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Abstract
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nonlinear problems. A strong convergence theorem is established in the framework
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1 Introduction and preliminaries

Common solutions to variational inclusion, equilibrium and fixed point problems have
been recently extensively investigated based on iterative methods; see [1-33] and the ref-
erences therein. The motivation for this subject is mainly to its possible applications to
mathematical modeling of concrete complex problems, which use more than one con-
straint. The aim of this paper is to investigate a common solution of variational inclusion,
equilibrium and fixed point problems. The organization of this paper is as follows. In Sec-
tion 1, we provide some necessary preliminaries. In Section 2, a hybrid method is intro-
duced and analyzed. Strong convergence theorems are established in the framework of
Hilbert spaces. In Section 3, applications of the main results are discussed.

In what follows, we always assume that H is a real Hilbert space with the inner product
(-,-) and the norm || - ||. Let C be a nonempty, closed, and convex subset of H and let P¢
be the metric projection from H onto C. Let S: C — C be a mapping. F(S) stands for the
fixed point set of S; that is, F(S) := {x € C:x = Sx}.

Recall that S is said to be contractive iff there exists a constant « € [0,1) such that

[Sx—Syll <allx—yl, Vx,yeC.

If @ = 1, then S is said to be nonexpansive. Let A : C — H be a mapping. If C is nonempty

closed and convex, then the fixed point set of S is nonempty.

Recall that A is said to be monotone ift

(Ax—Ay,x—y) >0, Vx,yeC.

Recall that A is said to be strongly monotone iff there exists a constant « > 0 such that
(Ax —Ay,x —y) > o|x —y||2, Vx,y € C.

O©#CPRSun; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF
mailto:kfsunlj@yeah.net
http://creativecommons.org/licenses/by/2.0

Sun Journal of Inequalities and Applications #CITATION Page 2 of 16
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

For such a case, A is also said to be a-strongly monotone. Recall that A is said to be inverse-

strongly monotone iff there exists a constant & > 0 such that
(Ax — Ay,x —y) > a||Ax — Ay||*>, Vx,yeC.

For such a case, A is also said to be a-inverse-strongly monotone.

Recall that a set-valued mapping M : H = H is said to be monotone iff, for all x,y € H,
f € Mx, and g € My imply (x —y,f — g) > 0. M is maximal iff the graph Graph(M) of R is
not properly contained in the graph of any other monotone mapping. It is well known that
a monotone mapping M is maximal if and only if, for any (x,f) e H x H, (x —y,f —g) > 0,
for all (y,g) € Graph(M) implies f € Rx. For a maximal monotone operator M on H, and
r > 0, we may define the single-valued resolvent J, : H — D(M), where D(M) denote the
domain of M. It is well known that J, is firmly nonexpansive, and M(0) = F(J,), where
F(J,):={x e DIM) : x = J,x}, and M7(0) := {x € H : 0 € Mx]}.

Let A : C — H beainverse-strongly monotone mapping, and let F be a bifunction of C x
C into R, where R denotes the set of real numbers. We consider the following generalized

equilibrium problem.
Find x € C such that F(x,y) + (Ax,y—x) >0, VyeC. (1.1)

In this paper, the set of such an x € C is denoted by EP(F, A).

To study the equilibrium problems (1.1), we may assume that F satisfies the following
conditions:

(Al) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 forallx,y € C;

(A3) foreachx,y,z€C,

limsup F(tz + (1 - t)x,y) < F(x,);
£40

(A4) for eachx € C, y+— F(x,y) is convex and weakly lower semicontinuous.

In order to prove our main results, we also need the following lemmas.

Lemma 1.1 [34] Assume that {«,} is a sequence of nonnegative real numbers such that
Oyl = (1 - yn)an + 8,,,,

where {y,} is a sequence in (0,1) and {3,} is a sequence such that

(1) thozl VYn = 005
(2) limsup,_, o 8n/yn <0 o0r Y oo, 18, < 00.
Then lim,,_, oo ¢, = 0.

