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Abstract
In this work, we prove the existence of a coupled coincidence point theorem of
nonlinear contraction mappings in G-metric spaces without the mixed g-monotone
property and give some examples of a nonlinear contraction mapping, which is not
applied to the existence of coupled coincidence point by using the mixed monotone
property. We also show the uniqueness of a coupled coincidence point of the given
mapping. Further, we apply our results to the existence and uniqueness of a coupled
coincidence point of the given mapping in partially ordered G-metric spaces.
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1 Introduction
The existence of a fixed point for the contraction type of mappings in partially ordered
metric spaces has been studied by Ran and Reurings [] and they established some new
results for contractions in partially ordered metric spaces and presented applications to
matrix equations. Later, Nieto and Rodriguez-Lopez [, ] andAgarwal et al. [] presented
some new results for contractions in partially ordered metric spaces. Examples of exten-
sions and applications of these works see in [–].
The concept of coupled fixed point was introduced by Guo and Lakshmikantham [].

Later, Bhaskar and Lakshmikantham [] introduced the concept of mixed monotone
property for contractive operators in partially orderedmetric spaces. They also gave some
applications in the existence and uniqueness of the coupled fixed point theorems for map-
pings which satisfy the mixed monotone property. Lakshimikantham and Ćirić [] ex-
tended the results in [] by defining the mixed g-monotone and to study the existence
and uniqueness of coupled coincidence point for such mapping which satisfy the mixed
monotone property in partially ordered metric space. As a continuation of this work,
many authors conducted research on the coupled fixed point theory and coupled coin-
cidence point theory in partially ordered metric spaces and different spaces. For example
see [–].
Recently, Sintunavarat et al. [, ] proved some coupled fixed point theorems for non-

linear contractions without mixed monotone property and extended some coupled fixed
point theorems of Bhaskar and Lakshmikantham [] by using the concept of F-invariant
set due to Samet and Vetro []. Later, in , Batra and Vashistha [] introduced the
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concept of (F , g)-invariant set which is a generalization of an F-invariant set introduced
by Samet and Vetro [] and proved theorems on the existence of coupled fixed points for
nonlinear contractions under c-distance in cone metric spaces having an (F , g)-invariant
subset. Very recently, Charoensawan and Klanarong [] proved theorems on the exis-
tence of coupled coincidence points in partially ordered metric spaces without mixed
g-monotone property which extended some coupled fixed point theorems of Sintunavarat
et al. []. They also proved uniqueness of coupled commonfixed point theorems for non-
linear contractions.
In , Mustafa and Sims [] introduced the notion of a G-metric spaces as a gener-

alization of the concept of a metric space and proved the analog of the Banach contraction
mapping principle in the context ofG-metric spaces. Following this initial research, many
authors discussed research on the fixed point theory in partially ordered G-metric space
(see, e.g., [–]).
Recently, Jleli and Samet [] showed the weakness of the fixed point theory inG-metric

by introducing the concept of a quasi-metric space and showed that the result ofMustafa et
al. [] can be deduced by somewell-known results in the literature in the setting of a usual
(quasi) metric space. Later, Samet et al. [] established some propositions to show that
many fixed point theorems on (nonsymmetric) G-metric spaces given recently by many
authors follow directly from well-known theorems on metric spaces. However, Karapinar
and Agarwal [] noticed that the techniques used in [, ] are valid if the contraction
condition in the statement of the theorem can be expressed in two variables and they
proved some theorems on the existence and uniqueness of a commonfixed point forwhich
the techniques of the papers [, ] are not applicable.
In recent times, coupled fixed point and coupled coincidence point theory has been

developed in partially ordered G-metric space. Some authors have studied coupled fixed
point theory. For example, Choudhury and Maity [] proved the existence of a coupled
fixed point theorem of nonlinear contraction mappings with mixed monotone property
in partially ordered G-metric space. Later, Abbas et al. [] extended the results of a cou-
pled fixed point theorem for a mixed monotone mapping obtained by Choudhury and
Maity [].
On the other hand, some authors have studied coupled coincidence point theory in par-

