
Wang and Zhou Journal of Inequalities and Applications 2014, 2014:163
http://www.journalofinequalitiesandapplications.com/content/2014/1/163

RESEARCH Open Access

A preconditioning method of the CQ
algorithm for solving an extended split
feasibility problem
Peiyuan Wang1* and Haiyun Zhou1,2

*Correspondence:
wangpy629@163.com
1Department of Mathematics,
Shijiazhuang Mechanical
Engineering College, Shijiazhuang,
050003, China
Full list of author information is
available at the end of the article

Abstract
In virtue of preconditioning technology, we propose a preconditioning CQ algorithm
for an extend split feasibility problem (ESFP). Comparing with the others, the
proposed algorithm can get faster convergence without considering to adjust the
stepsize. The convergence is also established under mild conditions. Several
extensions of the preconditioning CQ algorithm are presented. Moreover, we present
an approximate variable preconditioner which does not compute the matrix inverse.
Finally, some numerical experiments show the better behaviors of the proposed
methods.
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1 Introduction
The problem to find x ∈ C with Ax ∈ Q, if such x exists, was called the split feasibility
problem (SFP) by Censor and Elfving [], where C ∈ RN and Q ∈ RM are nonempty closed
convex sets, and A is an M by N matrix. This problem plays an important role in the
study of signal processing, image reconstruction, and so on [, ]. Censor and Elfving’s
algorithm in [], as well as others obtained later [, ] involve matrix inverses at each step.
Byrne [] presented a method called the CQ algorithm for solving the SFP that does not
involve matrix inverses.

The CQ algorithm Let x be arbitrary. For k = , , . . . , calculate

xk+ = PC
(
xk – γAT (I – PQ)Axk

)
, ()

where γ ∈ (, /L) and L denotes the largest eigenvalue of thematrixATA, I is the identical
matrix. PC and PQ are the orthogonal projections onto C and Q, respectively.

In recent years, how to modify the CQ algorithm so that it can easily be implemented
and converge faster is the hot topic. The typical modifications are as follows: Yang []
presented a relaxed CQ algorithm for solving the SFP, then the orthogonal projections
onto halfspaces Ck andQk can be executed exactly. Qu and Xiu [] proposed the modified
relaxed algorithm which does not need to compute the largest eigenvalue of the matrix
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ATA and can get an adaptive stepsize by adopting an Armijo-like search. The paper []
extended the algorithm in [] and proposed a relaxed inexact projection method for the
SFP. Xu [] extended the problem into infinite-dimensional Hilbert spaces, and modified
the CQ algorithm withMann’s iteration. In [], López et al. presented a variable stepsize,
and improved the algorithm with a Halpern-type iteration.
However, using preconditioning technology to accelerate the CQ algorithm not only

has not been taken into account, but also one will obtain a special effect. In this paper,
we consider to modify the CQ algorithm from the views of fixed point and variational in-
equality. Combining with the appropriate preconditioner, the SFP can be transformed into
an extended split feasibility problem (ESFP). Naturally, a preconditioning CQ algorithm
for solving the ESFP can also solve the SFP indirectly.
The rest of the paper is organized as follows. In Section , we review some concepts and

existing results. In Section , we propose a preconditioningCQalgorithm for solving ESFP
and establish its convergence. Several extensions are presented in Section . In Section ,
we discuses the methods how to estimate the approximate inverse preconditioner. In Sec-
tion , we report some computational results with the proposed algorithm and methods.
Finally, Section  gives some concluding remarks.

2 Preliminaries
Our argument mainly depends on monotone operators, nonexpansive mappings, and the
metric projections.

Definition . [] Let T be a mapping from a set C ⊂ RN into itself. Then
(i) T is said to be monotone on C, if

〈Tx – Ty,x – y〉 ≥ , for all x, y ∈ C,

(ii) a mapping T : C → C is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, for all x, y ∈ C.

We denote by Fix(T) the set of fixed points of T ; that is, Fix(T) = {x ∈ C : Tx = x}. Note
that Fix(T) is always closed and convex (but maybe empty).
The metric projection from RN onto C is the mapping PC : RN → C, which assigns to

each point x ∈ C the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C),

where ‖ · ‖ is the -norm.
The following properties of projections are useful and pertinent to our purpose.