Lemma 1.2 [35] Let F: C x C — R be a bifunction satisfying (Al)-(A4). Then, for any
r>0and x € H, there exists z € C such that

1
F(z,y)+ -(y-2z-x) >0, VyeC.
r
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Define a mapping T, : H — C as follows:

1
Tox = {zeC:F(z,y)+ -(y—z,z—x) zO,VyEC}, x€eH,

r

then the following conclusions hold:
(1) T, is single-valued,;
(2) T, is firmly nonexpansive, i.e., for any x,y € H,

”Trx_ Try”2 E (Trx_ Tr ,X—y);

(3) F(T,) = EP(F);
(4) EP(F) is closed and convex.

Page3of 16

Let {S; : C — C} be a family of infinitely nonexpansive mappings and {y;} be a nonneg-

ative real sequence with 0 < y; <1, Vi > 1. For n > 1 define a mapping W, : C — C as

follows:
un,n+1 = 1¢
un,n = VnSn Un,n+1 + (1 - Vn)ly

un,n—l = Vn—lSn—l Un,n + (1 - yn—l)];

Ui = viSilppa + (L= vi)l,

Upp-1 = Vic1Sk-1Up i + (1= v,

Uy = 2Sollyz + (1 -,

Wy =U,y =Sl + - )l

(1.2)

Such a mapping W, is nonexpansive from C to C and it is called a W-mapping generated

bY S}'t; Sn—ll vee ;Sl and Vs VYn-15+++5 V1.

Lemma 1.3 [36] Let {S;: C — C} be a family of infinitely nonexpansive mappings with a

nonempty common fixed point set and let {y;} be a real sequence such that 0 < y; <[<1,

where | is some real number, Vi > 1. Then

(1) W, is nonexpansive and F(W,) = (", F(S:), for each n > 1;
(2) foreach x € C and for each positive integer k, the limit lim,_, oo U, exists;

(3) the mapping W : C — C defined by

Wx:= lim Wyx= lim U,;x, x€C,
n—0o0 n— o0

is a nonexpansive mapping satisfying F(W) = (75 F(S;) and it is called the

W -mapping generated by S1,Ss,... and y1, 2, .. ..

1.3)
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Lemma 1.4 [27] Let {S;: C — C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set and let {y;} be a real sequence such that 0 < y; <[<1,
Vi> 1. IfK is any bounded subset of C, then

lim sup | Wx — W,x|| = 0.

=00 yek
Throughout this paper, we always assume that 0 < y; </<1,Vi>1.

Lemma 1.5 [37] Let B: C — H be a mapping and let M : H = H be a maximal monotone
operator. Then F(J,(I - sB)) = (B + M)™1(0).

Lemma 1.6 [38] Let {x,} and {y,} be bounded sequences in H and let {B,} be a sequence
in (0,1) with 0 < liminf,_, o B, <limsup,,_, ., Bx < 1. Suppose that x,.1 = (1 — B)Yn + Bu¥kn
foralln> 0 and

1im sup (|11 = Yl = %1 = %) < 0.

n—0o0

Then lim,_, o ||y, — x4 = 0.

Lemma 1.7 [39] Let A : C — H a Lipschitz monotone mapping and let Ncx be the normal
coneto Catx e C;thatis, Nex={y € H: (x —u,y),Yu € C}. Define

Ax+Ncx, xeC,
] x ¢ C.

X =

Then D is maximal monotone and 0 € Dx if and only if x € VI(C, A).

2 Main results

Theorem 2.1 Let C be a nonempty closed convex subset of a Hilbert space H and F a
bifunction from C x C to R which satisfies (A1)-(A4). Let A, : C — H be a 8,-inverse-
strongly monotone mapping, A, : C — H be a §,-inverse-strongly monotone mapping, As
C — H be a é3-inverse-strongly monotone mapping, M, : H = H a maximal monotone
operator such that Dom(M,) C C and M, : H = H a maximal monotone operator such that
Dom(M,) C C. Let {S; : C — C} be a family of infinitely nonexpansive mappings. Assume
that Q := (o, F(S;) N EP(F,A3) N (A1 + M1)™(0) N (As + M3)™1(0) # 0. Let x1 € C and {x,}
be a sequence generated by