tially ordered G-metric space. In , Aydi et al. [] established coupled coincidence
and coupled common fixed point results for a mixed g-monotone mapping satisfying
nonlinear contractions in a partially ordered G-metric space. They generalized the re-
sults obtained by Choudhury and Maity []. Later, Karapinar et al. [] extended the
results of coupled coincidence and coupled common fixed point theorem for a mixed g-
monotone mapping obtained by Aydi et al. []. As a continuation of this trend, many
authors have studied coupled coincidence point and coupled common fixed point results
for a mixed g-monotone mapping satisfying nonlinear contractions in a partially ordered
G-metric space (see, for example, [–, , , , , , , , ]). However, very
recently, Agarwal and Karapinar [] introduced the concept of g-ordered completeness
and showed that the weaknesses of some of the coupled fixed point theorems and coupled
coincidence point theorems in [, , , , , ] are in fact immediate consequences
of well-known fixed point theorems in the literature.
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In this work, we generalize and extend the coupled coincidence point theorem of non-
linear contraction mappings in partially ordered G-metric spaces without the mixed
g-monotone property.

2 Preliminaries
In this section, we give some definitions, proposition, examples, and remarks which are
useful for the main results in this paper. Throughout this paper, (X,≤) denotes a partially
ordered set with the partial order ≤. By x ≤ y, we mean y≥ x. A mapping f : X → X is said
to be non-decreasing (resp., non-increasing) if, for all x, y ∈ X, x ≤ y implies f (x) ≤ f (y)
(resp. f (y) ≥ f (x)).

Definition . [] Let X be a nonempty set, and G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z.
(G)  <G(x,x, y) for all x, y ∈ X with x �= y.
(G) G(x,x, y) ≤G(x, y, z) for all x, y, z ∈ X with y �= z.
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables).
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Example . Let (X,d) be ametric space. The functionG : X×X×X → [, +∞), defined
by G(x, y, z) = d(x, y) + d(y, z) + d(z,x), for all x, y, z ∈ X, is a G-metric space on X.

Definition . [] Let (X,G) be a G-metric space, and let (xn) be a sequence of points
of X. We say that (xn) is G-convergent to x ∈ X if limn,m→∞ G(x,xn,xm) = , that is, for any
ε > , there exists N ∈ N such that G(x,xn,xm) < ε, for all n,m ≥ N . We call x the limit of
the sequence and write xn → x or limn→∞ xn = x.

Proposition . [] Let (X,G) be a G-metric space; the following are equivalent.
() (xn) is G-convergent to x.
() G(xn,xn,x) →  as n→ +∞.
() G(xn,x,x)→  as n→ +∞.
() G(xn,xm,x) →  as n,m → +∞.

Definition . [] Let (X,G) be a G-metric space. A sequence (xn) is called a G-Cauchy
sequence if, for any ε > , there exists N ∈ N such that G(xn,xm,xl) < ε, for all n,m, l ≥ N .
That is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . [] Let (X,G) be a G-metric space, the following are equivalent:
() the sequence (xn) is G-Cauchy;
() for any ε > , there exists N ∈ N such that G(xn,xm,xm) < ε, for all n,m ≥N .

Proposition . [] Let (X,G) be a G-metric space. A mapping f : X → X is G-contin-
uous at x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever (xn) is
G-convergent to x, (f (xn)) is G-convergent to f (x).
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Definition . [] A G-metric space (X,G) is called G-complete if every G-Cauchy se-
quence is G-convergent in (X,G).

Definition . [] Let (X,G) be a G-metric space. A mapping F : X × X → X is said to
be continuous if for any two G-convergent sequences (xn) and (yn) converging to x and y,
respectively, (F(xn, yn)) is G-convergent to F(x, y).

The concept of a mixed monotone property and a coupled fixed point have been intro-
duced by Bhaskar and Lakshmikantham in [].

Definition . [] Let (X,≤) be a partially ordered set and F : X×X → X. We say F has
the mixed monotone property if for any x, y ∈ X

x,x ∈ X, x ≤ x implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, y ≤ y implies F(x, y)≥ F(x, y).

Definition . [] An element (x, y) ∈ X×X is called a coupled fixed point of amapping
F : X ×X → X if F(x, y) = x and F(y,x) = y.

Lakshmikantham and Ćirić in [] introduced the concept of amixed g-monotonemap-
ping and a coupled coincidence point.

Definition . [] Let (X,≤) be a partially ordered set and F : X × X → X and
g : X → X. We say F has the mixed g-monotone property if for any x, y ∈ X

x,x ∈ X, g(x) ≤ g(x) implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, g(y) ≤ g(y) implies F(x, y) ≥ F(x, y).

