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Abstract
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1 Introduction
Many nonlinear problems can be formulated as the problem of finding a zero point of a
maximal monotone operator in a Banach space. The proximal point method, which was
first introduced by Martinet [] and generally studied by Rockafellar [], is an iterative
method for approximating a solution to this problem.
The proximal point method generates a sequence {xn} by x ∈ X and

xn+ = (J + λnA)–Jxn (.)

for all n ∈ N, where A : X → X∗ is a maximal monotone operator, X is a smooth, strictly
convex, and reflexive real Banach space, J : X → X∗ is the normalized duality mapping,
and {λn} is a sequence of positive real numbers.
The following result was obtained in []: If

∑∞
n= λn =∞, then {xn} is bounded if and only

if A– is nonempty. Further, if X is uniformly convex, the norm of X is uniformly Gâteaux
differentiable, A– is nonempty, infn λn > , and J is weakly sequentially continuous, then
{xn} converges weakly to an element of A–. This is a generalization of the result due to
Rockafellar [] in Hilbert spaces. See also [, ] for some related results.
The aim of the present paper is to study the asymptotic behavior of the sequence {xn}

generated by

xn = βn(J + λnA)–Jxn (.)

for all n ∈ N, where A, X, J , and {λn} are the same as in (.) and {βn} is a sequence of
[, ). Under some additional assumptions, we show that {xn} is well defined and is strongly
convergent to an element of A– of minimal norm; see Theorem ..
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The schemes (.) and (.) above are similar to each other, though their properties are
quite different. In fact, the former fails to converge strongly even in Hilbert spaces [],
whereas the latter converges strongly in Banach spaces. Further, the former is well defined
since R(J + λA) = X∗ for each λ > , whereas the latter is not necessarily well defined. To
study the well definedness and the asymptotic behavior of {xn} in (.), we exploit some
techniques in [, ].
This paper is organized as follows: In Section , we give some definitions, recall some

known results, and briefly study the existence of a zero point of a monotone operator. In
Section , using the results in the previous section, we first obtain a convergence theorem
for a monotone operator satisfying a range condition; see Theorem .. Using this result,
we show a convergence theorem for a maximal monotone operator; see Theorem ..
In Section , we apply Theorem . to a convex minimization problem and a variational
inequality problem.

2 Preliminaries
Throughout the present paper, we denote by N the set of all positive integers, R the set of
all real numbers,X a smooth, strictly convex, and reflexive real Banach space with dualX∗,
‖ · ‖ the norms of X and X∗, 〈x,x∗〉 the value of x∗ ∈ X∗ at x ∈ X, xn → x the strong conver-
gence of a sequence {xn} of X to x ∈ X, xn ⇀ x the weak convergence of a sequence {xn} of
X to x ∈ X, U the norm closure of U ⊂ X, coU the convex hull of U ⊂ X, coU the closed
convex hull of U ⊂ X, and SX the unit sphere of X, respectively.
Under the assumptions on X, we know that for each x ∈ X, there is a corresponding

unique Jx in X∗ such that 〈x, Jx〉 = ‖x‖ and ‖Jx‖ = ‖x‖. The mapping J is called the nor-
malized duality mapping of X into X∗. We know the following: J : X → X∗ is a bijec-
tion; J(αx) = αJx for all α ∈ R and x ∈ X; J is norm-to-weak continuous, that is, Jxn ⇀ Jx
whenever {xn} is a sequence of X such that xn → x ∈ X; J is strictly monotone, that is,
〈x – y,x∗ – y∗〉 >  for all distinct x, y ∈ X. The norm of X is said to be uniformly Gâteaux
differentiable if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

converges uniformly in x ∈ SX for all y ∈ SX . The space X is said to be uniformly convex if
for each ε ∈ (, ], there exists δ >  such that ‖(x + y)/‖ ≤  – δ whenever x, y ∈ SX and
‖x – y‖ ≥ ε. The space X is said to have the Kadec-Klee property if xn → x whenever {xn}
is a sequence of X such that xn ⇀ x ∈ X and ‖xn‖ → ‖x‖. Every uniformly convex Banach
space is both strictly convex and reflexive and has the Kadec-Klee property; see [, ].
For a nonempty closed convex subset C of X and x ∈ X, there exists a unique point x̂ in