Lemma . [] Given x ∈ RN

(i) 〈x – PCx,PCx – y〉 ≥ , for all y ∈ C, ()

(ii) ‖x – PCx‖ ≤ ‖x – y‖ – ‖y – PCx‖, for all y ∈ C, ()

(iii) 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, for all y ∈ RN . ()
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Consequently, PC is nonexpansive and monotone, and I – PC is also nonexpansive, then

(iv)
〈
(I – PC)x – (I – PC)y,x – y

〉 ≥ ∥∥(I – PC)x – (I – PC)y
∥∥, for all y ∈ RN . ()

Lemma . For ∀x, y ∈ RN

(i) ‖x± y‖ = ‖x‖ ± 〈x, y〉 + ‖y‖, ()

(ii)
∥∥tx + ( – t)y

∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, ∀t ∈ R. ()

Lemma . [] Let U = I – γAT (I – PQ)A, where γ ∈ (, /L).
(i) U is an averaged operator; i.e. there exist some β ∈ (, ) and a nonexpansive

operator V , U = ( – β)U + βV .
(ii) Fix(U) = A–(Q), then Fix(PCU) = C ∩A–(Q).

Proposition . [] For every k ≥ , let xk ∈ RN , Ck and Qk be defined as in []. Then for
any x ∈ RN and y ∈ RM we have

PCk (x) =

{
x – c(xk )+〈ξk ,x–xk〉

‖ξk‖ ξ k , if c(xk) + 〈ξ k ,x – xk〉 > ;
x, otherwise

and

PQk (y) =

{
y – q(Axk )+〈ηk ,y–Axk〉

‖ηk‖ ηk , if q(Axk) + 〈ηk , y –Axk〉 > ;
y, otherwise.

3 The preconditioning CQ algorithm
Stand [] and Piana and Bertero [] have applied the preconditioning matrix technolo-
gies to improve the Landweber and projected Landweber algorithms. The analyses deal
with the operators A and A∗A, which are based on the singular value decomposition and a
more general spectrum, respectively. We can also extend the technologies to improve the
CQ algorithm.
As the SFP is to find a point x∗ ∈ C, with Ax∗ ∈ Q. Firstly, we set � = C ∩ A–(Q),

A–(Q) = {x∗ ∈ RN |Ax∗ ∈ Q}. From Lemma ., () can be depicted from the view of fixed
point,

x∗ = PC
(
Ux∗). ()

Assume that � 
= ∅, i.e. the SFP has a nonempty solution set, and x∗ is the solution of
SFP. Thus, we have

x∗ =Ux∗,

so

AT (I – PQ)Ax∗ = . ()
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Then let D : C → C be a N × N symmetrical positive definite matrix, and (AD)x∗ ∈ Q.
Referring to (), we can deduce that

DAT (I – PQ)ADx∗ = (AD)T (I – PQ)(AD)x∗

= (AD)T (AD)x∗ – (AD)TPQ(AD)x∗

= (AD)T (AD)x∗ – (AD)T (AD)x∗ =  ()

or

x∗ = x∗ – γDAT (I – PQ)ADx∗ =UDx∗.

Then UD also has the same properties of U in Lemma ., and we can obtain

x∗ = PC
(
UDx∗). ()

Now we present a new algorithm, which is named a preconditioning CQ algorithm
(PCQ).

Algorithm . Let D : C → C be aN ×N symmetrical positive definite matrix, x ∈ C be
arbitrary. For k = , , . . . , calculate

xk+ = PC
(
xk – γDAT (I – PQ)ADxk

)
, ()

where γ ∈ (, /L), L = ‖DAT‖.

Algorithm . is to solve an extended SFP (ESFP), which can be represented as follows.

Definition . Let C and Q be nonempty closed convex sets in RN and RM , respectively,
and A is anM byN matrix,D is anN byN symmetrical positive definite matrix, the ESFP
is to find x ∈ C with ADx ∈Q. We denote the solution set of ESFP by G.

Remark . If we set x̃ = Dx ∈ D(C) = C̃, then Ax̃ ∈ Q, the problem in Definition . is
transformed into SFP.

Remark . If we set D is an unit matrix, then to find x ∈ C with Ax ∈Q, the problem in
Definition . is transformed into SFP.