Definition . [] An element (x, y) ∈ X ×X is called a coupled coincidence point of a
mapping F : X ×X → X and g : X → X if F(x, y) = g(x) and F(y,x) = g(y).

Definition . [] Let X be a nonempty set and F : X × X → X and g : X → X. We say
F and g are commutative if g(F(x, y)) = F(g(x), g(y)) for all x, y ∈ X.

Now, we give the notion of an F∗-invariant set and an (F∗, g)-invariant set which is useful
for our main results.

Definition . Let (X,d) be a metric space and F : X × X → X be mapping. Let M be a
nonempty subset of X. We say thatM is an F∗-invariant subset of X if and only if, for all
x, y, z,u, v,w ∈ X,
. (x,u, y, v, z,w) ∈M ⇔ (w, z, v, y,u,x) ∈ M;
. (x,u, y, v, z,w) ∈M ⇒ (F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)) ∈M.
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Definition . Let (X,d) be a metric space and F : X × X → X and g : X → X are given
mapping. LetM be a nonempty subset of X. We say thatM is an (F∗, g)-invariant subset
of X if and only if, for all x, y, z,u, v,w ∈ X,
. (x,u, y, v, z,w) ∈M ⇔ (w, z, v, y,u,x) ∈ M;
. (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M ⇒

(F(x,u),F(u,x),F(y, v),F(v, y),F(z,w),F(w, z)) ∈M.

Definition . Let (X,d) be a metric space and M be a subset of X. We say that M
satisfies the transitive property if and only if, for all x, y,w, z,a,b, c,d, e, f ∈ X,

(x, y,w, z,a,b) ∈M and (a,b, c,d, e, f ) ∈M → (x, y,w, z, e, f ) ∈M.

Remark
. The setM = X is trivially (F∗, g)-invariant, which satisfies the transitive property.
. Every F∗-invariant set is (F∗, IX)-invariant when IX denote identity map on X .

Example . Let (X,≤) be a partially ordered set and suppose there is a metric d
on X such that (X,d) is a complete metric space. Let F : X × X → X and g : X → X
be a mapping satisfying the mixed g-monotone property. Define a subset M ⊆ X by
M = {(a,b, c,d, e, f ) ∈ X,a ≥ c ≥ e,b ≤ d ≤ f }. Then M is an (F∗, g)-invariant subset of
X, which satisfies the transitive property.

Example . Let X = R and F : X × X → X be defined by F(x, y) =  – x. Let g : X → X
be given by g(x) = x– . Then it is easy to show thatM = {(x, , , , ,w) ∈ X : x = w} is an
(F∗, g)-invariant subset of X but not an F∗-invariant subset of X as (, , , , , ) ∈ M
but (F(, ),F(, ),F(, ),F(, ),F(, ),F(, )) = (, , , , , ) /∈ M.

Let � denote the set of functions φ : [,∞) → [,∞) satisfying
. φ–({}) = {},
. φ(t) < t for all t > ,
. limr→t+ φ(r) < t for all t > .

Lemma . [] Let φ ∈ �. For all t > , we have limn→∞ φn(t) = .

Karapinar et al. [] proved the following theorem.

Theorem . [] Let (X,≤) be a partially ordered set and G be a G-metric on X such
that (X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X,
and g : X → X such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all x, y, z,u, v,w ∈ X for which g(x)≥ g(y) ≥ g(z) and g(u) ≤ g(v) ≤ g(w).
Suppose also that F is continuous and has the mixed g-monotone property, F(X × X) ⊆

G(X) and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)≤ F(x, y) and g(y)≥ F(y,x),

then there exist (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).
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Definition . [] Let (X,≤) be a partially ordered set and G be a G-metric on X. We
say that (X,G,≤) is regular if the following conditions hold:
. if a non-decreasing sequence (xn) → x, then xn ≤ x for all n,
. if a non-increasing sequence (yn)→ y, then y≤ yn for all n.

Theorem . [] Let (X,≤) be a partially ordered set and G be a G-metric on X such
that (X,G,≤) is regular. Suppose that there exist φ ∈ �, F : X × X → X, and g : X → X
such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all x, y, z,u, v,w ∈ X for which g(x)≥ g(y) ≥ g(z) and g(u) ≤ g(v) ≤ g(w).
Suppose also that (g(X),G) is complete, F has the mixed g-monotone property, F(X ×

X) ⊆G(X), and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)≤ F(x, y) and g(y)≥ F(y,x),

then there exist (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

The purpose of this paper is to present some coupled coincidence point theorems with-
out a mixed g-monotone, using the concept of (F∗, g)-invariant set in complete metric
space which are generalizations of the results of Karapinar et al. [].