Zy = ]sn (un - SnA2un)’

Xpal = Oplh + BuXy + Vi Wn]ry, (zy —1rhAi1zy), Yn=>1,
where u is a fixed element in C, u,, is such that
1
F(tty, y) + (Asxy,y — Uy) + )\—(y— Uy, Uy — %) >0, VyeC,
n
{W,, : C — C} is the sequence generated in (1.2), {&,}, {Bu}, and {y,} are sequences in (0,1)

such that oy, + By + yn = 1 for each n > 1 and {r,}, {s,}, and {A,} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:
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(@) O<a<r,<b<283,0<d <r,<b <28,0<a<s, <b<28;
(b) lim, ooy, =0andy oo ay = 00;

(c) 0<liminf,_ s B, <limsup,_, . Bn<1;

(d) limys o0 Ay = A1l = limy, s 0 8, = Spa1] = limy 0 |7 = 741 | = 0.

Then the sequence {x,} converges strongly to x € Q, where x = Pqu.

Proof First, we show that the mapping I — r,A;, I —s,A5, and I — A,A3 are nonexpansive.
Indeed, we find from the restriction (a) that
|t = reAv)x— (I = r Ay
= e = y11? = 2r(x - 3, Aix = Avy) + 1l Avx = Ayl
< o= ylI* = 2ru81 | Arx — Ayyl|® + il Asx = Avy)?
= |2 = y11> + rulra — 281) | Asx = Ayy?
<lx-yI*, VxyeC,

which implies that the mapping I —r,A; is nonexpansive. In the same way, we find I —s,A4,
and I — 1,As3 are also nonexpansive. Put y, = J,, (z, — r,A1z,). Fixing x* € Q, we find

|yn =" || = r(2n = Tnazn) = T, (6 = rudix®) |
Sy
= |, (tn = snAoten) = Ji, (x* — 5, A2x") |
< || T3, = AnA3)x, = Ts, (I = AnAsz)x*||
< ||on = "]
It follows that
|1 =" || = | ctute + Buen + v Way — &° |

< ayflu =]+ Bl =27 4 | Wy =7

Sa,,nu—x*” +(1—a,,)“xn—x*||.

This implies that {x, } is bounded, and so are {y,}, {z,}, and {u, }. Without loss of generality,
we can assume that there exists a bounded set K C C such that x,,y,,z,, u, € K. Notice

that
1
F(un+1:y) + A (y — Upsl Upl — (1 - rn+1A3)xn+l) = 0, V}’ € C’ (21)
n+l
and
1
F(u,,y) + A—(y — U thy — ([ = r,A3)x,) >0, VyeC. (2.2)

Lety = u, in (2.1) and y = u,,,; in (2.2). By adding these two inequalities, we obtain

Uy — (1 - )"nAB)xn _ Ups1 — (1 - )\n+lA3)xn+1> >0

Upsl — Uny
< )"Vl )\n+1
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It follows that

”un+1 — Uy ”2 = <un+1 — Uy, (1 - )‘-n+1A3)xn+1 - (1 - )\'VIA?))x}’I

+ (1 - A )(Mn+1 -~ )\n+1A3)le+1)>

n+l
< lutns1 — uall (“ (I = Xn1A3)%00 — (I = ApA3)xy ”

An

1-
A

+

” Uns1 — (1 - )\n+1A3)xn+1) ||>

n+l
It follows that

”Mn+1 - un” = || (1 - )"n+lA3)xn+1 - (1 - )VnAB)xn H

Msl — A
+ % || Uyl — (1 - )\n+1A3)le+1 ”
n+l

= || (1 - )\n+lA3)xn+1 - (1 - )"n+1A3)xn + (1 - )Vn+1A3)xn - (1 - )\nAf'))xn ||
|)\n+1 - )"n|
+ e