From Remark . we know that the SFP is to minimize the equation

f (x̃) =


∥∥(I – PQ)Ax̃

∥∥, ∀x̃ ∈ C̃. ()

Substituting x̃ =Dx into (), its gradient operator is

∇f (x) =DAT (I – PQ)ADx, ∀x ∈ C.

While C = RN and C ∩ (AD)–(Q) 
= ∅, we also have

∇f
(
x∗) = ,
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where x∗ ∈ RN is the solution set of the extended SFP. We can obtain the following varia-
tional inequality:

〈
DAT (I – PQ)ADx∗,x – x∗〉 ≥ , ∀x ∈ C.

Therefore, we have the next constrained least-squares problem:

min
{
f (x) : x ∈ C

}
.

The following immediately follows.

Theorem . Assume G 
= ∅, then x∗ ∈ G, if and only if x∗ = argmin{f (x)|x ∈ C}, if and
only if 〈∇f (x∗),x – x∗〉 ≥ , ∀x ∈ C, where

f (x) =


∥∥(I – PQ)ADx

∥∥, ∀x ∈ C. ()

As UD = I – γDAT (I – PQ)AD, from () we have

x ∈ C, xk+ = PC
(
UDxk

)
, k = , , . . . . ()

In order to establish the convergence of Algorithm ., we need the following theorem.

Theorem . Assume that G = C ∩ (AD)–(Q) 
= ∅, then
(i) Fix(UD) = (AD)–(Q) = {x ∈ RN |ADx ∈Q};
(ii) Fix(PCUD) =G.

Proof As DT =D, (AD)T =DAT , we have UD = I – γ (AD)T (I – PQ)(AD).
Firstly, we prove (AD)–(Q) ⊂ Fix(UD). For ∀x ∈ (AD)–(Q), then x ∈ RN and ADx ∈ Q,

we have PQADx = ADx. So

UDx = x – γ (AD)T
(
(AD)x – PQ(AD)x

)
= x –  = x.

Therefore, x ∈ Fix(UD).
Secondly, we prove Fix(UD) ⊂ (AD)–(Q).
AsG = C∩ (AD)–(Q) 
= ∅, we choose z ∈G, then z ∈ C and z ∈ (AD)–(Q), so (AD)z ∈Q.
For ∀x ∈ Fix(UD), we have AT (I – PQ)ADx = . From the properties of a projection, we

can deduce

〈
(I – PQ)ADx, (AD)z – PQ(AD)x

〉 ≤ ,

therefore,

∥∥(I – PQ)ADx
∥∥ =

〈
(I – PQ)ADx, (I – PQ)ADx

〉
=

〈
(I – PQ)ADx, (AD)x – (AD)z

〉
+

〈
(I – PQ)ADx, (AD)z – PQ(AD)x

〉
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≤ 〈
(I – PQ)ADx,AD(x – z)

〉
=

〈
AT (I – PQ)ADx,D(x – z)

〉
= ,

then (I – PQ)ADx = , and ADx = PQ(AD)x ∈Q.
We obtain x ∈ (AD)–(Q), thus (i) is proved.
We can also deduce that Fix(PCUD) = Fix(PC)∩ Fix(UD)�G = C ∩ (AD)–(Q) 
= ∅. �

Theorem . Assume G 
= ∅,  < γ < /L, L = ‖DAT‖, the sequence {xk} is generated by
(), there exists limk→∞ xk → x∗ ∈G.

Proof Firstly, we show that if γ = /L, the operator

V = I –

L
DAT (I – PQ)AD ()

is nonexpansive.
For ∀x, y ∈ C, from () and () we have

‖Vx –Vy‖ =
∥∥∥∥x – y –


L

(
DAT (I – PQ)ADx –DAT (I – PQ)ADy

)∥∥∥∥


= ‖x – y‖ – 
L

〈
DAT (I – PQ)ADx –DAT (I – PQ)ADy,x – y

〉
+


L

∥∥DAT (I – PQ)ADx –DAT (I – PQ)ADy
∥∥

= ‖x – y‖ – 
L

〈
(I – PQ)ADx – (I – PQ)ADy,ADx –ADy

〉
+


L

∥∥DAT (I – PQ)ADx –DAT (I – PQ)ADy
∥∥

≤ ‖x – y‖ – 
L

∥∥(I – PQ)ADx – (I – PQ)ADy
∥∥

+

L

∥∥(I – PQ)ADx – (I – PQ)ADy
∥∥

= ‖x – y‖,

therefore,

‖Vx –Vy‖ ≤ ‖x – y‖. ()

Next, we can easily obtain  < γL/ < , and we set

β =
γL


∈ (, ).