3 Main results
Theorem . Let (X,≤) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and M be a nonempty subset of X. Assume that there
exists φ ∈ � and, also, suppose that F : X ×X → X and g : X → X such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))
()

for all (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M.
Suppose also that F is continuous, F(X × X) ⊆ G(X) and g is continuous and commutes

with F . If there exist x, y ∈ X ×X such that

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

) ∈M

and M is an (F∗, g)-invariant set which satisfies the transitive property. Then there exist
x, y ∈ X such that g(x) = F(x, y) and g(y) = F(y,x).

Proof Let (x, y) ∈ X ×X. Since F(X ×X)⊆ g(X), we can choose x, y ∈ X such that

g(x) = F(x, y) and g(y) = F(y,x).

Again from F(X ×X)⊆ g(X) we can choose x, y ∈ X such that

g(x) = F(x, y) and g(y) = F(y,x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/150
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Continuing this process we can construct sequences {g(xn)} and {g(yn)} in X such that

g(xn) = F(xn–, yn–) and g(yn) = F(yn–,xn–) for all n≥ . ()

If there exists k ∈ N such that (g(xk+), g(yk+)) = (g(xk), g(yk)) then g(xk) = g(xk+) =
F(xk , yk) and g(yk) = g(yk+) = F(yk ,xk). Thus, (xk , yk) is a coupled coincidence point of F .
The proof is completed.
Now we assume that (g(xk+), g(yk+)) �= (g(xk), g(yk)) for all n ≥ . Thus, we have either

g(xn+) = F(xn, yn) �= g(xn) or g(yn+) = F(yn,xn) �= g(y) for all n≥ . Since

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈M

andM is an (F∗, g)-invariant set, we have

(
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈ M.

Again, using the fact thatM is an (F∗, g)-invariant set, we have

(
F(x, y),F(y,x),F(x, y),F(y,x),F(x, y),F(y,x)

)
=

(
g(x), g(y), g(x), g(y), g(x), g(y)

) ∈M.

By repeating this argument, we get

(
F(xn, yn),F(yn,xn),F(xn, yn),F(yn,xn),F(xn–, yn–),F(yn–,xn–)

)
=

(
g(xn), g(yn), g(xn), g(yn), g(xn–), g(yn–)

) ∈M. ()

From (), (), and (), we have

[
G

(
g(xn+), g(xn+), g(xn)

)
+G

(
g(yn+), g(yn+), g(yn)

)]
=G

(
F(xn, yn),F(xn, yn),F(xn–, yn–)

)
+G

(
F(yn,xn),F(yn,xn),F(yn–,xx–)

)
≤ φ

(
G

(
g(xn), g(xn), g(xn–)

)
+G

(
g(yn), g(yn), g(yn–)

))
. ()

Let

tn =G
(
g(xn+), g(xn+), g(xn)

)
+G

(
g(yn+), g(yn+), g(yn)

)
. ()

This implies that

tn ≤ φ(tn–). ()

Since φ(t) < t for all t > , it follows that {tn} is decreasing sequence. Therefore, there is
some δ ≥  such that limn→∞ tn = δ.
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We shall prove that δ = . Assume, to the contrary, that δ > . Then by letting n→ ∞ in
() and using the properties of the map φ, we get

δ = lim
n→∞ tn ≤ lim

n→∞φ(tn–) = lim
tn–→δ+

φ(tn–) < δ.

This is a contradiction. Thus δ =  and hence

lim
n→∞ tn = lim

n→∞
[
G

(
g(xn+), g(xn+), g(xn)

)
+G

(
g(yn+), g(yn+), g(yn)

)]
= . ()

Next, we prove that {g(xn)} and {g(yn)} are Cauchy sequences in theG-metric space (X,G).
Suppose, to the contrary, that the least of {g(xn)} and {g(yn)} is not a Cauchy sequence
in (X,G). Then there exists an ε >  for which we can find subsequences {g(xm(k))} and
{g(xn(k))} of {g(xn)}, {g(ym(k))} and {g(yn(k))} of {g(yn)} withm(k) > n(k) ≥ K such that

G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

) ≥ ε. ()

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest
integer with m(k) > n(k) ≥ K and satisfying (). Then

G
(
g(xm(k)–), g(xm(k)–), g(xn(k))