- lttner = (I = M1 Az)anaa |

= ||xn+1 _xn” + |)"r1+1 - )\n|M11 (23)

where M is an appropriate constant such that

M, = sup{ lAsx, | +

n>1

||Mn+l - (1 - An+1A3)xn+1” ]
a

Since J;, is firmly nonexpansive, we find that

1Zns1 = znll

IA

” Uns1 — Spe1Aatbnn — Uy — SpAsty) H

[ = sus1A2) i1 — (I = $541A2) 1 + (S = Spe1) Aoty

< Nttnir = tonll + I8 = Spea | | A224n || (2.4)
Combining (2.3) with (2.4) yields
IZ2ns1 = Znll < 161 = Xull + [Aps1 — Aul My + 1Sy = Sy [ | Azttn |l (2.5)
Since J,, is also firmly nonexpansive, we find that
17ne1 = Yull < NZni1 = 2ull + 170 = rusal | Arzall. (2.6)
Substituting (2.5) into (2.6), we see that

”yn+1 _yn” S ”xn+1 _xn” + (|rn+1 - rn| + |)"n - )\'}’I+1| + |Sn _Sn+1|)M2: (27)
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where M, is an appropriate constant such that

M; = max{sup{ 412, 1}, sup{ 14314, }, M |

n>1 n>1

Since W, is nonexpansive, we find that

| Wii1Yne1 — Waynll
= | WiVt = Wy + Wy — Wy, + Wy, — Wyl
S NI Wasdner = Wynall + 1 Wy = Wyall + | Wy, = Wyl

= SUP{” Wieix — Wx|| + | Wx — an”} + 1Y = yalls (2.8)
xeK

where K is the bounded subset of C defined as above. Substituting (2.7) into (2.8), we find

that
I Wons1¥ne1 = Wiyl < ilellg{ | Wi1x — Wal| + | Wa = Wl } + (%1 — %l
+ (171 = 7l + [An = At + IS0 — Syt |) M. (2.9)
Letting

Xne1 = (L= B)Vi + Bukn,

we see that
Qi1 + Vst Was1Vnin - Qulk + Vu Widn
Vil = Vn = -
1- ﬁn+1 1- ﬂrz
(e 7788 | 1- Uyl — ,Bn+1

= + w, 1_)/ 1
1- ﬁn+1 1- ,Bnﬂ e

n 1- n~— Pn
_( « + d ﬁW,,y,,)

u
1- ﬁn 1- ,Bn
o o
= 1 _Vgl l(u - Wn+1yn+1) - 1 _Vlﬁ (M - Wnyn)
n+ n
+ Wn+1yn+1 - Wnyn~
Hence, we have
(077051 o
Vie1 — vull < L”” - Wn+1yn+1” + ‘ I|ee — Wnyn”
1- n+l 1- ,Bn
+ || Wn+1yn+1 - Wn_yn” (210)
Substituting (2.9) into (2.10), we find that
Apyl Oy
Vi1 = Vall = 41 — xall < m”u - Wiaynall + -5, lx — Wiyl
+ sup{ || Wi — Wil + || W — W] }

xeK

+ (|rn+1 =Pl + Ay = Al + ISy _Sn+1|)M2'

Page 7 of 16
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It follows from Lemma 1.4 that

hmsup(”"rﬁl = Vall = 1%ns1 _xn”) =<0.
n—0o0

In view of Lemma 1.6, we find that lim,,_, o ||v,, — %, || = 0. It follows that
lim ||x,1 — %, = 0. (2.11)
n— o0
For any x* € 2, we see that
st =P <t o= 3= @12)
Since
||yn - x* ”2 =< ”(1 - rnAl)Zn - (1 - rnAl)x* ”2

= ||z,, —x* ”2 - 2r,,(z,, —x*, A1z, —Alx*) + ri HAlz,, —Ax* Hz

< ||z —2|* = 2ru81 | Ar2s — Arx* | + 12| Asz,y — Arx® |

2

)

= ||x,, —x* ||2 + 1,(r, — 281) ||Alz,, —Ax*

we find that

Yuln(281 = 74) ||Alzn - Ax* ||2

< a2 (= + s =) s~
Using the restrictions (a) and (b), we obtain
lim Az, — A1x*| = 0. (2.13)
n— 00
It follows from (2.12) that

w1 < @ullu ="+ Bl =2 + w2 =27

Since
O R |
< | = spo)uy - (I = 5, A0)x" |
= ot =% ||* = 2814 — 6%, Aty — Agx®) + 52| Agt — Ag*|*
< [ty = 26,0 sty = Ao [+ 5 sty — A’
= ot =% ||* + sl — 282) | Agray — Anx* ||,
we have

2

’

oter =2 < [ f Gen) =2 + |20 = 2| * + Vsl — 282) | Azt — Asac®

Page 8 of 16
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V(282 — 5,) || Agtt, — Agx*|)?

