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Abstract
In this short note, we present a generalization of a norm inequality due to Bhatia and
Kittaneh (Lett. Math. Phys. 43:225-231, 1998), which is also a refinement and a
generalization of a result obtained by Kittaneh (Commun. Math. Phys. 104:307-310,
1986).
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1 Introduction
Let Mn be the space of n × n complex matrices. Let ‖ · ‖ denote any unitarily invariant
norm on Mn. We shall always denote the singular values of A by s(A)≥ · · · ≥ sn(A) ≥ ,
that is, the eigenvalues of the positive semidefinite matrix |A| = (AA∗)/, arranged in de-
creasing order and repeated according to multiplicity. Let A,B ∈ Mn be Hermitian; the
order relation A≥ Bmeans, as usual, that A – B is positive semidefinite.
LetA,B ∈Mn be positive semidefinite. Bhatia and Kittaneh [, Theorem .] proved that

for any positive integer m,

∥∥Am + Bm∥∥ ≤ ∥∥(A + B)m
∥∥. (.)

Let A,B ∈Mn. Kittaneh [, Theorem .] proved that

‖A + B‖F ≤ 

(∥∥|A| + |B|∥∥

F +
∥∥∣∣A∗∣∣ + ∣∣B∗∣∣∥∥

F

)
, (.)

where ‖X‖F is the Frobenius norm of X. For more information on the Schatten p-norm
and its applications, the reader is referred to [].
In this note, we present a generalization of inequality (.), which is also a refinement

and a generalization of (.).

2 Main results
Now, we show the generalization of inequality (.).

Theorem. Let A,B ∈Mn and suppose that p, q be real numbers with p >  and 
p +


q = .

Then for any positive integer m,

∥∥A|A|m– + B|B|m–∥∥ ≤ ∥∥(|A|m + |B|m)p/∥∥/p∥∥(∣∣A∗∣∣m +
∣∣B∗∣∣m)q/∥∥/q. (.)
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Proof Let A,B ∈ Mn with polar decompositions A = U|A| and B = V |B|. It is known [,
p.] that

[
|A| A∗

A |A∗|

]
=

[
I 
 U

][
|A| |A|
|A| |A|

][
I 
 U∗

]
≥ .

It follows that
[
|A| A∗

A |A∗|

]m

+

[
|B| B∗

B |B∗|

]m

= m–

[
|A|m + |B|m |A|mU∗ + |B|mV ∗

U|A|m +V |B|m |A∗|m + |B∗|m
]

≥ .

So, by Proposition .. of [, p.], we have

U|A|m +V |B|m =
(|A|m + |B|m)/K(∣∣A∗∣∣m +

∣∣B∗∣∣m)/
for some contraction K . For k = , . . . ,n, by using Horn’s inequality [, p.], we know that

k∏
j=

sj
(
U|A|m +V |B|m) ≤

k∏
j=

s/j
(|A|m + |B|m)

s/j
(∣∣A∗∣∣m +

∣∣B∗∣∣m)
. (.)

Let

X = diag
(
s/

(|A|m + |B|m)
, . . . , s/n

(|A|m + |B|m))
and

Y = diag
(
s/

(∣∣A∗∣∣m +
∣∣B∗∣∣m)

, . . . , s/n
(∣∣A∗∣∣m +

∣∣B∗∣∣m))
.

Then inequality (.) is equivalent to

k∏
j=

sj
(
U|A|m +V |B|m) ≤

k∏
j=

sj(XY ).

Since weak log-majorization implies weak majorization, we get

k∑
j=

sj
(
U|A|m +V |B|m) ≤

k∑
j=

sj(XY ). (.)

Thanks to the Fan dominance principle [, p.], we know that inequality (.) is equiva-
lent to

∥∥U|A|m +V |B|m∥∥ ≤ ‖XY‖. (.)

By Hölder’s inequality for unitarily invariant norms [, p.] (see also [, Theorem .]),
we obtain

‖XY‖ ≤ ∥∥Xp∥∥/p∥∥Yq∥∥/q. (.)
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It follows from (.) and (.) that

∥∥A|A|m– + B|B|m–∥∥ ≤ ∥∥(|A|m + |B|m)p/∥∥/p∥∥(∣∣A∗∣∣m +
∣∣B∗∣∣m)q/∥∥/q.

This completes the proof. �

Remark . Inequality (.) is a norm version of the following scalar triangle inequality:

∣∣z|z|m– + z|z|m–∣∣ ≤ ∣∣(|z|m + |z|m
)p/∣∣/p∣∣(∣∣z∗


∣∣m +

∣∣z∗

∣∣m)q/∣∣/q.

Corollary . Let A,B ∈Mn. Then for any positive integer m,

∥∥A|A|m– + B|B|m–∥∥ ≤ ∥∥(|A| + |B|)m∥∥/∥∥(∣∣A∗∣∣ + ∣∣B∗∣∣)m∥∥/. (.)

Proof Putting p = q =  in inequality (.), we have

∥∥A|A|m– + B|B|m–∥∥ ≤ ∥∥|A|m + |B|m∥∥/∥∥∣∣A∗∣∣m +
∣∣B∗∣∣m∥∥/.

It follows from inequality (.) and this last inequality that

∥∥A|A|m– + B|B|m–∥∥ ≤ ∥∥(|A| + |B|)m∥∥/∥∥(∣∣A∗∣∣ + ∣∣B∗∣∣)m∥∥/.

This completes the proof. �

Remark . If A and B are positive semidefinite, then by inequality (.), we get (.).

Remark . Form = , by inequality (.), we get

‖A + B‖ ≤ ∥∥(|A| + |B|)p/∥∥/p∥∥(∣∣A∗∣∣ + ∣∣B∗∣∣)q/∥∥/q.

In particular,

‖A + B‖ ≤ ∥∥|A| + |B|∥∥/∥∥∣∣A∗∣∣ + ∣∣B∗∣∣∥∥/, (.)

which is a generalization and a refinement of inequality (.). For the usual operator norm,
it is known that

‖A + B‖∞ ≤ √

∥∥|A| + |B|∥∥∞, (.)

which is sharp. Since

∥∥∣∣A∗∣∣ + ∣∣B∗∣∣∥∥ ≤ ∥∥∣∣A∗∣∣∥∥ +
∥∥∣∣B∗∣∣∥∥ ≤ 

∥∥|A| + |B|∥∥,
we find that inequality (.) is a strengthening of inequality (.).

Remark . Recently, Zou [, Theorem .] and Zou and He [, Theorem .] gave some
generalizations of inequality (.) for normalmatrices. Our result is different from the ones
obtained by these authors.
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