)
+G

(
g(ym(k)–), g(ym(k)–), g(yn(k))

)
< ε. ()

Using the rectangle inequality, we get

ε ≤ rk

:= G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
≤ G

(
g(xm(k)), g(xm(k)), g(xm(k)–)

)
+G

(
g(xm(k)–), g(xm(k)–), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(ym(k)–)

)
+G

(
g(ym(k)–), g(ym(k)–), g(yn(k))

)
< tm(k)– + ε. ()

Letting k → +∞ and using (), we get

lim
k→∞

rk = lim
k→+∞

G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
= ε. ()

Again, by the rectangle inequality, we have

rk := G
(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

)
≤ tn(k) +G

(
g(xm(k)), g(xm(k)), g(xm(k)+)

)
+G

(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)), g(ym(k)), g(ym(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
.

Using the fact that G(x,x, y)≤ G(x, y, y) for any x, y ∈ X, we obtain

rk ≤ tn(k) + tm(k) +G
(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
.
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Sincem(k) > n(k),

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k)–), g(ym(k)–)

) ∈M

and

(
g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–)

) ∈M.

FromM being an (F∗, g)-invariant set which satisfies the transitive property, we have

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xm(k)–), g(ym(k)–)

) ∈M.

Again from

(
g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–), g(xm(k)–), g(ym(k)–)

) ∈M

we get

(
g(xm(k)), g(ym(k)), g(xm(k)), g(ym(k)), g(xn(k)), g(yn(k))

) ∈M.

Now, using (), we have

G
(
g(xm(k)+), g(xm(k)+), g(xn(k)+)

)
+G

(
g(ym(k)+), g(ym(k)+), g(yn(k)+)

)
=G

(
F(xm(k), ym(k)),F(xm(k), ym(k)),F(xn(k), yn(k))

)
+G

(
F(ym(k),xm(k)),F(ym(k),xm(k)),F(yn(k),xn(k))

)
≤ φ

(
G

(
g(xm(k)), g(xm(k)), g(xn(k))

)
+G

(
g(ym(k)), g(ym(k)), g(yn(k))

))
≤ φ(rk). ()

Letting k → +∞ in () and using () and () and limr→t+ φ(r) < t for all t > , we have

ε = lim
k→∞

rk ≤ lim
n→∞φ(rk) = lim

rk→ε+
φ(rk) < ε.

This is a contradiction. This shows that {g(xn)} and {g(yn)} are Cauchy sequences in the
G-metric space (X,G). Since (X,G) is complete, {g(xn)} and {g(yn)} areG-convergent; there
exist x, y ∈ X such that limn→∞ g(xn) = x and limn→∞ g(yn) = y. That is, from Proposi-
tion ., we have

lim
n→∞G

(
g(xn), g(xn),x

)
= lim

n→∞G
(
g(xn),x,x

)
= , ()

lim
n→∞G

(
g(yn), g(yn), y

)
= lim

n→∞G
(
g(yn), y, y

)
= . ()

From (), (), continuity of g , and Proposition ., we get

lim
n→∞G

(
g
(
g(xn)

)
, g

(
g(xn), g(x)

))
= lim

n→∞G
(
g
(
g(xn)

)
, g(x), g(x)

)
= , ()

lim
n→∞G

(
g
(
g(yn)

)
, g

(
g(yn)

)
, g(y)

)
= lim

n→∞G
(
g
(
g(yn)

)
, g(y), g(y)

)
= . ()
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From () and commutativity of F and g ,

g
(
g(xn+)

)
= g

(
F(xn, yn)

)
= F

(
g(xn), g(yn)

)
, ()

g
(
g(yn+)

)
= g

(
F(yn,xn)

)
= F

(
g(yn), g(xn)

)
. ()

We now show that F(x, y) = g(x) and F(y,x) = g(y).
Taking the limit as n → +∞ in () and (), by (), (), continuity of F , and commu-

tativity of F and g , we get

g(x) = g
(
lim
n→∞ g(xn+)

)
= lim

n→∞ g
(
g(xn+)

)
= lim

n→∞ g
(
F(xn, yn)

)

= lim
n→∞F

(
g(xn), g(yn)

)
= F(x, y)

and

g(y) = g
(
lim
n→∞ g(xy+)

)
= lim

n→∞ g
(
g(yn+)

)
= lim

n→∞ g
(
F(yn,xn)

)

= lim
n→∞F

(
g(yn), g(xn)

)
= F(y,x).

