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Abstract
Robust optimization is an effective method for dealing with the optimization
problems under uncertainty. When there is uncertainty in the lower level
optimization problem of a bilevel programming, it can be formulated by a robust
optimization method as a bilevel programming problem with lower level
second-order cone program (SOCBLP). In this paper, we present the mathematical
models of the SOCBLP, and we give some basic concepts, such as constraint region,
inducible region, and optimal solution. It is illustrated that the SOCBLP is generally a
nonconvex and nondifferentiable optimization problem, whose feasible set may be
not connected in some cases and the constraint region is generally not polyhedral.
Finally under suitable conditions we propose the optimality conditions for several
models of the SOCBLP in the optimistic case.
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1 Introduction
Bilevel programming (BLP) problems are hierarchical ones-optimization problems hav-
ing a second (parametric) optimization problem as part of their constraints [, ]. Second-
order cone programming (SOCP) problems are convex optimization problems in which
a linear function is minimized over the intersection of an affine linear manifold with
the Cartesian product of second-order cones [–]. In the development of mathematical
programming, linear programming (LP) is extended to second-order cone programming
(SOCP), linear complementarity problems (LCP) and nonlinear complementarity prob-
lems (NLCP) [] are extended to second-order cone complementarity problems (SOCCP)
[], and mathematical programming with complementarity constraints (MPCC) [] is
extended to mathematical programming with second-order cone complementarity con-
straints (SOCMPCC) []. However, there have been rare works about extending BLP to
bilevel programming with lower level second-order cone program (SOCBLP).
In real world, we often face uncertainty. Uncertainty makes the optimal solution of the

deterministic BLP become feasible but not optimal, or infeasible. Robust optimization is
an effective method for dealing with the optimization problems under uncertainty. When
there is uncertainty in the lower level optimization problem of a bilevel programming [],
it can be formulated by a robust optimization method as a bilevel programming prob-
lem having second-order cone programming [] as its lower level problem, i.e., a bilevel
programming problem with lower level second-order cone programs (SOCBLP).
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In spite of its significance, there have been rare works to deal with SOCBLP or related
problems. In , Ejiri [] reformulates a nonlinear SOCBLP as amathematical program
with second-order cone complementarity constraints (SOCMPCC), and he proposes a
smoothing method which has the global convergence property to a Clarke- (C-) station-
ary point of the SOCMPCC under suitable assumptions. In , Yan and Fukushima []
extend the results and the smoothing method to mathematical programming with sym-
metric cone complementarity constraints. Jiang [] studies the optimality conditions for
optimization problems with second-order cone equilibrium constraints, the Aubin prop-
erty of the second-order cone complementarity set and the smoothingmethods for solving
inverse linear programming problems and inverse linear second-order cone programming
problems. Wu et al. [] study the necessary optimality conditions and the second-order
sufficient conditions, and they present a smoothing method for mathematical programs
governed by second-order cone constrained generalized equations. Ding et al. [] de-
rive explicit expressions for the strong-, Mordukhovich-, and Clarke- (S-, M- and C-)
stationary conditions and give constraint qualifications under which a local solution of
mathematical programs with semidefinite cone complementarity constraints is a S-, M-
and C-stationary point. Zhang et al. [] first introduce B-stationary, C-stationary, M-
stationary, S-stationary point, SOCMPCC-linear independence constraint qualification,
second-order cone upper level strict complementarity condition at a feasible point of a
SOCMPCC problem and discuss the convergence properties of a smoothing approach for
solving SOCMPCCs.
In this paper, we consider bilevel programming problems with lower level second-order

cone programs (SOCBLP). For x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm, F : X×Y → R and f : X×Y → R,
the SOCBLP problem is given by

"min"
x∈X F(x, y) = cT x + dT

 y

s.t. Ax + By ≤ b,

min
y∈Y f (x, y) = cT x + dT

 y

s.t. Ax + By≤ b,

y ∈ Km,

()

where c, c ∈ Rn, d,d ∈ Rm, b ∈ Rp, b ∈ Rq, A ∈ Rp×n, B ∈ Rp×m, A ∈ Rq×n, and B ∈
Rq×m. Here

Km = Km ×Km × · · · ×Kmr ,

with m = m + m + · · · + mr is the Cartesian product of second-order cones. Kmj , j =
, , . . . , r is the second-order cone (SOC) of dimensionmj defined by

Kmj :=
{
yj =
(
yj; ȳ

j) ∈ R× Rmj– : yj –
∥∥ȳj∥∥≥ 

}
,

where ‖ · ‖ refers to the Euclidean norm. Then the interior and boundary of the SOC Kmj ,
j = , , . . . , r, can be defined as

intKmj :=
{
yj =
(
yj; ȳ

j) ∈ R× Rmj– : yj – ‖ȳj‖ > 
}
,

bdKmj :=
{
yj =
(
yj; ȳ

j) ∈ R× Rmj– : yj – ‖ȳj‖ = 
}
.
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Thus it is easy to verify that the SOC Kmj is self-dual, that is,

Kmj = K∗
mj

:=
{
vj ∈ Rmj : vjTyj ≥ ,∀yj ∈ Kmj

}
.

Obviously, ifm =m = · · · =mr = , we have Km = Rm
+ and therefore the SOCBLP prob-

lem () becomes the classical linear bilevel programming problem (BLP) in [].

Remark The formulation of the SOCBLP () with the quotation marks is used to express
the uncertainty in case of non-uniquely determined lower level optimal solutions.

In this paper, we aim to establish the mathematical models of the SOCBLP, study the
characteristics of the feasible set, andwepropose the optimality conditions of the SOCBLP
problems in the optimistic case.
The organization of this paper is as follows. In Section , we review some prelim-

inaries including the Euclidean Jordan algebra and the generalized differential calcu-
lus of Mordukhovich. We give some basic concepts and illustrate the characteristics of
the SOCBLP in Section . The constraint qualification and optimality condition for the
SOCBLP are studied in Section . The optimality conditions for the several models of the
SOCBLP in the optimistic case are proposed in Section . Finally some conclusions are
given in Section .

2 Preliminaries
First, we introduce the spectral factorization of vectors in Rm associated with the SOCKm,
which is an important character of Jordan algebra [].
For any z = (z; z̄) ∈ R× Rm–, its spectral factorization [] is defined as

z = λ(z)c(z) + λ(z)c(z).

Here λ(z), λ(z) are the spectral values given by

λi(z) = z + (–)i‖z̄‖, i = , ,

and c(z), c(z) are the associated spectral vectors given by

ci(z) =

{

 (; (–)

i z̄
‖z̄‖ ), if z̄ 
= ,


 (; (–)

iω), otherwise,
i = , ,

with ω ∈ Rm– being any vector satisfying ‖ω‖ = .