C such that ‖x̂–x‖ ≤ ‖y–x‖ for all y ∈ C. The metric projection PC of X onto C is defined
by PCx = x̂ for all x ∈ X. It is well known [] that

z = PC(x) ⇐⇒ sup
y∈C

〈
y – z, J(x – z)

〉 ≤  (.)

for (x, z) ∈ X ×C. The function φ : X ×X →R is defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ (.)
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for all x, y ∈ X; see [, ]. If X is a Hilbert space, then φ(x, y) = ‖x – y‖ for all x, y ∈ X. It
is easy to see that

(‖x‖ – ‖y‖) ≤ φ(x, y) (.)

and

φ(x, y) + φ(y,x) = 〈x – y, Jx – Jy〉 (.)

for all x, y ∈ X.
Let C be a nonempty subset of X and T : C → X a mapping. The set of all fixed points

of T is denoted by F(T). The mapping T is said to be of firmly nonexpansive type [] if

〈Tx – Ty, JTx – JTy〉 ≤ 〈Tx – Ty, Jx – Jy〉 (.)

for all x, y ∈ C; see also []. If X is a Hilbert space, then T : C → X is firmly nonexpansive
if and only if it is of firmly nonexpansive type.
For an operator A : X → X∗ , the domain D(A), the range R(A), and the graph G(A)

of A are defined by D(A) = {x ∈ X : Ax �= ∅}, R(A) = ⋃
x∈X Ax, and G(A) = {(x,x∗) ∈ X ×

X∗ : x∗ ∈ Ax}, respectively. The operator A is said to be monotone if 〈x – y,x∗ – y∗〉 ≥ 
whenever (x,x∗), (y, y∗) ∈ G(A). It is also said to be maximal monotone if A is monotone
and there is no monotone operator B : X → X∗ such that A �= B and G(A) ⊂ G(B). Let C
be a nonempty closed convex subset of X and A : X → X∗ a monotone operator such that
D(A) ⊂ C ⊂ J–R(J + A). Then the mapping T : C → C defined by Tx = (J + A)–Jx for all
x ∈ C is of firmly nonexpansive type and F(T) = A–; see [, ]. We know the following
lemma.

Lemma . ([]) Suppose that the norm of X is uniformly Gâteaux differentiable. Let C be
a nonempty closed convex subset of X, A : X → X∗ a monotone operator such that

D(A)⊂ C ⊂
⋂
λ>

J–R(J + λA), (.)

{λn} a sequence of (,∞) such that infn λn > , and Qλn : C → C the mapping defined by
Qλnx = (J +λnA)–Jx for all x ∈ C and n ∈N. If {xn} is a sequence of C such that xn ⇀ u and
xn –Qλnxn → , then u is an element of A–.

We know the following result for mappings of firmly nonexpansive type.

Lemma. ([]) Let C be anonempty closed convex subset of X andT : C → C amapping
of firmly nonexpansive type. Then the following hold:

(i) F(T) is nonempty if and only if {Tnx} is bounded for some x ∈ C;
(ii) F(T) is closed and convex.

Using Lemma ., we can show the following.

Lemma . Let C be a nonempty closed convex subset of X and T : C → C a mapping of
firmly nonexpansive type. Suppose that β ∈ [, ),  ∈ C, and T(C) is bounded. Then the
mapping βT has a unique fixed point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/181
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Proof Set S = βT . Since J is monotone, T is of firmly nonexpansive type, and β ∈ [, ),
we have

 ≤ 〈Sx – Sy, JSx – JSy〉 = β〈Tx – Ty, JTx – JTy〉
≤ β〈Tx – Ty, Jx – Jy〉
= β〈Sx – Sy, Jx – Jy〉 ≤ 〈Sx – Sy, Jx – Jy〉 (.)

for all x, y ∈ C. This implies that S is of firmly nonexpansive type. Since C is convex,  ∈ C,
and β ∈ [, ), we know that S is amapping ofC into itself. Further, since S(C) = βT(C) and
T(C) is bounded, the sequence {Snx} is bounded for all x ∈ C. Thus Lemma . implies
that F(S) is nonempty.
We next show that F(S) consists of one point. Suppose that p,p′ ∈ F(S). Then it follows

from (.) that ( – β)〈p – p′, Jp – Jp′〉 = . Since  – β > , we obtain 〈p – p′, Jp – Jp′〉 = .
Thus the strict monotonicity of J implies that p = p′. �

As a direct consequence of Lemmas . and ., we obtain the following.

