, q}(x)}\right)
$$

where $\omega(f ; \cdot)$ is modulus of continuity off which is defined in (4.1) and $\lambda_{n, q}(x)$ be the same as in Theorem 4.1.

Proof By the triangular inequality, we get

$$
\begin{aligned}
& \left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \quad=\left|\sum_{k=0}^{n+p} f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)-f(x)\right| \\
& \quad \leq \sum_{k=0}^{n+p}\left|f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)-f(x)\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) .
\end{aligned}
$$

Now using (4.2) and the Hölder inequality, we can write

$$
\begin{aligned}
&\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \leq \sum_{k=0}^{n+p}\left(\frac{\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|}{\lambda}+1\right) \omega(f ; \lambda)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
&= \omega(f ; \lambda) \sum_{k=0}^{n+p}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \quad+\frac{\omega(f ; \lambda)}{\lambda} \sum_{k=0}^{n+p}\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
&= \omega(f ; \lambda)+\frac{\omega(f ; \lambda)}{\lambda}\left\{\sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right\}^{1 / 2} \\
&= \omega(f ; \lambda)+\frac{\omega(f ; \lambda)}{\lambda}\left\{C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2}\right) ; q ; x\right\}^{1 / 2} .
\end{aligned}
$$

Now choosing $\lambda_{n, q}(x)$ the same as in Theorem 4.1, we have

$$
\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \leq 2 \omega\left(f ; \sqrt{\lambda_{n, q}(x)}\right)
$$

Now, we compute the rate of convergence of the operators $C_{n, p}^{(\alpha, \beta)}$ in terms of the modulus of continuity of the derivative of the function.

Theorem 4.3 Iff(x) has a continuous bounded derivative $f^{\prime}(x)$ and $\omega\left(f^{\prime} ; \delta\right)$ is the modulus of continuity of $f^{\prime}(x)$ in $[0, A]$, then

$$
\begin{aligned}
& \left|f(x)-C_{n, p}^{(\alpha, \beta)}(f ; q ; x)\right| \\
& \quad \leq M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right)+2\left(B_{n, q}(\alpha, \beta)\right)^{1 / 2} \omega\left(f^{\prime} ;\left(B_{n, q}(\alpha, \beta)\right)^{1 / 2}\right),
\end{aligned}
$$

where M is a positive constant such that $\left|f^{\prime}(x)\right| \leq M$.
Proof Using the mean value theorem, we have

$$
\begin{aligned}
f\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)-f(x) & =\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right) f^{\prime}(\xi) \\
& =\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right) f^{\prime}(x)+\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)\left(f^{\prime}(\xi)-f^{\prime}(x)\right),
\end{aligned}
$$

where ξ is a point between x and $\frac{[k]+\alpha}{[n]+\beta} b_{n}$. By using the above identity, we get

$$
\begin{aligned}
& C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x) \\
&= f^{\prime}(x) \sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k+p-k-1} \prod_{s=0}^{n+1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \quad+\sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)\left(f^{\prime}(\xi)-f^{\prime}(x)\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \leq\left|f^{\prime}(x)\right|\left|C_{n, p}^{(\alpha, \beta)}((t-x) ; q ; x)\right| \\
& +\sum_{k=0}^{n+p}\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|\left|f^{\prime}(\xi)-f^{\prime}(x)\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \leq M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& +\sum_{k=0}^{n+p}\left|\frac{[k]+\alpha}{[n]+\beta}-x\right|\left|f^{\prime}(\xi)-f^{\prime}(x)\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \leq M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& +\sum_{k=0}^{n+p} \omega\left(f^{\prime} ; \delta\right)\left(\frac{\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|}{\delta}+1\right)\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \\
& \times \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right),
\end{aligned}
$$

since

$$
|\xi-x| \leq\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|
$$

Using the above inequality, we have

$$
\begin{aligned}
& \left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \leq \\
& \quad M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& \quad+\omega\left(f^{\prime} ; \delta\right) \sum_{k=0}^{n+p}\left|\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right|\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) \\
& \quad+\frac{\omega\left(f^{\prime} ; \delta\right)}{\delta} \sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right) .
\end{aligned}
$$

Therefore, applying the Cauchy-Schwarz inequality for the second term, we get

$$
\begin{aligned}
& \left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \\
& \leq \\
& \quad M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& \quad+\omega\left(f^{\prime} ; \delta\right)\left(\sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)\right)^{1 / 2} \\
& \quad+\frac{\omega\left(f^{\prime} ; \delta\right)}{\delta} \sum_{k=0}^{n+p}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}-x\right)^{2}\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& +\omega\left(f^{\prime} ; \delta\right) \sqrt{C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right)}+\frac{\omega\left(f^{\prime} ; \delta\right)}{\delta} C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right) .
\end{aligned}
$$