<oy Hf(xn) - x* ”2 + (Hxn —-x" H + ”xn+l - x* ”) ”xn —Xn+l ”
Using the restrictions (a) and (b), we obtain
lim [|Asu, — Ayx*| = 0. (2.14)
n—0o0

Note that

e = 2% < e =% + B0 = * + it — 2% = 1 (A — As®) |
< ay i = [* + Bl = |* o v (0 -7
32 A, — Asa®|* = 2s(Asts — Asa®, 3, — x7)
<yl =" + By — 2| + o0 2|

= V(283 = M) s, — Az
This implies that

)\nyn(ZSS - )\‘}’l) ”Aan _ASx* HZ

O P (el B P | PR
Using the restrictions (a) and (b), we see that
lim || Asx, — Asx*| = 0. (2.15)
n—oQ
Since T, is firmly nonexpansive, we find that

”un - x* ”2 = ((1 — hnAz)xy — (I = A A3)X™, 1y _x*>
1
< 5 (=1 ot = | = W = 0l = 22| s, — A"

+ 2kn<A3xn — Asx*, %, — un))
This in turn implies that

yonn - Mn”z =ay Hf(xn) —x H2 + (”xn —x" || + Hxn+l —x ||) ||xn _xn+1||

+ 20 || Agn — Asx™ || 1% — 1.
Using the restrictions (a) and (b), we see that

lim ||x, — u,|| = 0. (2.16)
n— 00
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Since J;, is also firmly nonexpansive mapping, we see that

|2n =% |* < (T = $0A2)tn — (I = 5,A2)x", 2, — x)
< St 1 = P = = 20— (At~ 42 )
. I
4 25,11ty — 2| [ Astty — Asx®|| = 52| Aty — Ag* %),
which implies that
1>

||Zn -x* HZ =< ||xn -x* HZ - ”Mn —Zp + zsn”Mn _Zn” ||A2un _AZx* ||

It follows that

Vllttn = 21> < @[ ) =% |7+ (|0 = 27| + e = 2] ) 10 = |

+ 28, [ty — 2 ||| A2t — Anx*|).
Using the restrictions (a) and (b), we obtain
lim |lu, -z, =0
n—0o0
and
lim ”yn _Zn” =0.
n—00
Note that
(1 - ,Bn)” Wy — Xl < %0 = X | + ot || 2 — Wnyn”'
Using the restrictions (b) and (c), we obtain
fim [ Wy, — % = 0.
n— o0
On the other hand, one has
I Wnyn _yn” = ”yn = zull + 12w =t |l + Nty = X || + |1 — Wnyn”'
Using (2.6), (2.7), (2.8), and (2.9), we find that
lim ”Wnyn _yn” =0.
n—00
Next, we prove that

limsup(u — x,x, —x) <O0.

n—0oQ0

(2.17)

(2.18)

(2.19)

(2.20)

Page 10 of 16
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To see this, we choose a subsequence {x,,} of {x,} such that

lim sup(u — X, %, — x) = lim (1 — X, %,, — X). (2.21)
n—00 i—o00

Since {x,,} is bounded, there exists a subsequence {xni/} of {x,,} which converges weakly
to w. Without loss of generality, we may assume that x,, — g. Therefore, we see that
Yu; = q. We also have z,, — gq.