Lemma. [] Suppose that y ∈ Km and u ∈ Km with Km = Km ×Km ×· · ·×Kmr satisfies
y ◦ u = . Then for all j = , , . . . , r, either (i) yj = ; or (ii) uj = ; or (iii) there exists σj > 
such that yj = σj(u

j
; –ūj).

Let �Km (z) be the metric projection of z onto the SOC Km and s+ := max{, s}, s– :=
min{, s} for any s ∈ R. Then

�Km (z) =
(
λ(z)
)
+c(z) +

(
λ(z)
)
+c(z).
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Now, we introduce some notions of the generalized differential calculus of Mordukho-
vich [].
Give a closed set A ⊆ Rn and a point x̄ ∈ A, we denote by N̂A(x̄) the Fréchet (regular)

normal cone to A at x̄, defined by

N̂A(x̄) :=
{
x∗ ∈ Rn

∣∣∣ lim sup
x A→x̄

〈x∗,x – x̄〉
‖x – x̄‖ ≤ 

}
.

The limiting (Mordukhovich) normal cone to A at x̄, denoted NA(x̄), is defined by

NA(x̄) := lim sup
x A→x̄

N̂A(x),

where ‘lim sup’ is the Painlevé-Kuratowski outer limit of sets []. If A is convex, then
NA(x̄) = N̂A(x̄) amounts to the classic normal cone in the sense of convex analysis.
Let S : Rn ⇒ Rm be a multifunction with its graph, denoted by gphS := {(x, y) ∈ Rn ×

Rm|y ∈ S(x)}, being closed and (ā, b̄) ∈ gphS. The multifunction D∗S(ā, b̄) : Rm ⇒ Rn, de-
fined by

D∗S(ā, b̄)(v) :=
{
w ∈ Rn|(w, –v) ∈NgphS(ā, b̄)

}
is called limiting (Mordukhovich) coderivative of S at (ā, b̄) []. If S happens to be single-
valued, we usually write D∗S(ā). If S is continuously differentiable, then D∗S(ā) amounts
to the adjoint Jacobian of S at ā.

Lemma . [, ] Suppose that u ∈ Rm and z = (z; z̄) ∈ Rm satisfies either (i) z > ‖z̄‖;
or (ii) –z > ‖z̄‖; or (iii) |z| < ‖z̄‖. Then �Km (·) is a continuously differentiable function in
a neighborhood of z, and

D∗�Km (z)(u) =
{
J�Km (z)u

}
.

Moreover, we have
() if z > ‖z̄‖, we have J�Km (z) = Im;
() if –z > ‖z̄‖, we have J�Km (z) = ;
() if |z| < ‖z̄‖, we have

J�Km (z) =



(
 z̄T

‖z̄‖
z̄

‖z̄‖ Im– + z
‖z̄‖ Im– – z

‖z̄‖
z̄z̄T
‖z̄‖

)
.

For any u = (u; ū) ∈ R× Rm– with ‖ū‖ 
= , the matrix-valued mapping P(u) is defined
by

P(u) =



(
 ūT

‖ū‖
ū

‖ū‖ Im– + u
‖ū‖ Im– – u

‖ū‖
ūūT
‖ū‖

)
.

Then we obtain the following property of the matrix P(u).
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Lemma . For any u = (u; ū) ∈ R × Rm– with ‖ū‖ 
= , the matrix P(u) is nonsingular
and P(u) – I is singular.

Proof It is not difficult to show the results hold by direct calculations. �

3 Concepts and characteristics of feasible set
In this section, we give some basic concepts of the SOCBLP, such as constraint region,
inducible region, and optimal solution. Then it is illustrated that the SOCBLP is generally
a nonconvex and nondifferentiable optimization problem, whose feasible set may be not
connected in some cases and the constraint region is generally not polyhedral form ≥ .

3.1 Basic concepts
Definition .
() Constraint region of the SOCBLP problem:

S =
{
(x, y) : x ∈ X, y ∈ Y ,Ax + By≤ b,Ax + By ≤ b, y ∈ Km}.

() Feasible set for the follower for each fixed x ∈ X :

S(x) =
{
y ∈ Y : By≤ b –Ax, y ∈ Km}.

() Projection of S onto the leader’s decision space:

S(X) =
{
x ∈ X : ∃y ∈ Y ,Ax + By ≤ b,Ax + By ≤ b, y ∈ Km}.

() Follower’s rational reaction set for x ∈ S(X):

P(x) =
{
y ∈ Y : y ∈Argmin

[
f (x, ŷ) : ŷ ∈ S(x)

]}
,

where Argmin[f (x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : f (x, y) ≤ f (x, ŷ),∀ŷ ∈ S(x)}.
() Inducible region:

IR =
{
(x, y) : (x, y) ∈ S, y ∈ P(x)

}
.

For simplicity, unless specified we make the following assumptions throughout this pa-
per.

Assumption .
() S is nonempty and compact.
() For decisions taken by the leader, the follower has some room to respond, i.e.,

P(x) 
= ∅.
() The feasible set (i.e., inducible region IR) of the SOCBLP is connected.

The rational reaction set P(x) defines the response, while the inducible region IR repre-
sents the set over which the leadermay optimize his objective. Thus the SOCBLP problem
() can be written as

min
{
F(x, y) : (x, y) ∈ IR

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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Definition . A feasible point (x∗, y∗) to the SOCBLP problem () is a local optimal so-
lution provided that there exists ε >  such that

F
(
x∗, y∗)≤ F(x, y), ∀(x, y) ∈ IR and

∥∥(x, y) – (x∗, y∗)∥∥ < ε.

A local optimal solution is a global one, if ε can be chosen arbitrarily large.

When the lower level problem has more than one solution, the leader has no knowledge
about the real choice of the follower.Hewill be hard to evaluate his objective function value
before he is aware of the follower’s real choice. In this paper, we assume that the leader is
able to influence the follower to select in each case the solution of the lower level problem
which is the best one for the leader. This results in the optimistic SOCBLP problem:

min
x∈X,y∈Y F(x, y) = cT x + dT

 y

s.t. Ax + By ≤ b,

y ∈ �L(x),

()

where �L(x) := Argminy∈Y {f (x, y) = cT x + dT
 y : Ax + By ≤ b, y ∈ Km}. Unless specified,

we assume that X = Rn, Y = Rm in the following analysis.