Therefore, using (2.2) we see that

$$
\begin{aligned}
& \sup _{0 \leq x \leq A} C_{n, p}^{(\alpha, \beta)}\left((t-x)^{2} ; q ; x\right) \\
& \quad \leq \sup _{0 \leq x \leq A} \frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} x^{2}+\left(\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}-\frac{2 \alpha}{[n]+\beta}\right) b_{n} x+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}} \\
& \quad \leq \frac{\left(q^{n}[p]-\beta\right)^{2}}{([n]+\beta)^{2}} A^{2}+\left|\frac{(2 \alpha+1)[n+p]}{([n]+\beta)^{2}}-\frac{2 \alpha}{[n]+\beta}\right| A b_{n}+\frac{\alpha^{2} b_{n}^{2}}{([n]+\beta)^{2}} \\
& \quad:=B_{n, q}(\alpha, \beta) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|C_{n, p}^{(\alpha, \beta)}(f ; q ; x)-f(x)\right| \leq & M\left(\left|\frac{[n+p]}{[n]+\beta}-1\right| A+\frac{\alpha b_{n}}{[n]+\beta}\right) \\
& +\omega\left(f^{\prime} ; \delta\right)\left[\left(B_{n, q}(\alpha, \beta)\right)^{1 / 2}+\frac{1}{\delta} B_{n, q}(\alpha, \beta)\right] .
\end{aligned}
$$

Choosing $\delta:=\delta_{n, q}(p)=\left(B_{n, q}(\alpha, \beta)\right)^{1 / 2}$, we obtain the desired result.

5 Generalization of the Chlodowsky variant of q-Bernstein-Schurer-Stancu operators

In this section, we introduce generalization of Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. The generalized operators help us to approximate the continuous functions on more general weighted spaces. Note that this kind of generalization was considered earlier for the Bernstein-Chlodowsky polynomials [22] and q-BernsteinChlodowsky polynomials [25].
For $x \geq 0$, consider any continuous function $\omega(x) \geq 1$ and define

$$
G_{f}(t)=f(t) \frac{1+t^{2}}{\omega(t)}
$$

Let us take into account the generalization of the $C_{n, p}^{(\alpha, \beta)}(f ; q ; x)$ as follows:

$$
L_{n, p}^{\alpha, \beta}(f ; q ; x)=\frac{\omega(x)}{1+x^{2}} \sum_{k=0}^{n+p} G_{f}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)
$$

where $0 \leq x \leq b_{n}$ and $\left(b_{n}\right)$ has the same properties as the Chlodowsky variant of the q -Bernstein-Schurer-Stancu operators.

Theorem 5.1 For the continuous functions satisfying

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{\omega(x)}=K_{f}<\infty
$$

we have

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq x \leq b_{n}} \frac{\left|L_{n, p}^{\alpha_{n}, \beta}(f ; q ; x)-f(x)\right|}{\omega(x)}=0 .
$$

Proof Clearly

$$
\begin{aligned}
& L_{n, p}^{\alpha, \beta}(f ; q ; x)-f(x) \\
& \quad=\frac{\omega(x)}{1+x^{2}}\left(\sum_{k=0}^{n+p} G_{f}\left(\frac{[k]+\alpha}{[n]+\beta} b_{n}\right)\left[\begin{array}{c}
n+p \\
k
\end{array}\right]\left(\frac{x}{b_{n}}\right)^{k+p} \prod_{s=0}^{n+p-k-1}\left(1-q^{s} \frac{x}{b_{n}}\right)-G_{f}(x)\right),
\end{aligned}
$$

thus

$$
\sup _{0 \leq x \leq b_{n}} \frac{\left|L_{n, p}^{\alpha, \beta}(f ; q ; x)-f(x)\right|}{\omega(x)}=\sup _{0 \leq x \leq b_{n}} \frac{\left|C_{n, p}^{(\alpha, \beta)}\left(G_{f} ; q ; x\right)-G_{f}(x)\right|}{1+x^{2}} .
$$

By using $|f(x)| \leq M_{f} \omega(x)$ and continuity of the function f, we get $\left|G_{f}(x)\right| \leq M_{f}\left(1+x^{2}\right)$ for $x \geq 0$ and $G_{f}(x)$ is continuous function on $[0, \infty)$. Thus, from Theorem 3.2 we get the result.