Corollary . Let A : X → X∗ be a monotone operator such that D(A) is bounded and
D(A)⊂ C ⊂ J–R(J +A) for some nonempty closed convex subset C of X. Then the following
hold:

(i) A– is nonempty, closed, and convex;
(ii) if  ∈ C and β ∈ [, ), then there exists a unique p ∈ C such that

p = β(J +A)–Jp. (.)

Proof Let T : C → C be the mapping defined by Tx = (J + A)–Jx for all x ∈ C. Then we
know that T is of firmly nonexpansive type and T(C) ⊂D(A). Hence {Tnx} is bounded for
all x ∈ C. On the other hand, we know that F(T) = A–. Therefore, part (i) follows from
Lemma .. Part (ii) follows from Lemma .. �

3 Strong convergence of an iterative sequence
In this section, we first show the following strong convergence theorem for a monotone
operator satisfying a range condition.

Theorem . Let X be a smooth, strictly convex, and reflexive real Banach space, C a
nonempty closed convex subset of X such that  ∈ C, and A : X → X∗ amonotone operator
such that D(A) is bounded and

D(A)⊂ C ⊂
⋂
λ>

J–R(J + λA). (.)

Let {λn} be a sequence of positive real numbers, {βn} a sequence of [, ), and Qλn : C → C
the mapping defined by Qλnx = (J + λnA)–Jx for all x ∈ C and n ∈ N. Then the following
hold:

(i) For each n ∈N, there exists a unique xn ∈ C such that xn = βnQλnxn;
(ii) if X has the Kadec-Klee property, the norm of X is uniformly Gâteaux differentiable,

infn λn > , and limn βn = , then the sequence {xn} converges strongly to PA–().
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Part (i) of Theorem . follows from Corollary ..

The proof of (i) of Theorem . Let n ∈ N be given and set B = λnA. Then B : X → X∗ is
monotone and D(B) = D(A). Thus we know that D(B) is bounded and D(B) ⊂ C ⊂ J–R(J +
B). Therefore, part (ii) of Corollary . ensures the conclusion. �

Before proving (ii) of Theorem ., we show the following lemma.

Lemma . The following hold:
(i) 〈Qλnxn – y, JQλnxn〉 ≤  for all y ∈ A– and n ∈N;
(ii) φ(Qλnxn, y) + φ(y,Qλnxn) ≤ 〈y –Qλnxn, Jy〉 for all y ∈ A– and n ∈ N.

Proof We show (i). Let y ∈ A– and n ∈ N be given. Since Qλn is of firmly nonexpansive
type and Qλny = y, we know that

〈Qλnxn – y, JQλnxn – Jxn〉 ≤ . (.)

On the other hand, by the definition of {xn}, we also know that

JQλnxn – Jxn = JQλnxn – J(βnQλnxn) = ( – βn)JQλnxn. (.)

By (.), (.), and  – βn > , the result follows.
By (.) and (i), we have

φ(Qλnxn, y) + φ(y,Qλnxn) = 〈Qλnxn – y, JQλnxn – Jy〉
≤ 〈Qλnxn – y, –Jy〉 (.)

for all y ∈ A– and n ∈N. Thus the result follows. �

We next show (ii) of Theorem ..