Next, we show that g € (7, F(S;). Suppose the contrary, g ¢ CFPS, i.e, Wq # q. Since
Yu; — q, we see from Opial’s condition that

liminf ||y, — gll <liminf ||y, — Wql|
< timinf{ Ly, — Wy | + | Wy, - Wall}

<timinf{}ly,, = Wy |l + 17 = qll}- (2.22)
On the other hand, we have

Wy = yull < 1Wyn = Woynll + I Wuyn — yull

<sup || Wx - Wux| + | Wuyu — yull.
xeK
In view of Lemma 1.4, we obtain that lim,_,« || Wy, — y,|| = 0. This implies from (2.22)
that liminfi_, ||y, — qll <liminf;_, ||y, — gl This is a contradiction. Thus, we have g €
N F(S).
Now, we are in a position to prove that g € (4; + M;)™*(0). Notice that

Zn=Yn _Alzn c
n

14

Myy,. Let u € Myv. Since M; is monotone, we find that

<Zn_yn

—A1Zy = W Y0 — V> >0.
T

This implies that (-A1g — i,q — v) > 0. This implies that —A;q € Miq, that is, g € (4; +
My)7(0).

Now, we prove that g € (4, + M,)™1(0). Notice that % —Aqu, € Myz,. Let u' € My'.
Since M, is monotone, we find that

Up —Zp
< : —Azun—u/,zn—v’>20.
n

This implies that (~Ayq — u',q —v') > 0. This implies that —~A,q € Myq, thatis, g € (A, +
M,)7H(0).
Next, we show that g € EP(F, As). Since u, = T, ,,(I — 1,A3)x,, for any y € C, we have

1
F(unry) + (Azxy, Y — uy) + )\_U’— Up, Uy — %) > 0.
n

Replacing n by n;, we find from (A2) that

=X
Mnlx n’>zF(y,unl.), VyeC.

nj

(A?)xn,')y - um) + <y — Up;»
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Putting y; = ty + (1 — t)q for any ¢ € (0,1] and y € C, we see that y; € C. It follows that

(e — tp; AzYs)

Up

. — Xy
LT > + E(yp, thn,)
Ay i

> (Ve — Un; A3Ye) — (A3%n Ve — Uy;) — <yt — Up;,

Uy, —

Xu.
= (Yt — U A3Ys — Azthy;) + (Ve — Un;, Azt — A3xy;) —<yt—uni, l}\ "’>
n

i

+ F(ye, th,).
In view of the monotonicity of A3, and the restriction (a), we obtain from (A4) that
e = 0, A3ye) = F(y1, ).
From (A1) and (A4), we see that

0=F(uy:) <tF(y,y) + L —t)F(yi, q)
<tF(yuy)+ QA -t){y: — q,Asys)

=tF(y,y) + A=ty — q,Asys).
It follows that
0<FQny) +A-0)(y-wAsy), VyeC.
It follows from (A3) that g € EP(F, A3). Hence,

limsup(u — x,x, — x) <O0.

n—0o0
Finally, we show that x, — x. Note that
”xn+1 - 9_5”2

< o (1 = % X1 = X) + BullXn — X[ 1601 = Xl + Vullyn — X[ %01 — ]|

-y

< 0 (U = X, X1 — X) + (o = %1% + 12001 = %11%).
This implies that
1 = 1% < 20 = 3 K1 = %) + (1= )l — 1.
Using Lemma 1.1, we find that lim,_,  [|%, — X|| = 0. This completes the proof. O
3 Applications
In this section, we consider some applications of the main results.

Recall that the classical variational inequality is to find an x € C such that

(Ax,y—x) >0, VyeC.
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In this paper, we use VI(C, A) to denote the solution set of the inequality. It is well known
that x € C is a solution of the inequality iff x is a fixed point of the mapping Pc(I — rA),
where r > 0 is a constant, / stands for the identity mapping. If A is «-inverse-strongly
monotone and r € (0, 2], then the mapping / —rA is nonexpansive. It follows that VI(C, A)
is closed and convex.

Let g: H — (—00,+00] be a proper convex lower semicontinuous function. Then the

subdifferential g of g is defined as follows:
dfg(x) = {y €H:g(z) >gx)+(z—x9),z€ H}, Vx € H.

From Rockafellar [39], we know that dg is maximal monotone. It is not hard to verify that
0 € 9g(x) if and only if g(x) = min,ey g().

Let I¢ be the indicator function of C, i.e.,

0, xeC,
Ic(x) =
+o00, x¢C.