Thus we prove that F(x, y) = g(x) and F(y,x) = g(y). �

Theorem . Let (X,≤) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and M be a nonempty subset of X. Assume that there
exists φ ∈ � and, also, suppose that F : X ×X → X and g : X → X such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all (g(x), g(u), g(y), g(v), g(z), g(w)) ∈M.
Suppose also that (g(X),G) is complete F(X × X) ⊆ G(X) and g is continuous and com-

mutes with F and if any two sequences {xn}, {yn} with (xn+, yn+,xn+, yn+,xn, yn) ∈ M,
{xn} → x and {yn} → y for all n ≥ , then (x, y,xn, yn,xn, yn) ∈ M. If there exist (x, y) ∈
X×X such that (F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)) ∈MandM is an (F∗, g)-
invariant set which satisfies the transitive property. Then there exist x, y ∈ X such that
g(x) = F(x, y) and g(y) = F(y,x).

Proof Consider a Cauchy sequences {g(xn)}, {g(yn)} as in the proof of Theorem .. Since
(g(X),G) is a complete metric space, there exists x, y ∈ X such that {g(xn)} → g(x) and
{g(yn)} → g(y) by the assumption, and we have (g(x), g(y), g(xn), g(yn), g(xn), g(yn)) ∈ M for
all n≥ ; by the rectangle inequality, (), and φ(t) < t for all t > , we get

G
(
F(x, y), g(x), g(x)

)
+G

(
F(y,x), g(y), g(y)

)
≤G

(
F(x, y), g(xn+), g(xn+)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
F(y,x), g(yn+), g(yn+)

)
+G

(
g(yn+), g(y), g(y)

)
=G

(
F(x, y),F(xn, yn),F(xn, yn)

)
+G

(
g(xn+), g(x), g(x)

)
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+G
(
F(y,x),F(yn,xn),F(yn,xn)

)
+G

(
g(yn+), g(y), g(y)

)
≤ φ

(
G

(
g(x), g(xn), g(xn)

)
+G

(
g(y), g(yn), g(yn)

))
+G

(
g(xn+), g(x), g(x)

)
+G

(
g(yn+), g(y), g(y)

)
<G

(
g(x), g(xn), g(xn)

)
+G

(
g(y), g(yn), g(yn)

)
+G

(
g(xn+), g(x), g(x)

)
+G

(
g(yn+), g(y), g(y)

)
.

Taking the limit as n→ ∞ in the above inequality, we obtain

G
(
F(x, y), g(x), g(x)

)
+G

(
F(y,x), g(y), g(y)

)
= .

This implies that g(x) = F(x, y) and g(y) = F(y,x). �

Example . Let X =R. Define G : X × X × X → [, +∞) by G(x, y, z) = |x – y| + |x – z| +
|y – z| and let F : X ×X → X be defined by

F(x, y) =
x + y


, (x, y) ∈ X,

and g : X → X by g(x) = x
 . Let y =  and y = . Then we have g(y) ≤ g(y), but F(x, y) ≤

F(x, y), and so the mapping F does not satisfy the mixed g-monotone property.
Letting x,u, y, v, z,w ∈ X, we have

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v,u),F(w, z)

)]

=
∣∣∣∣x + u


–
y + v


∣∣∣∣ +
∣∣∣∣x + u


–
z + w



∣∣∣∣ +
∣∣∣∣y + v


–
z + w



∣∣∣∣
+

∣∣∣∣u + x


–
v + y


∣∣∣∣ +
∣∣∣∣u + x


–
w + z



∣∣∣∣ +
∣∣∣∣v + y


–
w + z



∣∣∣∣
≤ 

∣∣∣∣x – y


∣∣∣∣ + 
∣∣∣∣x – z



∣∣∣∣ + 
∣∣∣∣y – z



∣∣∣∣ + 
∣∣∣∣u – v



∣∣∣∣ + 
∣∣∣∣u –w



∣∣∣∣ + 
∣∣∣∣v –w



∣∣∣∣
=



(|x – y| + |x – z| + |y – z|) + 


(|u – v| + |u –w| + |v –w|)

and we have

G
(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

)

=G
(
x

,
y

,
z


)
+G

(
u

,
v

,
w


)

=


(|x – y| + |x – z| + |y – z|) + 


(|u – v| + |u –w| + |v –w|).