3.2 Characteristics of feasible set
It is well known that the BLP problem is usually nonconvex, nondifferentiable and its fea-
sible set may be not connected in some cases. To detect if these are valid in SOCBLP, we
discuss the characteristics of the feasible set of SOCBLP in this subsection.

Example . Consider the following SOCBLP problem with x ∈ R, y ∈ R, X = {x|x≥ }
and Y = {y = (y, y)|y≥ }:

"min"
x∈X F(x, y) = x + (y – y)

s.t. ≤ x≤ ,

min
y∈Y f (x, y) = –(y – y)

s.t. x + (y – y) ≤ ,

x + (y – y) ≥ ,

x + (y – y) ≤ ,

y ∈ K.

Figure  illustrates the feasible set of this example. The optimal solution of the lower level
problem is

y(x) – y(x) =

{
 – .x, if  ≤ x≤ ,
 – x, if  ≤ x ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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Figure 1 The SOCBLP problemwith nonconvex feasible set. The optimal solution of the lower level
problem of Example 3.1 is y1(x) – y2(x) = 6 – 0.5x if 2≤ x ≤ 4, and y1(x) – y2(x) = 8 – x if 4≤ x ≤ 6, with y2(x) ≥ 0.
The global optimal solutions are found at the points D = {(x, y) ∈ R+ × R2 : x = 6, y1 – y2 = 2, y2 ≥ 0}, which are
depicted by the thick line in Figure 1, with an optimal function value of 12. It is shown by Figure 1 that, even in
the simple case of functions, SOCBLP is a nonconvex and nondifferentiable optimization problem. Thus, it is
possible that there exist local optimal solutions or stationary solutions for the SOCBLP. Furthermore, the
optimal solutions of the lower level problem may be not unique in some cases.

with y(x)≥ . On this set, the upper level objective function is to be minimized:

F
(
x, y(x)
)
=

{
 – .x, if  ≤ x≤ ,
 – x, if ≤ x ≤ .

The global optimal solutions are found at the points

D =
{
(x, y) ∈ R+ × R : x = , y – y = , y ≥ 

}
,

which are depicted by the thick line in Figure , with an optimal function value of .

From Example ., even in its simple case of functions, SOCBLP is a nonconvex and
nondifferentiable optimization problem. Thus, it is possible that there exist local optimal
solutions or stationary solutions for SOCBLPs. Furthermore, the optimal solutions of the
lower level problem may be not unique in some cases.

Example . Consider the following SOCBLP problem with x ∈ R, y ∈ R, X = {x|x≥ }
and Y = {y = (y, y)|y ≥ , y ≤ }:

"min"
x∈X F(x, y) = x + (y + y)

s.t. ≤ x≤ ,

y + y ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/168


Chi et al. Journal of Inequalities and Applications 2014, 2014:168 Page 8 of 23
http://www.journalofinequalitiesandapplications.com/content/2014/1/168

min
y∈Y f (x, y) = –(y + y)

s.t. x + (y + y) ≤ ,

x + (y + y) ≥ ,

–x + (y + y) ≤ ,

y ∈ K.

The optimal solution of the lower level problem is

y(x) + y(x) =

{
x, if ≤ x≤ ,
 – x, if  ≤ x ≤ ,

with y(x) ≤ . However, only for x ∈ [, ] ∪ [, ] the upper level constraint y + y ≤ 
holds, and therefore the feasible set is not connected, which is depicted in Figure . Hence
the global optimal solutions are found at

D =
{
(x, y) ∈ R+ × R : x = , y + y = , y ≤ 

}
,

which are the points on the thick line in Figure , with an optimal function value of .
It should be noted that if the inequality y +y ≤  is moved into the lower level problem,

the feasible set of the SOCBLP is again connected, and it is equal to all the points (x, y(x))

Figure 2 The SOCBLP problemwith disconnected feasible set. The optimal solution of the lower level
problem of Example 3.2 is y1(x) + y2(x) = x if 2≤ x ≤ 4, and y1(x) + y2(x) = 8 – x if 4 ≤ x ≤ 6, with y2(x) ≤ 0.
However, only for x ∈ [2, 3]∪ [5, 6] the upper level constraint y1 + y2 ≤ 3 holds, and therefore the feasible set is
not connected, which is depicted in Figure 2. Hence the global optimal solutions are found at
D = {(x, y) ∈ R+ × R2 : x = 2, y1 + y2 = 2, y2 ≤ 0}, which are the points on the thick line in Figure 2, with an
optimal function value of 6. By Figure 2, we can see that the feasible set of the SOCBLP may be not connected
especially when the upper level constraints depend on the lower level optimal solution.

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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with y(x)≤ ,

y(x) + y(x) =

⎧⎪⎨⎪⎩
x, if  ≤ x≤ ,
, if ≤ x ≤ ,
 – x, if  ≤ x ≤ .

By Example ., we can see that the feasible set of the SOCBLP may be not connected
especially when the upper level constraints depend on the lower level optimal solution.
Furthermore, the position of constraints is not arbitrary, whose changes may affect the
feasible set of the problem. Therefore, it is necessary to point out that the solutions of the
SOCBLP strongly depend on the order of play.

Example . Consider the following SOCBLP problem with x ∈ R, y ∈ R, X = {x|x≥ }
and Y = K:

"min"
x∈X F(x, y) = x + y

s.t. ≤ x≤ ,

min
y∈Y f (x, y) = –y

s.t. x + y ≤ ,

x + y ≥ ,

x + y ≤ ,

y ∈ K.

Similarly to Example ., the optimal solution of the lower level problem is

y(x) =

{
 – .x, if  ≤ x≤ ,
 – x, if ≤ x ≤ ,

with
√
y(x) + y(x)≤ y(x). The global optimal solution of this problem is found at points

D =
{
(x, y) ∈ R+ × R : x = , y = ,

√
y + y ≤ 

}
with an optimal function value is .

From Example ., unlike linear BLP, the constraint region of the SOCBLPwithm≥  is
usually not polyhedral and its inducible region is notmade up of a piecewise linear equality
constraint comprised of supporting hyperplanes of S. In theory, the second-order cone
with m ≥  is a closed convex cone, but not a polyhedron, which is greatly different from
the linear BLP.
Stated briefly, the SOCBLP has the following characteristics:
(i) it is generally a nonconvex and nondifferentiable optimization problem;
(ii) its feasible set may be not connected especially when the upper level constraints

depend on the lower level optimal solution, and its constraint region is generally
not polyhedral form ≥ ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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(iii) its solutions strongly depend on the order of play, since the changes of the position
of constraints could generally affect the feasible set of the problem.

Therefore, compared to many mathematical programming problems, it is difficult for
us to study the theories and algorithms of the SOCBLP.