From () we deduce that

UD = I – γDAT (I – PQ)AD

=
(
 –

γL


)
I +

γL


(
I –


L
DAT (I – PQ)AD

)

= ( – β)I + βV ()
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and V is nonexpansive, hence, while  < γ < /L, UD is an averaged nonexpansive opera-
tor.
Finally, we choose ∀p ∈ G, where p ∈ C and p = UDp. We have p = PCUDp = PCp. From

(), we have

∥∥xk+ – p
∥∥ =

∥∥PCUDxk – PCUDp
∥∥ ≤ ∥∥UDxk – p

∥∥

=
∥∥( – β)xk + βVxk – p

∥∥

=
∥∥( – β)

(
xk – p

)
+ β

(
Vxk – p

)∥∥

= ( – β)
∥∥xk – p

∥∥ + β
∥∥Vxk – p

∥∥ – β( – β)
∥∥xk –Vxk

∥∥

≤ ∥∥xk – p
∥∥ – β( – β)

∥∥xk –Vxk
∥∥, ()

which implies that {‖xk – p‖} is monotonically decreasing and hence limk→∞ ‖p– xk‖ =
d ≥ . Specially, {xk} is bounded.
From () we can deduce that

β( – β)
∥∥xk –Vxk

∥∥ ≤ ∥∥xk – p
∥∥ –

∥∥xk+ – p
∥∥,

as ‖xk – p‖ – ‖xk+ – p‖ → , we have xk –Vxk → .
Let x∗ be an arbitrary cluster point of the sequence {xk}. Then there exists a subsequence

{xkj} ⊂ {xk}, then xkj → x∗ (j → ∞). As {xk} ⊂ C, x∗ ∈ C, and x∗ = PCx∗. Because V is
nonexpansive and continuous, then Vxkj → Vx∗ (j → ∞).
As ‖x∗ – Vx∗‖ ≤ ‖x∗ – xkj‖ + ‖xkj – Vxkj‖ + ‖Vxkj – Vx∗‖ → , we have x∗ = Vx∗, then

UDx∗ = ( – β)x∗ +βVx∗ = x∗. Therefore, x∗ = PCx∗ = PCUDx∗, from Theorem ., we have
x∗ ∈ G. However, limn→∞ ‖xk – x∗‖ = d ≥  exists, and there exists a subsequence {xkj} of
{xk} s.t. xkj → x∗ (j → ∞), therefore, there must be xk → x∗ (j → ∞). �

4 Several extensions of the preconditioning CQ algorithm
In virtue of kinds of CQ-like algorithms for solving the SFP, we can also deduce the fol-
lowing meaningful results for solving the ESFP without proof.
According to the relaxed CQ algorithm [], we firstly obtain the relaxed projection

method.

Algorithm . Let D : Ck → Ck be a N × N symmetrical positive definite matrix, x be
arbitrary. For k = , , . . . , calculate

xk+ = PCk

(
xk – γDAT (I – PQk )ADx

k), ()

where γ ∈ (, /L), L = ‖DAT‖.

Theorem . Let {xk} be a sequence generated by the relaxed preconditioning CQ algo-
rithm. Then {xk} converges to a solution of ESFP.

Next, from the papers [] and [], define ∇fk : RN → RN by

∇fk(x) =DAT (I – PQk )ADx,

and we can obtain an adaptive algorithm with strong convergence.

http://www.journalofinequalitiesandapplications.com/content/2014/1/163
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Algorithm . Let D : Ck → Ck be a N × N symmetrical positive definite matrix, given
constants λ > , l ∈ (, ), μ ∈ (, ). Let x be arbitrary, for k = , , . . . , let

x̄k = PCk

(
xk – ρkDAT (I – PQk )ADx

k), ()

where ρk = λlmk andmk is the smallest nonnegative integer m such that

ρk
∥∥∇fk

(
xk

)
–∇f

(
x̄k

)∥∥ ≤ μ
∥∥xk – x̄k

∥∥. ()

Set

xk+ = PCk

[
( – αk)

(
xk – ρkDAT (I – PQk )ADx̄

k)], ()

where {αk} is a real sequence in (, ) that satisfies conditions (C) limk→∞ αk = ; and
(C)

∑∞
k= αk =∞.