Put φ(t) = t/, then

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v,u),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))
.
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If we apply Theorem . with M = X then F satisfy (). So by our theorem we see that F
has a coupled coincidence point (, ).

Remark Although the mixed monotone property is an essential tool in the partially or-
deredG-metric spaces to show the existence of coupled coincidence points, the mappings
do not have the mixed g-monotone property in the general case as in the above example.
Therefore, Theorem . and Theorem . are interesting, as a new auxiliary tool, in show-
ing the existence of a coupled coincidence point.

Theorem . In addition to the hypotheses of Theorem ., suppose that for every
(x, y), (x∗, y∗) ∈ X ×X there exist (u, v) ∈ X ×X such that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M and
(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈ M.

Suppose also that φ is a non-decreasing function. Then F and g have a unique coupled
common fixed point, that is, there exist unique (x, y) ∈ X × X such that x = g(x) = F(x, y)
and y = g(y) = F(y,x).

Proof From Theorem . the set of coupled coincidence point is nonempty. Suppose (x, y)
and (x∗, y∗) are coupled coincidence point of F , that is,

g(x) = F(x, y), g(y) = F(y,x), g
(
x∗) = F

(
x∗, y∗) and g

(
y∗) = F

(
y∗,x∗).

We shall show that

g
(
x∗) = g(x) and g

(
y∗) = g(y). ()

By assumption there is (u, v) ∈ X ×X such that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M and
(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈M.

Put u = u, v = v and choose u, v ∈ X such that g(u) = F(u, v) and g(v) = F(v,u).
Then similarly as in Theorem ., we can inductively define sequences {g(un)} and {g(vn)}
such that

g(un) = F(un–, vn–) and g(vn) = F(vn–,un–) for all n≥ .

SinceM is (F∗, g)-invariant and (g(u), g(v), g(x), g(y), g(x), g(y)) ∈M, we have

(
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

) ∈M.

That is (g(u), g(v), g(x), g(y), g(x), g(y)) ∈M.
From (g(u), g(v), g(x), g(y), g(x), g(y)) ∈ M, if we use again the property of (F∗, g)-

invariance, then it follows that

(
F(u, v),F(v,u),F(x, y),F(y,x),F(x, y),F(y,x)

) ∈M

and so (g(u), g(v), g(x), g(y), g(x), g(y)) ∈M.
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By repeating this process, we get

(
g(un), g(vn), g(x), g(y), g(x), g(y)

) ∈ M for all n ≥ . ()

Thus from () and (), we have

G
(
g(un+), g(x), g(x)

)
+G

(
g(vn+), g(y), g(y)

)
=G

(
F(un, vn),F(x, y),F(x, y)

)
+G

(
F(vn,un),F(y,x),F(y,x)

)
≤ φ

(
G

(
g(un), g(x), g(x)

)
+G

(
g(vn), g(y), g(y)

))
. ()

Since φ is non-decreasing from (), we get

G
(
g(un+), g(x), g(x)

)
+G

(
g(vn+), g(y), g(y)

)
≤ φn(G(

g(u), g(x), g(x)
)
+G

(
g(v), g(y), g(y)

))
. ()

This holds for each n≥ . Letting n→ +∞ in (), using Lemma . implies

lim
n→∞G

(
g(un+), g(x), g(x)

)
= lim

n→∞G
(
g(vn+), g(y), g(y)

)
= . ()

Similarly, we obtain

lim
n→∞G

(
g(un+), g

(
x∗), g(x∗)) = lim

n→∞G
(
g(vn+), g

(
y∗), g(y∗)) = . ()

Hence, from (), (), and Proposition ., we get g(x∗) = g(x) and g(y∗) = g(y).
Since g(x) = F(x, y) and g(y) = F(y,x), by commutativity of F and g , we have

g
(
g(x)

)
= g

(
F(x, y)

)
= F

(
g(x), g(y)

)
and g

(
g(y)

)
= g

(
F(y,x)

)
= F

(
g(y), g(x)

)
. ()

Denote g(x) = z and g(y) = w. Then from ()

g(z) = F(z,w) and g(w) = F(w, z). ()

Therefore, (z,w) is a coupled coincidence fixed point of F and g . Then from () with x∗ = z
and y∗ = w, it follows that g(z) = g(x) and g(w) = g(y), that is,

g(z) = z and g(w) = w. ()

From () and (), z = g(z) = F(z,w) and w = g(w) = F(w, z). Therefore, (z,w) is a coupled
common fixed point of F and g .
To prove the uniqueness, assume that (p,q) is another coupled common fixed point.