The proof of (ii) of Theorem . Suppose that X has the Kadec-Klee property, the norm
of X is uniformly Gâteaux differentiable, infn λn > , and limn βn = . Set yn =Qλnxn for all
n ∈ N. By (i) of Corollary ., the set A– is nonempty, closed, and convex. Hence PA–

is well defined. We denote PA– by P.
Since yn ∈D(A) for all n ∈N and D(A) is bounded, {yn} is bounded. By the definition of

{xn}, we have ‖xn‖ = βn‖yn‖ ≤ ‖yn‖ for all n ∈N. Thus {xn} is also bounded.
Let {xni} be any subsequence of {xn}. To see that xn → P(), it is sufficient to see that

there exists a subsequence {xnij } of {xni} which converges strongly to P(). Since X is re-
flexive and {xn} is a bounded sequence of C, there exist u ∈ C and a subsequence {xnij } of
{xni} such that xnij ⇀ u. Since {yn} is bounded and limn βn = , we have

‖xn – yn‖ = ‖βnyn – yn‖ = ( – βn)‖yn‖ → . (.)

Since infj λnij
≥ infn λn > , Lemma . shows that u is an element of A–. It also follows

from (.) and xnij ⇀ u that ynij ⇀ u.

http://www.journalofinequalitiesandapplications.com/content/2014/1/181
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We next show that xnij → u. By (.) and (ii) of Lemma ., we have

(‖ynij ‖ – ‖u‖) ≤ φ(ynij ,u)

≤ φ(ynij ,u) + φ(u, ynij ) ≤ 〈u – ynij , Ju〉 → . (.)

Thus we obtain ‖ynij ‖ → ‖u‖. Since X has the Kadec-Klee property, we have ynij → u.
Consequently, it follows from (.) that xnij → u.
We next show that u = P(). To see this, let y ∈ A– be given. Since J is norm-to-weak

continuous and ynij → u, we know that Jynij ⇀ Ju. On the other hand, by (i) of Lemma .,
we have

〈ynij – y, Jynij 〉 ≤  (.)

for all j ∈N. Letting j → ∞ in (.), we obtain 〈u – y, Ju〉 ≤  and hence

sup
y∈A–

〈
y – u, J( – u)

〉 ≤ . (.)

Noting that u ∈ A–, we have from (.) and (.) that u = P(). Therefore, we conclude
that {xn} converges strongly to P(). �

As a direct consequence of Theorem ., we obtain the following corollary.

Corollary . Let X be a smooth, strictly convex, and reflexive real Banach space, C a
nonempty closed convex subset of X such that  ∈ C, T : C → C a mapping of firmly non-
expansive type such that T(C) is bounded, {λn} a sequence of positive real numbers, and
{βn} a sequence of [, ). Then the following hold:

(i) For each n ∈N, there exists a unique xn ∈ C such that xn = βnTxn;
(ii) if X has the Kadec-Klee property, the norm of X is uniformly Gâteaux differentiable,

and limn βn = , then the sequence {xn} converges strongly to PF(T)().

Proof Let A : X → X∗ be the mapping defined by A = JT– – J , where T– : X → X is
defined by

T–x =

⎧⎨
⎩

{u ∈ C : Tu = x} (x ∈ T(C));

∅ (x /∈ T(C))
(.)

for all x ∈ X. Then, by [], we know that the following hold:
• A is a monotone operator and A– = F(T);
• D(A) = T(C)⊂ C = J–R(J +A);
• Tx = (J +A)–Jx for all x ∈ C.

Thus the result follows from Theorem .. �

Remark. In the casewhenC is bounded, Corollary . is reduced to the result obtained
in [].
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Using Theorem ., we can also show the following strong convergence theorem for a
maximal monotone operator.

Theorem . Let X be a smooth, strictly convex, and reflexive real Banach space, A : X →
X∗ a maximal monotone operator such that  ∈ D(A) and D(A) is bounded, {λn} a se-
quence of positive real numbers, and {βn} a sequence of [, ). Then for each n ∈ N, there
exists a unique xn ∈ D(A) satisfying (.). Moreover, if X has the Kadec-Klee property, the
norm of X is uniformly Gâteaux differentiable, infn λn > , and limn βn = , then the se-
quence {xn} converges strongly to PA–().