Finally note that, taking $\omega(x)=1+x^{2}$, the operators $L_{n, p}^{\alpha, \beta}(f ; q ; x)$ reduce to $C_{n, p}^{(\alpha, \beta)}\left(G_{f} ; q ; x\right)$.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Received: 14 October 2013 Accepted: 20 January 2014 Published: 13 May 2014

References

1. Chlodowsky, I: Sur le development des fonctions defines dans un interval infini en series de polynomes de M. S. Bernstein. Compos. Math. 4, 380-393 (1937)
2. Stancu, DD: Asupra unei generalizari a polinoamelor lui Bernstein [On generalization of the Bernstein polynomials]. Studia Univ. Babeş-Bolyai Ser. Math.-Phys. 14(2), 31-45 (1969)
3. Lupaş, A: A q-analogue of the Bernstein operators. In: Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, vol. 9, pp. 85-92 (1987)
4. Phillips, GM: On generalized Bernstein polynomials. In: Numerical Analysis, vol. 98, pp. 263-269. World Scientific, River Edge (1996)
5. Phillips, GM: Interpolation and Approximation by Polynomials. Springer, New York (2003)
6. Büyükyazıcı, İ, Sharma, H: Approximation properties of two-dimensional q-Bernstein-Chlodowsky-Durrmeyer operators. Numer. Funct. Anal. Optim. 33(2), 1351-1371 (2012)
7. Mahmudov, NI, Sabancıgil, P: q-Parametric Bleimann Butzer and Hahn operators. J. Inequal. Appl. 2008, 816367 (2008)
8. Özarslan, MA: q-Szasz Schurer operators. Miskolc Math. Notes 12, 225-235 (2011)
9. Özarslan, MA, Vedi, T: q-Bernstein-Schurer-Kantorovich Operators. J. Inequal. Appl. 2013, 444 (2013). doi:10.1186/1029-242X-2013-444
10. Muraru, CV: Note on q-Bernstein-Schurer operators. Babeş-Bolyaj Math. 56, 489-495 (2011)
11. Kac, V, Cheung, P: Quantum Calculus. Springer, New York (2002)
12. Schurer, F: Linear positive operators in approximation theory. Math. Inst., Techn. Univ. Delf Report (1962)
13. Vedi, T, Özarslan, MA: Some properties of q-Bernstein-Schurer operators. J. Appl. Funct. Anal. 8(1), 45-53 (2013)
14. Anastassiou, GA, Gal, SG: Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks. Comput. Math. Appl. 58(4), 734-743 (2009)
15. Ren, MY, Zeng, XM: Approximation by complex q-Bernstein-Schurer operators in compact disks. Georgian Math. J. 20(2), 377-395 (2013)
16. Sucu, S, İbikli, E: Szasz-Schurer operators on a domain in complex plane. Math. Sci. 7, 40 (2013)
17. Barbosu, D: Schurer-Stancu type operators. Babeş-Bolyai Math. XLVIII(3), 31-35 (2003)
18. Barbosu, D: A survey on the approximation properties of Schurer-Stancu operators. Carpatian J. Math. 20, 1-5 (2004)
19. Karslı, H, Gupta, V: Some approximation properties of q-Chlodowsky operators. Appl. Math. Comput. 195, 220-229 (2008)
20. Agrawal, PN, Gupta, V, Kumar, SA: On a q-analogue of Bernstein-Schurer-Stancu operators. Appl. Math. Comput. 219, 7754-7764 (2013)
21. İbikli, E: On Stancu type generalization of Bernstein-Chlodowsky polynomials. Mathematica 42(65), 37-43 (2000)
22. Gadjiev, AD: The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P. P. Korovkin. Dokl. Akad. Nauk SSSR 218(5), 1001-1004 (1974) English Translation in Sov. Math. Dokl. 15(5), 1433-1436 (1974)
23. İbikli, E: Approximation by Bernstein-Chlodowsky polynomials. Hacettepe Journal of Mathematics and Statics 32, 1-5 (2003)
24. DeVore, RA, Lorentz, GG: Constructive Approximation. Springer, Berlin (1993)
25. Büyükyazıcı, i: On the approximation properties of two dimensional q-Bernstein-Chlodowsky polynomials. Math. Commun. 14(2), 255-269 (2009)
10.1186/1029-242X-2014-189

Cite this article as: Vedi and Ali Özarslan: Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. Journal of Inequalities and Applications 2014, 2014:189

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