Lemma . For all k = , , . . . , ∇fk is Lipschitz continuous on RN with constant L and
co-coercive on RN with modulus /L, where L is the largest eigenvalue of the matrix ATA.
Therefore, the Armijo-like search rule () is well defined.

Lemma . For all k = , , . . . , μl
L < ρk ≤ γ .

Theorem . Let {xk} be a sequence generated by Algorithm .. If the solution set of the
SFP is nonempty, then {xk} converges strongly to a solution of the ESFP.

As there exists an Armijo-like search step in Algorithm ., the complexity of the im-
plementation will be increased. Next, we propose a new variable stepsize to improve Al-
gorithm ..

Algorithm . Let Dk : C → C be a variable N ×N symmetrical positive definite matrix,
k = , , . . . . For ∀x ∈ C, calculate

xk+ = PC
(
xk – γ kDkAT (I – PQ)ADkxk

)
, ()

where γ k ∈ (, /(L ∗MD)), L is the largest eigenvalue of ATA, MD is the minimum value
of all the largest eigenvalues of Dk , for k = , , . . . . Specially, set γ k = /(L ∗MD).

5 Approximating a variable preconditioner
In the above algorithms, the preconditionerD is continuous, positive definite andbounded
so that it has a continuous inverse []. According to the preconditioning CQ algorithm,
we set D commutes with the operator ATA. Therefore, we set a matrix function F with
positive value, and its dimension should be consistent with dim(ATA). Moreover, F should
have a positive lower bound in order to satisfy the existing inverse. Strand [] also assumes
that F is a polynomial or a rational function. Thus, the operator D is given by

D = F
(
ATA

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/163
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Assume (ATA)– is existed, the product DATAD is without restrictions in (), we can
deduced that sometimes D should be chose close to (ATA)–/ as more as possible.
The best condition is to calculate (ATA)– exactly, but it is always hardwith the signal and

image reconstruction problems. If F be a polynomial function, Stand [] have provided
an example with seventh-order, and Neumann’s series approach can also express (ATA)–.
However, the polynomial method needs to calculate the high order matrix multiplication,
therefore, it can not be implemented easily.
If we choose F be a rational function, a simple example, closely related to the Tikhonov

regularization method has been used in []. According to the example, the approximate
inverse preconditioner D can be given by

D = Re
[(
ATA + αI

)–/], ()

where Re denotes the real part, α is a positive real parameter, and good choices of α may
be much smaller than the values provided by the methods used for estimating optimum
values of the Tikhonov regularization parameter.
As () involves the matrix inverse, we next propose a diagonal format of D that does

not calculate matrix inverses. Furthermore, the choice of D is related to the convergence
properties of the algorithm. If D is evolutive following the iterations, the convergence rate
of algorithm will also be accelerated.
From (), we can deduce that

ATAx̃ = ATPQk (Ax̃), x̃ ∈ �. ()

As D should be chosen closely to (ATA)–/, we assume λ is the approximate eigenvalue
matrix of ATA, and then we set

λj×jx̃� ATPQk (Ax̃), j = , , . . . ,N . ()

Therefore, we can obtain the approximate variable preconditioners with respect to
(ATA)– on the (k + )th iteration:

D̄k+
jj =

{
xkj /(ATPQkAx

k)j, if xkj 
=  and (ATPQkAx
k)j 
= ;

D̄k
jj otherwise.