4 Optimality conditions
In this section, the SOCBLP problem () in the optimistic case is reformulated as a single
level optimization problem by using the Karush-Kuhn-Tucker (KKT) conditions for the
lower level problem.And the necessary optimality conditions for problem () are given un-
der the strict complementarity and linear independence constraint qualification assump-
tions.
For any fixed x ∈ S(X), the Lagrange function of the lower level problem in () is defined

by

L(x, y,u, v) = cT x + dT
 y + uT (Ax + By – b) – vTy,

and the set of the Lagrange multipliers corresponding to the point (x, y) ∈ Rn × Rm is de-
noted by

�(x, y) :=

{
(u, v) ∈ Rp × Rm :

BT
 u + d – v = , vTy = , v ∈ Km, y ∈ Km,

uT (b –Ax – By) = ,b –Ax – By ≥ ,u≥ 

}
. ()

Definition . The generalized slater condition is satisfied at x ∈ S(X) for the SOCBLP
problem () if there exists a y ∈ intKm such that Ax + By < b holds.

By replacing the lower level problem in () with its KKT conditions, we reformulate the
SOCBLP problem () as the following mathematical programming problem with second-
order cone complementarity constraints and linear complementarity constraints:

minF(x, y) = cT x + dT
 y

s.t. Ax + By – b ≤ ,

BT
 u + d – v = ,

uT (b –Ax – By) = ,

b –Ax – By≥ , u≥ ,

vTy = , v ∈ Km, y ∈ Km.

()

Remark Problem () is more complicated than usual mathematical programs with
second-order cone complementarity constraints (SOCMPCC). In usual SOCMPCC, there
exist only second-order cone complementarity constraints and equality constraints in
some cases. However, in problem () there are also inequality constraints and linear com-
plementarity constraints.

By extending Theorem . in [] about BLP andMPCC, we obtain the following results
as regards the SOCBLP problem () and problem ().

Theorem . Let (x∗, y∗) be a global (resp. local) optimal solution of the SOCBLP prob-
lem () and assume that the generalized slater condition is satisfied at x∗. Then, for each

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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(u∗, v∗) ∈ �(x∗, y∗), the point (x∗, y∗,u∗, v∗) is a global (resp. local) optimal solution of prob-
lem ().

Proof Since (u∗, v∗) ∈ �(x∗, y∗) if and only if y∗ ∈ P(x∗), the results of the theorem obvi-
ously hold. �

Next we discuss the necessary optimality conditions for problem ().
By Proposition  in [], we obtain

〈
u, (b –Ax – By)

〉
= , (b –Ax – By) ∈ Rq

+,u ∈ Rq
+

⇐⇒ �Rq+(u +Ax + By – b) = u

⇐⇒ (u +Ax + By – b,u) ∈ gph�Rq+

and

〈
y,
(
BT
 u + d

)〉
= ,

(
BT
 u + d

) ∈ Km, y ∈ Km

⇐⇒ �Km
(
y – BT

 u – d
)
= y

⇐⇒ (
y – BT

 u – d, y
) ∈ gph�Km .

Here 〈·, ·〉 stands for the Euclidean inner product, which is defined by 〈x, s〉 := xTs for any
two vectors x and s in Rn. Then problem () is equivalent to the following optimization
problem:

minF(x, y) = cT x + dT
 y

s.t. 	(x, y,u) ∈ 
,
()

where 
 = Rp
– × gph�Rq+ × gph�Km , and 	(x, y,u) : Rn × Rm × Rq → Rm+p+q is defined

by

	(x, y,u) =

⎛⎜⎜⎜⎜⎜⎜⎝
Ax + By – b

u +Ax + By – b
u

y – BT
 u – d
y

⎞⎟⎟⎟⎟⎟⎟⎠ . ()

Theorem . [] Suppose that (x∗, y∗,u∗) is a local optimal solution of (). If the con-
straint qualification

J	(x∗, y∗,u∗)Tw = ,
w ∈N
(	(x∗, y∗,u∗))

}
⇒ w =  ()

holds, there exists w∗ ∈N
(	(x∗, y∗,u∗)) such that

 ∈
⎛⎜⎝cd
q

⎞⎟⎠ + J	
(
x∗, y∗,u∗)Tw∗. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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By Theorem ., we discuss the optimality conditions for problem ().
Suppose that (x∗, y∗,u∗) is a feasible point to problem (). Then there exists a partition

(S,N) of {, , . . . , r} such that

S :=
{
j|y∗j +

(
BT
 u

∗ + d
)j ∈ intKmj , j = , , . . . , r

}
, N := {, , . . . , r}\S.

By Lemma ., we define three index subsets of S as

S :=
{
j|y∗j ∈ intKmj ,

(
BT
 u

∗ + d
)j = , j ∈ S

}
,

S :=
{
j|y∗j,
(
BT
 u

∗ + d
)j ∈ bdKmj\{}, j ∈ S

}
,

S :=
{
j|y∗j = ,

(
BT
 u

∗ + d
)j ∈ intKmj , j ∈ S

}
.

There also exists a partition (S′,N ′) of {, , . . . ,q} such that

S′ :=
{
i|u∗i +

(
b –Ax∗ – By∗)i > , i = , , . . . ,q

}
, N ′ := {, , . . . ,q}\S′.

We define two index subsets of S as

S′
 :=
{
i|u∗i > ,

(
b –Ax∗ – By∗)i = , i ∈ S′},

S′
 :=
{
i|u∗i = ,

(
b –Ax∗ – By∗)i > , i ∈ S′}.

We are now in a position to present some assumptions.
(A) The linear independence constraint qualification holds, i.e., the matrix (A,A) is

of full rank in row with p + q ≤m, and (IS
′


q ,BS∪S
 ) is of full rank in column, where

|S′
| + |S ∪ S| ≤ q and Iq = (Iq, Iq , . . . , I

q
q ), B = (B

,B
, . . . ,Bm

 ).
(A) The componentwise strict complementarity condition holds at (y∗,BT

 u∗ + d), i.e.,

y∗ +
(
BT
 u

∗ + d
) ∈ intKm,

or in other words, N = ∅.
(A) The componentwise strict complementarity condition holds at

(u∗,b –Ax∗ – By∗), i.e.,

u∗ +
(
b –Ax∗ – By∗) ∈ intRq

+,

or, in other words, N ′ = ∅.

Lemma . If assumptions (A), (A), and (A) hold, then the constraint qualification ()
hold.