Since I is a proper lower semicontinuous convex function on H, we see that the subd-
ifferential 9/ of I is a maximal monotone operator. It is clearly that J.x = Pcx, Vx € H,
(A1 + 3Ic)™1(0) = VI(C,A;) and (A5 + 31)~1(0) = VI(C, A,).

Theorem 3.1 Let C be a nonempty closed convex subset of a Hilbert space H and F a bi-
function from C x C to R which satisfies (A1)-(A4). Let A, : C — H be a 8,-inverse-strongly
monotone mapping, A, : C — H be a 8,-inverse-strongly monotone mapping, As : C - H
be a §3-inverse-strongly monotone mapping, and (S; : C — C} be a family of infinitely non-
expansive mappings. Assume that Q2 := (1,5 F(S;) N EP(F,As) N VI(C,A;) N VI(C, Ay) # .
Let x, € C and {x,} be a sequence generated by

Zy = PC(un _snAzun))

Xn+l = anf(xn) + ,ann + Vn WnPC(Zn - rnAlzn)’ Vn > 1;

where u,, is such that
1
F(tty, y) + (A, y — Uy) + )\—(y— Uy, Uy — %) >0, VyeC,
n

{W,,: C — C} is the sequence generated in (1.2), {&,}, {B4}, and {y,} are sequences in (0,1)
such that o, + By + yn = 1 for each n > 1 and {r,}, {s,}, and {A,} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:

(@) 0<a<r,<b<283,0<d <r,<b <28,0<a<s, <b<28;

(b) lim,_ oy =0andy o) oy = 00;

() 0<liminf,_, B, <limsup,_, . Bn <1;

(d) Timy o0 [Ay = A1l = limy,s 0 8y = Spp1] = limy s 0 |7 = 741 | = 0.

Then the sequence {x,} converges strongly to x = Pqu.
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Recall that a mapping T : C — Cis said to be a k-strict pseudo-contraction if there exists
a constant k € [0,1) such that

2

I Tx - Tyl> < llx=yl> + k| (I - T)x = I - T)y||", VxyeC.

Putting A =1 — T, where T : C — C is a k-strict pseudo-contraction, we find that A is
1%"-inverse—s‘crongly monotone.

Next, we consider fixed points of strict pseudo-contractions.

Theorem 3.2 Let C be a nonempty closed convex subset of a Hilbert space H and F a
bifunction from C x C to R which satisfies (A1)-(A4). Let Ty : C — H be a ky-strict pseudo-
contraction, Ty : C — H be a ky-strict pseudo-contraction, As : C — H be a §-inverse-
strongly monotone mapping, and {S; : C — C} be a family of infinitely nonexpansive map-
pings. Assume that Q := (5 F(S;) N EP(F,A3) N F(T1) N F(T) # 9. Let x; € C and {x,} be

a sequence generated by

Zp = (L= 8,)uy + 8, Totty,
Yn = (1 =ry)uy + ryTiny,

Xntl = ar(f(xn) + ﬁnxn + Vu Wnyrn Vn = 17

where u,, is such that
1
F(”nry) + (A3xmy_ Up) + A—(Y— Uy, Un —%n) >0, Vye C,
n

{W,,: C — C} is the sequence generated in (1.2), {&,}, {B.}, and {y,} are sequences in (0,1)
such that o, + By + Yy = 1 for each n > 1 and {r,}, {s,}, and {A,} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:

(@) O<a<r,<b<25,0<d <r,<b <l-k,0<a<s,<b<l-ky;

(b) lim,_ oy =0and y o) oy = 00;

(c) 0<liminf,_,« B, <limsup,_, . Bn<1;

(d) limy o0 [An = Ans1] = 1My 0 187 = Spa1| = liMy 0 |70 = 41| = 0.

Then the sequence {x,} converges strongly to x = Pqu.

Proof Taking A; =1 — T;, wee see that A; : C — H is a §;-strict pseudo-contraction with

8; = 1’2k" and F(T;) = VI(C,A;) for i = 1,2. In view of Theorem 3.1, we find the desired

conclusion immediately. O
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