Then by () we have p = g(p) = g(z) = z and q = g(q) = g(w) = w. �

Next, we give a simple application of our results to coupled coincidence point theorems
in partially ordered metric spaces.
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Corollary . Let (X,≤) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X, and
g : X → X such that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all x, y, z,u, v,w ∈ X for which g(x)≥ g(y) ≥ g(z) and g(u) ≤ g(v) ≤ g(w).
Suppose also that F is continuous and has the mixed g-monotone property, F(X × X) ⊆

G(X) and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)≤ F(x, y) and g(y)≥ F(y,x),

then there exist (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).

Proof We define the subsetM ⊆ X by

M =
{
(x,u, y, v, z,w) ∈ X : x≥ y ≥ z,u≤ v ≤ w

}
.

From Example .,M is an (F∗, g)-invariant set which satisfies the transitive property. By
(), we have

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v, y),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))
.

Since x, y ∈ X such that

g(x)≤ F(x, y) and g(y) ≥ F(y,x).

We have (F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)) ∈ M because F is continuous.
By Theorem ., we have x = F(x, y) and y = F(y,x). �

Corollary . Let (X,≤) be a partially ordered set and G be a G-metric on X such that
(X,G,≤) is regular. Suppose that there exists φ ∈ �, F : X × X → X and g : X → X such
that

[
G

(
F(x,u),F(y, v),F(z,w)

)
+G

(
F(u,x),F(v,u),F(w, z)

)]
≤ φ

(
G

(
g(x), g(y), g(z)

)
+G

(
g(u), g(v), g(w)

))

for all x, y, z,u, v,w ∈ X for which g(x)≥ g(y) ≥ g(z) and g(u) ≤ g(v) ≤ g(w).
Suppose also that (g(X),G) is complete, F has the mixed g-monotone property, F(X ×

X) ⊆G(X), and g is continuous and commutes with F . If there exist x, y ∈ X such that

g(x)≤ F(x, y) and g(y)≥ F(y,x),

then there exist (x, y) ∈ X ×X such that g(x) = F(x, y) and g(y) = F(y,x).
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Proof As in Corollary ., we get

(
F(x, y),F(y,x),F(x, y),F(y,x), g(x), g(y)

) ∈M.

For any two sequences {g(xn)}, {g(yn)} such that {g(xn)} is non-decreasing sequence
{g(xn)} → g(x) and {g(yn)} is non-increasing sequence {g(yn)} → g(y). We have

g(x) ≤ g(x) ≤ · · · ≤ g(xn) ≤ g(x)

and

g(y) ≥ g(y) ≥ · · · ≥ g(yn) ≥ g(y) for all n≥ .

Therefore, we have (g(x), g(y), g(xn), g(yn), g(xn), g(yn)) ∈M for all n≥ . So the assumption
of Theorem . holds and hence F has a coupled coincidence point. �

Corollary . In addition to the hypothesis of Corollary ., suppose that for every
(x, y), (x∗, y∗) ∈ X × X there exists a (u, v) ∈ X × X such that (F(u, v),F(v,u)) is compa-
rable to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Suppose also that φ is a non-decreasing
function. Then F and g have a unique coupled common fixed point, that is, there exists a
unique (x, y) ∈ X ×X such that x = g(x) = F(x, y) and y = g(y) = F(y,x).

Proof We define the subset M ⊆ X by M = {(x,u, y, v, z,w) ∈ X : x ≥ y ≥ z,u ≤ v ≤ w}.
From Example ., M is an (F∗, g)-invariant set which satisfies the transitive property.
Thus, the proof of the existence of a coupled fixed point is straightforward by following
the same lines as in the proof of Corollary ..
Next, we show the uniqueness of a coupled fixed point of F .
Since for all (x, y), (x∗, y∗) ∈ X ×X, there exist (u, v) ∈ X ×X such that g(x) ≤ g(u), g(y) ≥

g(v) and g(x∗) ≤ g(u), g(y∗) ≥ g(v), we can conclude that

(
g(u), g(v), g(x), g(y), g(x), g(y)

) ∈ M

and

(
g(u), g(v), g

(
x∗), g(y∗), g(x∗), g(y∗)) ∈ M.

Therefore, since all the hypotheses of Theorem . hold F has a unique coupled fixed
point. The proof is completed. �
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