Proof Suppose that there exists w = (w;w;w;w;w) ∈ Rp × Rq × Rq × Rm × Rm, such
that J	(x∗, y∗,u∗)Tw =  and w ∈N
(	(x∗, y∗,u∗)), where

w =
(
w
;w


 ; . . . ;w

q

) ∈ Rq,

w =
(
w
;w


; . . . ;w

q

) ∈ Rq,

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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w =
(
w
;w


; . . . ;w

r

) ∈ r∏

j=

Rmj ,

w =
(
w
;w


; . . . ;w

r

) ∈ r∏

j=

Rmj .

Then we have

AT
 w +AT

 w = ,

BT
 w + BT

w +w +w = , ()

w +w – Bw = ,

w ∈NRp–
(
Ax∗ + By∗ – b

)
,

(w,w) ∈Ngph�Rq+

(
u∗ +Ax∗ + By∗ – b,u∗), ()

(w,w) ∈Ngph�Km
(
y∗ – BT

 u
∗ – d, y∗).

Since (A,A) is of full rank in row by the assumption (A), it follows from () that

w = w = ,

w +w = , ()

w – Bw = .

From assumption (A), the second inclusion in () is equivalent to

wi
 ∈D∗�R+

(
u∗i +
(
Ax∗ + By∗ – b

)i,u∗i)(–wi

)
, i = , , . . . ,q,

i.e.,

J�R+
(
u∗i +
(
Ax∗ + By∗ – b

)i)(–wi

)
–wi

 = , i = , , . . . ,q.

The last relation implies that

wi
 +wi

 = , for i ∈ S′
,

wi
 = , for i ∈ S′

.
()

From () and (), we have

wi
 = wi

 = , for i ∈ S′
,

wi
 = , for i ∈ S′

.
()

From the assumption (A), the third inclusion in () is equivalent to

wj
 ∈D∗�Kmj

(
y∗j –
(
BT
 u

∗ + d
)j, y∗j)(–wj


)
, j = , , . . . , r,

i.e.,

J�Kmj

(
y∗j –
(
BT
 u

∗ + d
)j)(–wj


)
–wj

 = , j = , , . . . , r.

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
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The last relation together with Lemma . implies that

wj
 +wj

 = , for j ∈ S,

P
(
y∗j –
(
BT
 u

∗ + d
)j)wj

 +wj
 = , for j ∈ S, ()

wj
 = , for j ∈ S.

Then it follows from () and () that

wj
 +wj

 = , for j ∈ S ∪ S,

wj
 = wj

 = , for j ∈ S.
()

Since (IS
′


q ,BS∪S
 ) is of full rank in column by the assumption (A), we have from (),

(), and () that wi
 = , i ∈ S′

 and wj
 = , j ∈ S ∪ S. Then it follows from (), (), and

() that w = . This completes the proof. �

From Theorem ., Theorem ., and Lemma ., we obtain the following optimality
conditions for the SOCBLP problem ().

Theorem . Let (x∗, y∗) be a local optimal solution of the SOCBLP problem () and
assume that the generalized slater condition given by Definition . is satisfied at x∗.
If assumptions (A), (A), and (A) hold, then for each (u∗, v∗) ∈ �(x∗, y∗), there exist
λ ∈ Rp, η = (η;η; . . . ;ηq) ∈ Rq, ζ = (ζ ; ζ ; . . . ; ζ q) ∈ Rq, μ = (μ;μ; . . . ;μr) ∈∏r

j= R
mj and

ν = (ν;ν; . . . ;νr) ∈∏r
j= R

mj such that

c +AT
 λ +AT

 η = ,

d + BT
 λ + BT

 η +μ + ν = ,

η + ζ – Bμ = ,

�Rp+

(
λ +Ax∗ + By∗ – b

)
– λ = ,

�Rq+

(
u∗ +Ax∗ + By∗ – b

)
– u∗ = ,

�Km
(
y∗ – BT

 u
∗ – d
)
– y∗ = ,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

()

with

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

⎧⎪⎨⎪⎩
μj + ν j, if j ∈ S,
P(y∗j – (BT

 u∗ + d)j)ν j +μj, if j ∈ S,
μj, if j ∈ S,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

{
ηi + ζ i, if i ∈ S′

,
ηi, if i ∈ S′

.
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Proof It follows from Theorem . that (x∗, y∗,u∗) is a local optimal solution of (). Since
assumptions (A), (A), and (A) hold, we have from Theorem . and Lemma .

 ∈
⎛⎜⎝cd
q

⎞⎟⎠ + J	
(
x∗, y∗,u∗)TN


(
	
(
x∗, y∗,u∗)).

Then there exists (λ,η, ζ ,μ,ν) ∈ Rp × Rq × Rq × Rm × Rm such that

c +AT
 λ +AT

 η = ,

d + BT
 λ + BT

 η +μ + ν = , ()

η + ζ – Bμ = ,

λ ∈NRp–
(
Ax∗ + By∗ – b

)
,

(η, ζ ) ∈ Ngph�Rq+

(
u∗ +Ax∗ + By∗ – b,u∗), ()

(μ,ν) ∈ Ngph�Km
(
y∗ – BT

 u
∗ – d, y∗).

The first inclusion in () implies

λ ∈NRp–
(
Ax∗ + By∗ – b

)
⇐⇒ λ ∈ Rp

+,b –Ax∗ – By∗ ∈ Rp
+, λT(b –Ax∗ – By∗) = 

⇐⇒ �Rp+

(
λ +Ax∗ + By∗ – b

)
– λ = . ()

From assumption (A), the second inclusion in () is equivalent to

η ∈D∗�Rq+

(
u∗ +Ax∗ + By∗ – b

)
(–ζ ),

i.e.,

J�R+
(
u∗i +
(
Ax∗ + By∗ – b

)i)(–ζ i) – ηi = , i = , , . . . ,q.

The last relation implies that

ηi + ζ i = , if i ∈ S′
,

ηi = , if i ∈ S′
.

From the assumption (A), the third inclusion in () is equivalent to

μ ∈D∗�Km
(
y∗ – BT

 u
∗ – d, y∗)(–ν),

i.e.,

J�Kmj

(
y∗j –
(
BT
 u

∗ + d
)j)(–ν j) –μj = , j = , , . . . , r.
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The last relation together with Lemma . implies that

μj + ν j = , if j ∈ S,

P
(
y∗j –
(
BT
 u

∗ + d
)j)

ν j +μj = , if j ∈ S,

μj = , if j ∈ S.

Therefore, combing (), (), (), and the feasibility of (x∗, y∗,u∗) implies equation ()
holds. This completes the proof. �

Remark Theorem . shows that under the strict complementarity conditions and linear
independence constraint qualifications, a local optimal solution is a M-stationary point
which is introduced for mathematical programming governed by second-order cone con-
strained generalized equations in [].