Proof The maximal monotonicity of A implies that D(A) is nonempty and hence so is
D(A). It is obvious that D(A) is closed. It is well known [] that D(A) is convex. In fact,
we know that

lim
μ↓

(
I +μJ–A

)–x = x (.)

for all x ∈ coD(A), where I denotes the identity mapping on X; see [, ]. Since (I +
μJ–A)–x ∈D(A) for all μ >  and x ∈ X, it follows from (.) that coD(A)⊂ D(A). Thus
coD(A) = D(A) and hence D(A) is convex.
On the other hand, since A is maximal monotone, we know that R(J + λA) = X∗ for all

λ > ; see []. Putting C = D(A), we have

D(A)⊂ C ⊂ X =
⋂
λ>

J–R(J + λA). (.)

Noting that  ∈D(A) = C, we obtain the desired result by Theorem .. �

4 Results deduced from Theorem 3.5
In this final section, we study two applications of Theorem .. Throughout this section,
we suppose the following:
• X is a uniformly convex real Banach space whose norm is uniformly Gâteaux
differentiable;

• {λn} is a sequence of positive real numbers such that infn λn > ;
• {βn} is a sequence of [, ) such that limn βn = .
We first study a convex minimization problem. For a function f : X → (–∞,∞], we de-

note by argmin f or argminy∈X f (y) the set of all u ∈ X such that f (u) = inf f (X). In the case
when argmin f = {p} for some p ∈ X, we identify argmin f with p. The set of all x ∈ X such
that f (x) ∈R is denoted by D(f ).We denote by ∂f the subdifferential mapping of f ; see [,
] for more details.

Corollary . Let f : X → (–∞,∞] be a proper lower semicontinuous convex function
such that  ∈ D(f ) andD(f ) is bounded.Then for each n ∈N, there exists a unique xn ∈ D(f )
such that

xn = βn argmin
y∈X

{
f (y) +


λn

φ(y,xn)
}
. (.)

Moreover, the sequence {xn} converges strongly to Pargmin f ().

http://www.journalofinequalitiesandapplications.com/content/2014/1/181
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Proof Let A : X → X∗ be the operator defined by A = ∂f . It is well known that A is max-
imal monotone [] and A– = argmin f . Since D(f ) is bounded and D(A) ⊂ D(f ), we
know that D(A) is bounded. By Brøndsted and Rockafellar’s theorem [], we know that
D(f ) = D(A). Thus we have  ∈D(A). Further, the equality

(J + λA)–Jx = argmin
y∈X

{
f (y) +


λ

φ(y,x)
}

(.)

holds for all λ >  and x ∈ X. Thus we know that xn = βn(J + λnA)–Jxn for all n ∈ N. Con-
sequently, Theorem . implies the conclusion. �

We finally study a variational inequality problem. For a nonempty closed convex subset
C of X and an operator B : C → X∗, we denote by VI(C,B) the set of all u ∈ C such that
〈y – u,Bu〉 ≥  for all y ∈ C. In the case when VI(C,B) = {p} for some p ∈ C, we identify
VI(C,B) with p. The operator B is said to be hemicontinuous if themapping g : [, ]→ X∗

defined by g(t) = B(tx + ( – t)y) for all t ∈ [, ] is continuous with respect to the weak*
topology in X∗ for all x, y ∈ C.

Corollary . Let C be a nonempty bounded closed convex subset of X such that  ∈ C and
B : C → X∗ a monotone and hemicontinuous operator. Then for each n ∈ N, there exists a
unique xn ∈ C such that

xn = βnVI

(
C,B +


λn

(J – Jxn)
)
. (.)

Moreover, the sequence {xn} converges strongly to PVI(C,B)().

Proof Let A : X → X∗ be the operator defined by

A(x) =

⎧⎨
⎩
B(x) + ∂iC(x) (x ∈ C);

∅ (x ∈ X \C)
(.)

for all x ∈ X, where iC denotes the indicator function of C. It is well known that A is max-
imal monotone [], A– =VI(C,B), and D(A) = C. Thus we know that D(A) is bounded
and  ∈D(A). Further, the equality

(J + λA)–Jx =VI

(
C,B +


λ
(J – Jx)

)
(.)

holds for all λ >  and x ∈ X. Thus we have xn = βn(J + λnA)–Jxn for all n ∈ N. Conse-
quently, Theorem . implies the conclusion. �
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