()

Thenwe can also get the approximate variable preconditioners with respect to (ATA)–/

on the (k + )th iteration:

Dk+
jj = Re

[(
D̄k+

jj
)/]. ()

Otherwise, a variable stepsize in Algorithm . can be estimated. Set LDk is the largest
eigenvalue of Dk , k = , , . . . , on the kth iteration, we have MDk =min{LDn |n = , , . . . ,k}.
Then set lD̄k , the minimum eigenvalue of D̄k , k = , , . . . , on the kth iteration, we have
Lk =max{/lD̄n |n = , , . . . ,k}. Therefore, a variable stepsize with respect to Algorithm .
can be approximated by

γk = /(Lk ∗MDk ). ()
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6 Numerical results
In this section, we present some numerical results for the proposedmethod. The following
three examples are taken from the test problems in []. For Examples . and ., we
should first transform into the ESFP. The stopping criterion is ‖xk+ – xk‖ < ε, and we took
ε = –, γ = /‖DAT‖, α = .. The projections are computed by Proposition ..
Algorithm. was implemented in theMatlab Rb (Windows version) programming

environment. The codes were ran on a PC with . GBmemory and Intel(R) Pentium(R)
dual-core CPUG running at . GHz. The iteration numbers and the computational
time for the methods in Section  with different starting points are given in Tables , ,
and , all CPU times reported are in seconds.

Example . (A convex feasibility problem, CFP) Let C = {x ∈ R|x – x –  ≤ }, Q =
{y ∈ R|y –  – y ≤ }. Find some point x in C ∩Q.

Example . (A split feasibility problem) Let A =
(  – 
  
  

)
, C = {x ∈ R|x + x + x ≤ },

Q = {y ∈ R|y + y – y ≤ }. Find x ∈ C with Ax ∈Q.

Example . (A split feasibility problem) Let A =
(   
  
  

)
, C = {x ∈ R|x + x + x ≤ },

Q = {y ∈ R|y + y – y ≤ }. Find x ∈ C with Ax ∈Q.

Compared with the results in [], we can obtain:
() For the CFP, as A = I , the relaxed preconditioning method played a role

inconspicuously.
() For the SFP, the results are better than the ones in [], and when A is not sparse the

effect is obvious.

Table 1 Numerical results for Example 6.1

Starting point The method (26) The method (30)

k CPU (s) Approximate solution k CPU (s) Approximate solution

(1, 2, 3)′ 6 0.0156 (1.4000, 1.1864, 1.6101)′ 6 0.0262 (1.1798, 1.1380, 1.6447)′
(1, 1, 1)′ 1 0.0149 (1, 1, 1)′ 1 0.0252 (1, 1, 1)′
rand(3, 1)′ ∗ 10 7 0.0153 (9.5717, 1.0372, 1.7101)′ 7 0.0270 (9.5717, 1.0372, 1.7101)′

Table 2 Numerical results for Example 6.2

Starting point The method (26) The method (30)

k CPU (s) Approximate solution k CPU (s) Approximate solution

(1, 2, 3)′ 19 0.0166 (–0.3097, –0.1638, 0.1067)′ 5 0.0264 (–0.6409, –0.0027, 0.3205)′
(1, 1, 1)′ 5 0.0155 (0.3988, 0.0763, –0.2023)′ 10 0.0271 (0.1828, 0.0493, –0.1644)′
rand(3, 1)′ ∗ 10 7 0.0159 (6.0095, –0.0363, –3.0054)′ 7 0.0280 (3.7284, 0.4046, –2.6730)′

Table 3 Numerical results for Example 6.3

Starting point The method (26) The method (30)

k CPU (s) Approximate solution k CPU (s) Approximate solution

(1, 2, 3)′ 6 0.0156 (1.4000, 1.1864, 1.6101)′ 8 0.0274 (–0.0500, 0.0480, 0.0234)′
(1, 1, 1)′ 1 0.0149 (1, 1, 1)′ 4 0.0269 (0.3412, 0.0403, –0.1714)′
rand(3, 1)′ ∗ 10 7 0.0153 (9.5717, 1.0372, 1.7101)′ 7 0.0273 (0.9290, –0.2692, –0.5000)′
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7 Conclusions
In this paper, by adopting the preconditioning techniques, a modified CQ algorithm is
named preconditioning CQ algorithm, and its extensions for solving the ESFP have been
presented. The approximate methods for how to estimate the preconditioner D are also
discussed; the approximate diagonal preconditioner method does not need to compute
the matrix inverses and the largest eigenvalue of the matrix ATA. Thus, the algorithm
can be implemented easily. Moreover, the corresponding convergence property has been
established in the feasible case of ESFP. The numerical results showed that the proposed
algorithms and methods are effective to solve some problems.
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