5 Extensions
In this section, we consider the optimality conditions for the following three common
models of the SOCBLP in the optimistic case,

"min"
x∈Rn

F(x, y) = cT x + dT
 y

s.t. Ax = b,

min
y∈Rm

f (x, y) = dT
 y

s.t. Ax + By≤ b,

y ∈ Km,

()

"min"
x∈Rn

F(x, y) = cT x + dT
 y

s.t. Ax + By = b,

min
y∈Rm

f (x, y) = cT x + dT
 y

s.t. Ax + By = b,

y ∈ Km,

()

"min"
x∈Rn

F(x, y) = cT x + dT
 y

s.t. Ax + By≤ b,

min
y∈Rm

f (x, y) = cT x + dT
 y

s.t. b –Ax – By ∈ Kq,

y≥ ,

()

where Kq = Kq × Kq × · · · × Kqs with q = q + q + · · · + qs is the Cartesian product of
second-order cones in problem (). Here problem () is an extension of the bilevel pro-
gramming problem proposed by Dempe [], problem () is the case that equality con-
straints always hold in problem (), and problem () is closely connected with problem
() which will be seen in Section ..
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5.1 Optimality conditions for problem (20)
In this subsection, we discuss the optimization conditions for problem () under strict
complementarity and linear independence constraint qualification assumptions.
For any fixed x ∈ S(X), the Lagrange function of the lower level problem in () is defined

by

L(x, y,u, v) = dT
 y + uT (Ax + By – b) – vTy,

and the set of the Lagrange multipliers corresponding to the point (x, y) ∈ Rn × Rm is de-
noted by

�(x, y) :=

{
(u, v) ∈ Rp × Rm :

BT
 u + d – v = , vTy = , v ∈ Km, y ∈ Km,

uT (b –Ax – By) = ,b –Ax – By≥ ,u≥ 

}
.

Definition . The generalized slater condition is satisfied at x ∈ S(X) for the SOCBLP
problem () if there exists a y ∈ intKm such that Ax + By < b holds.

Theorem . Let (x∗, y∗) be a global (resp. local) optimal solution of the SOCBLP problem
() and assume that the generalized slater condition given by Definition . is satisfied
at x∗. Then, for each (u∗, v∗) ∈ �(x∗, y∗), the point (x∗, y∗,u∗, v∗) is a global (resp. local)
optimal solution of problem

minF(x, y) = cT x + dT
 y

s.t. Ax – b = ,

BT
 u + d – v = ,

uT (b –Ax – By) = ,

b –Ax – By≥ , u ≥ ,

vTy = , v ∈ Km, y ∈ Km.

()

It is easy to see that problem () is equivalent to the following optimization problem:

minF(x, y) = cT x + dT
 y

s.t. 	(x, y,u) ∈ 
,
()

where
 = {p}×gph�Rq+ ×gph�Km and	(x, y,u) : Rn ×Rm ×Rq → Rp+q+m is defined
by

	(x, y,u) =

⎛⎜⎜⎜⎜⎜⎜⎝
Ax – b

u +Ax + By – b
u

y – BT
 u – d
y

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then similarly to Lemma . and Theorem ., we obtain the optimality conditions for
problem ().
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Lemma. Suppose that (x∗, y∗,u∗) is a local optimal solution of (). If assumptions (A),
(A), and (A) hold, then the following constraint qualification holds:

J	(x∗, y∗,u∗)Tw = ,
w ∈N
 (	(x∗, y∗,u∗))

}
⇒ w = .

Theorem . Let (x∗, y∗) be a local optimal solution of the SOCBLP problem () and
assume that the generalized slater condition given by Definition . is satisfied at x∗. If
assumptions (A), (A), and (A) hold, then for each (u∗, v∗) ∈ �(x∗, y∗), there exist λ ∈
Rp, η = (η;η; . . . ;ηq) ∈ Rq, ζ = (ζ ; ζ ; . . . ; ζ q) ∈ Rq, μ = (μ;μ; . . . ;μr) ∈∏r

j= R
mj and ν =

(ν;ν; . . . ;νr) ∈∏r
j= R

mj such that

c +AT
 λ +AT

 η = ,

d + BT
 η +μ + ν = ,

η + ζ – Bμ = ,

Ax∗ – b = ,

�Rq+

(
u∗ +Ax∗ + By∗ – b

)
– u∗ = ,

�Km
(
y∗ – BT

 u
∗ – d
)
– y∗ = ,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

with

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

⎧⎪⎨⎪⎩
μj + ν j, if j ∈ S,
P(y∗j – (BT

 u∗ + d)j)ν j +μj, if j ∈ S,
μj, if j ∈ S,

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

{
ηi + ζ i, if i ∈ S′

,
ηi, if i ∈ S′

.

5.2 Optimality conditions for problem (21)
In this subsection, we reformulate problem () as a single level optimization problem,
and then we discuss its optimization conditions under strict complementarity and linear
independence constraint qualification assumptions.
For any fixed x ∈ S(X), we define the Lagrange function of the lower level problem in

() by

L(x, y,u, v) = cT x + dT
 y + uT (Ax + By – b) – vTy,

and the set of the Lagrange multipliers corresponding to the point (x, y) ∈ Rn × Rm by

�(x, y) :=

{
(u, v) ∈ Rp × Rm :

BT
 u + d – v = ,Ax + By = b,

vTy = , v ∈ Km, y ∈ Km

}
.
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Definition . The generalized slater condition is satisfied at x ∈ S(X) for the SOCBLP
problem () ifB is of full rank in row and there exists a y ∈ intKm such thatAx +By =
b holds.

Theorem . Let (x∗, y∗) be a global (resp. local) optimal solution of the SOCBLP problem
() and assume that the generalized slater condition given by Definition . is satisfied
at x∗. Then, for each (u∗, v∗) ∈ �(x∗, y∗), the point (x∗, y∗,u∗, v∗) is a global (resp. local)
optimal solution of problem

minF(x, y) = cT x + dT
 y

s.t. Ax + By – b = ,

Ax + By – b = ,

BT
 u + d – v = ,

vTy = , v ∈ Km, y ∈ Km.

()

It is not difficult to see that problem () is equivalent to the following optimization
problem:

minF(x, y) = cT x + dT
 y

s.t. 	(x, y,u) ∈ 
,
()

where 
 = {p+q} × gph�Km and 	(x, y,u) : Rn × Rm × Rq → Rp+q+m is defined by

	(x, y,u) =

⎛⎜⎜⎜⎝
Ax + By – b
Ax + By – b
y – BT

 u – d
y

⎞⎟⎟⎟⎠ .

Now we give the following assumption.
(A) The linear independence constraint qualification holds, i.e., the matrix (A,A) is

of full rank in row with p + q ≤m, and BS∪S
 is of full rank in column, where

|S ∪ S| ≤ q and B = (B
,B

, . . . ,Bm
 ).

Then similarly to Lemma . and Theorem ., we obtain the optimality conditions for
problem ().

Lemma . Suppose that (x∗, y∗,u∗) is a local optimal solution of (). If assumptions (A)
and (A) hold, then the following constraint qualification holds:

J	(x∗, y∗,u∗)Tw = ,
w ∈N
 (	(x∗, y∗,u∗))

}
⇒ w = .

Theorem . Let (x∗, y∗) be a local optimal solution of the SOCBLP problem () and
assume that the generalized slater condition given by Definition . is satisfied at x∗. If
assumptions (A) and (A) hold, then for each (u∗, v∗) ∈ �(x∗, y∗), there exist λ ∈ Rp, η =
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(η;η; . . . ;ηq) ∈ Rq, μ = (μ;μ; . . . ;μr) ∈∏r
j= R

mj and ν = (ν;ν; . . . ;νr) ∈∏r
j= R

mj such
that

c +AT
 λ +AT

 η = ,

d + BT
 λ + BT

 η +μ + ν = ,

Bμ = ,

Ax∗ + By∗ – b = ,

Ax∗ + By∗ – b = ,

�Km
(
y∗ – BT

 u
∗ – d
)
– y = ,

f
(
x∗, y∗,u∗,λ,η,μ,ν

)
= ,

with

f
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

⎧⎪⎨⎪⎩
μj + ν j, for j ∈ S,
P(y∗j – (BT

 u∗ + d)j)ν j +μj, for j ∈ S,
μj, for j ∈ S.

5.3 Optimality conditions for problem (22)
In this subsection, we discuss the optimization conditions for problem () under suitable
conditions.
For any fixed x ∈ S(X), the Lagrange function of the lower level problem in () is defined

by

L(x, y,u, v) = cT x + dT
 y + uT (Ax + By – b) – vTy,

and the set of the Lagrange multipliers corresponding to the point (x, y) ∈ Rn × Rm is de-
noted by

�(x, y) :=

{
(u, v) ∈ Rp × Rm :

BT
 u + d – v = , vTy = , v≥ , y ≥ ,

uT (b –Ax – By) = ,b –Ax – By ∈ Kq,u ∈ Kq

}
.

Definition . The generalized slater condition is satisfied at x ∈ S(X) for the SOCBLP
problem () if there exists a y >  such that b –Ax – By ∈ intKq holds.

Theorem . Let (x∗, y∗) be a global (resp. local) optimal solution of the SOCBLP problem
() and assume that the generalized slater condition given by Definition . is satisfied
at x∗. Then, for each (u∗, v∗) ∈ �(x∗, y∗), the point (x∗, y∗,u∗, v∗) is a global (resp. local)
optimal solution of

minF(x, y) = cT x + dT
 y

s.t. Ax + By – b ≤ ,

BT
 u + d – v = ,

uT (b –Ax – By) = ,

b –Ax – By ∈ Kq, u ∈ Kq,

vTy = , v ≥ , y≥ .

()
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Since () has a similar form to the form () of problem (), we could study the optimality
conditions for problem () in the similar way to problem ().
It is easy to see that problem () is equivalent to the following optimization problem:

minF(x, y) = cT x + dT
 y

s.t. 	(x, y,u) ∈ 
,
()

where 
 = Rp
– × gph�Kq × gph�Rm+ and 	(x, y,u) : Rn × Rm × Rq ⇀ Rp+q+m is defined

by

	(x, y,u) =

⎛⎜⎜⎜⎜⎜⎜⎝
Ax + By – b

u +Ax + By – b
u

y – BT
 u – d
y

⎞⎟⎟⎟⎟⎟⎟⎠ .

Suppose that (x∗, y∗,u∗) is a feasible point to problem (). Then there exists a partition
(̂S, N̂) of {, , . . . ,m} such that

Ŝ :=
{
j|y∗j +

(
BT
 u

∗ + d
)j > , j = , , . . . ,m

}
, N̂ := {, , . . . ,m}\̂S.

We define two index subsets of Ŝ as

Ŝ :=
{
j|y∗j > ,

(
BT
 u

∗ + d
)j = , j ∈ Ŝ

}
,

Ŝ :=
{
j|y∗j = ,

(
BT
 u

∗ + d
)j > , j ∈ Ŝ

}
.

There also exists a partition (̂S′, N̂ ′) of {, , . . . , s} such that

Ŝ′ :=
{
i|u∗i +

(
b –Ax∗ – By∗)i ∈ intKqi , i = , , . . . , s

}
, N̂ ′ := {, , . . . , s}\̂S′.

By Lemma ., we define three index subsets of Ŝ′ as

Ŝ′
 :=
{
i|u∗i ∈ intKqi ,

(
b –Ax∗ – By∗)i = , i ∈ Ŝ′},

Ŝ′
 :=
{
i|u∗i,
(
b –Ax∗ – By∗)i ∈ bdKqi\{}, i ∈ Ŝ′},

Ŝ′
 :=
{
i|u∗i = ,

(
b –Ax∗ – By∗)i ∈ intKqi , i ∈ Ŝ′}.

Now we present the following assumptions.
(A) The linear independence constraint qualification holds, i.e., the matrix (A,A) is

of full rank in row with p + q ≤m, and (IŜ
′


q ,BŜ
 ) is of full rank in column, where

|̂S′
| + |̂S| ≤ q and Iq = (Iq, Iq , . . . , I

q
q ),B = (B

,B
, . . . ,Bm

 ).
(A) The componentwise strict complementarity condition holds at (y∗,BT

 u∗ + d), i.e.,

y∗ +
(
BT
 u

∗ + d
) ∈ intRm

+ ,

or, in other words, N̂ = ∅.
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(A) The componentwise strict complementarity condition holds at
(u∗,b –Ax∗ – By∗), i.e.,

u∗ +
(
b –Ax∗ – By∗) ∈ intKq,

or in other words, N̂ ′ = ∅.
By using Lemma . and the proof of Lemma . and Theorem ., we obtain the fol-

lowing optimality conditions for the SOCBLP problem ().

Lemma. Suppose that (x∗, y∗,u∗) is a local optimal solution of (). If assumptions (A),
(A), and (A) hold, then the following constraint qualification holds:

J	(x∗, y∗,u∗)Tw = ,
w ∈N
 (	(x∗, y∗,u∗))

}
⇒ w = .

Theorem . Let (x∗, y∗) be a local optimal solution of the SOCBLP problem () and
assume that the generalized slater condition given by Definition . is satisfied at x∗. If
assumptions (A), (A), and (A) hold, then for each (u∗, v∗) ∈ �(x∗, y∗), there exist λ ∈ Rp,
η = (η;η; . . . ;ηs) ∈∏s

i= Rqi , ζ = (ζ ; ζ ; . . . ; ζ s) ∈∏s
i= Rqi , μ = (μ;μ; . . . ;μm) ∈ Rm and

ν = (ν;ν; . . . ;νm) ∈ Rm such that

c +AT
 λ +AT

 η = ,

d + BT
 λ + BT

 η +μ + ν = ,

η + ζ – Bμ = ,

�Rp+

(
λ +Ax∗ + By∗ – b

)
– λ = ,

�Kq
(
u∗ +Ax∗ + By∗ – b

)
– u∗ = ,

�Rm+
(
y∗ – BT

 u
∗ – d
)
– y∗ = ,

f̂
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

f̂
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
= ,

with

f̂
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

{
μj + ν j, for j ∈ Ŝ,
μj, for j ∈ Ŝ,

f̂
(
x∗, y∗,u∗,λ,η, ζ ,μ,ν

)
=

⎧⎪⎨⎪⎩
ηi + ζ i, for i ∈ Ŝ′

,
P(u∗i + (Ax∗ + By∗ – b)i)ζ i + ηi, for i ∈ Ŝ′

,
ηi, for i ∈ Ŝ′

.

6 Conclusions
In this paper, we discuss the models and theories of the SOCBLP. Firstly, we give some
basic concepts of the SOCBLP, such as constraint region, inducible region and optimal
solution. Then some examples illustrate that the SOCBLP is generally a nonconvex and
nondifferentiable optimization problem, whose feasible set may be not connected in some
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cases and constraint region is generally not polyhedral form ≥ . Finally, the SOCBLP in
the optimistic case is reformulated as a single level optimization problem by using the
KKT conditions for the lower level problem. The necessary optimality conditions for sev-
eral models of the SOCBLP are given under the strict complementarity and linear inde-
pendence constraint qualification assumptions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this paper. They read and approved the final manuscript.

Author details
1School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China. 2School of Mathematics and
Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China. 3School of Information and
Calculating Science, North University for Ethnics, Yinchuan, 750021, China.

Acknowledgements
This research is supported by the National Natural Science Foundation of China (Nos. 71171150, 11161001, 71161001)
and China Postdoctoral Science Foundation of China (No. 2012M511651). The authors are grateful to the editor and the
anonymous referees for their valuable comments, which have greatly improved the paper.

Received: 27 January 2014 Accepted: 10 April 2014 Published: 06 May 2014

References
1. Bard, JF: Practical Bilevel Programming. Kluwer Academic, Dordrecht (1998)
2. Dempe, S: Foundations of Bilevel Programming. Kluwer Academic, New York (2002)
3. Alizadeh, F, Goldfarb, D: Second-order cone programming. Math. Program. 95, 3-51 (2003)
4. Tang, JY, He, GP, Dong, L, Fang, L: A new one-step smoothing Newton method for second-order cone programming.

Appl. Math. 57, 311-331 (2012)
5. Li, YM, Wang, XT, Wei, DY: A new class of smoothing complementarity functions over symmetric cones. Commun.

Nonlinear Sci. Numer. Simul. 15, 3299-3305 (2010)
6. Wang, GQ, Bai, YQ: A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric

optimization. J. Optim. Theory Appl. 154, 966-985 (2012)
7. Che, HT: A smoothing and regularization predictor-corrector method for nonlinear inequalities. J. Inequal. Appl. 2012,

214 (2012)
8. Fang, L, Han, C: A new one-step smoothing Newton method for the second-order cone complementarity problem.

Math. Methods Appl. Sci. 34, 347-359 (2011)
9. Liu, X, Sun, J: Generalized stationary points and an interior point method for mathematical programs with

equilibrium constraints. Math. Program. 101, 231-261 (2004)
10. Zhang, Y, Zhang, LW, Wu, J: Convergence properties of a smoothing approach for mathematical programs with

second-order cone complementarity constraints. Set-Valued Anal. 19, 609-646 (2011)
11. Ejiri, T: A smoothing method for mathematical programs with second-order cone complementarity constraints.

Master thesis, Kyoto University (2007)
12. Yan, T, Fukushima, M: Smoothing method for mathematical programs with symmetric cone complementarity

constraints. Optimization 60, 113-128 (2011)
13. Jiang, Y: Optimization problems with second-order cone equilibrium constraints. PhD thesis, Dalian University of

Technology (2011)
14. Wu, J, Zhang, LW, Zhang, Y: A smoothing Newton method for mathematical programs governed by second-order

cone constrained generalized equations. J. Glob. Optim. 55, 359-385 (2013)
15. Ding, C, Sun, D, Ye, J: First order optimality conditions for mathematical programs with semidefinite cone

complementarity constraints. Math. Program. (2014). doi:10.1007/s10107-013-0735-z
16. Faraut, U, Korányi, A: Analysis on Symmetric Cones. Oxford University Press, New York (1994)
17. Mordukhovich, BS: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)
18. Rockafellar, RT, Wets, RJ-B: Variational Analysis. Springer, Berlin (1998)
19. Liu, YJ, Zhang, LW: Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone

optimization problems. Nonlinear Anal. 67, 1359-1373 (2007)
20. Outrata, JV, Sun, D: On the coderivative of the projection operator onto the second-order cone. Set-Valued Anal. 16,

999-1014 (2008)
21. Dempe, S, Dutta, J: Is bilevel programming a special case of a mathematical programming with complementarity

constraints? Math. Program. 131, 37-48 (2012)
22. Gowda, MS, Sznajder, R, Tao, J: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear

Algebra Appl. 393, 203-232 (2004)

10.1186/1029-242X-2014-168
Cite this article as: Chi et al.: The models of bilevel programming with lower level second-order cone programs.
Journal of Inequalities and Applications 2014, 2014:168

http://www.journalofinequalitiesandapplications.com/content/2014/1/168
http://dx.doi.org/10.1007/s10107-013-0735-z

	The models of bilevel programming with lower level second-order cone programs
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Concepts and characteristics of feasible set
	Basic concepts
	Characteristics of feasible set

	Optimality conditions
	Extensions
	Optimality conditions for problem (20)
	Optimality conditions for problem (21)
	Optimality conditions for problem (22)

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


