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Abstract

We study the boundedness of ®-admissible singular operators and their
commutators on vanishing generalized Orlicz-Morrey spaces VMg, (R") including
their weak versions. These conditions are satisfied by most of the operators in
harmonic analysis, such as the Hardy-Littlewood maximal operator, the
Calderéon-Zygmund singular integral operator and so on. In all the cases the
conditions for the boundedness are given in terms of Zygmund-type integral
inequalities on weights @(x, r) without assuming any monotonicity property of ¢(x, r)
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1 Introduction

Asis well known Morrey [1] introduced the classical Morrey spaces to investigate the local
behavior of solutions to second order elliptic partial differential equations (PDE). We recall
its definition as

M, (R") = if € L};C(R")i Wfllag,, := sup 7 2 If L, @er) < OO},

x€R™,r>0

where 0 <X <#,1 < p < oo. Here and everywhere in the sequel B(x, r) stands for the ball
in R” of radius r centered at x. Let | B(x, r)| be the Lebesgue measure of the ball B(x, ) and
|B(x,7)| = v,r", where v, = [B(0,1)|. M, (R"”) was an expansion of L,(R") in the sense that
Mpo(R") = L,(R"). We also denote by WM,,, = WM,,, (R") the weak Morrey space of all
functions f € WL},"C(R”) for which

_2

f llwa,, = sup 7 7 [[f lwr, B <00
x€R™,r>0

where WL, (B(x,7)) denotes the weak L,-space.

Morrey found that many properties of solutions to PDE can be attributed to the bound-
edness of some operators on Morrey spaces. Maximal functions and singular integrals play
a key role in harmonic analysis, since maximal functions could control crucial quantitative
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information concerning the given functions, despite their larger size, while singular inte-
grals, with the Hilbert transform as their prototype, nowadays are intimately connected
with PDE, operator theory, and other fields.

Orlicz spaces, introduced in [2, 3], are generalizations of Lebesgue spaces L,. They are
useful tools in harmonic analysis and its applications. For example, the Hardy-Littlewood
maximal operator is bounded on L, for 1 < p < 00, but not on L. Using Orlicz spaces, we
can investigate the boundedness of the maximal operator near p = 1 more precisely (see
[4, 5] and [6]).

Let f € L°°(R"). The Hardy-Littlewood maximal function of f is defined by

Mf(x) =sup ———
f r>0 |B(x) r)| B(x,r

) f ()| dy.

The Calderén-Zygmund singular integral operator is defined by

Kf(x) = /1; k(e y)f O)dy 11)

and bounded on L,(R"), where K(x,y) is a ‘standard singular kernel, that is, a continuous
function defined on {(x,y) € R” x R” : x # y} and satisfying the estimates

|k(x,y)| <Clx—y|™ forallx=y,
ly —z|°
|x_y|n+a’

lx—&17

|x_y|n+<r ’

’k(x,y) — k(x, z)‘ <C

0>0,if [x—y|>2]y -z,

|k(x,9) - k(€,y)| < C o >0, if |x—y| >2/x - &

It is well known that the maximal and singular integral operators play an important role
in harmonic analysis (see [7, 8]).

Remark 1.1 The Calderén-Zygmund singular integral operators K are L, bounded and
expressed as (1.1) for all f € C2°_(R"), with standard kernel k. Then one can prove that K

comp

is of weak type (1,1) and type (p,p), 1 < p < o0, for f € CZ_(R"), and then K is uniquely

comp

extended to an L,-bounded operator by the density of C35 (R") in L,(IR"). On the other

comp

hand, C,,(R") is not dense in Morrey spaces in general. Therefore, we need to give a

precise definition of Kf for the function f in Morrey spaces, for example,

KF () = K(F xo5) + /

R"\(2B

) k(x,y)f (v) dy,

for some ball B which contains x, proving the absolute convergence of the integral in the
second term and the independence of the choice of the ball B (see [9, 10] for example). Also,
C2 (R") is dense in the Orlicz spaces Lo (R”) if and only if @ satisfies the A, condition.

comp

The main purpose of this paper is to find sufficient conditions on general Young function
® and functions ¢, ¢, which ensure the boundedness of the sublinear operators gen-
erated by singular integral operators from vanishing generalized Orlicz-Morrey spaces
VMg, (R") to another VMg, (R"), from VMg, (R") to vanishing weak generalized
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Orlicz-Morrey spaces VWMg 4, (R") and the boundedness of the commutator of the sub-
linear operators from VMg o, (R") to VMo 4, (R").

There are several kinds of Orlicz-Morrey spaces in the literature. The first kind is due to
Nakai [9] and the second kind is due to Sawano et al. [11]. Our definition (see [12]) should
be called ‘generalized Orlicz-Morrey space of the third kind’ For the boundedness of the
operators of harmonic analysis on Orlicz-Morrey spaces, see also [10—19]. For details see
Remark 9 in [13] and references therein.

By A < B we mean that A < CB with some positive constant C independent of appro-
priate quantities. If A < B and B < A, we write A &~ B and say that A and B are equivalent.

2 Preliminaries
We recall the definition of Young functions.

Definition 2.1 A function @ : [0, +00) — [0, 00] is called a Young function if ® is convex,
left-continuous, lim,_, .o ®(r) = ®(0) = 0, and lim,_, ., ®(r) = co.

From the convexity and ®(0) = 0 it follows that any Young function is increasing. If there
exists s € (0, +00) such that ®(s) = +00, then ®(r) = +o0 for r > s.
Let Y be the set of all Young functions ® such that

0<®(r)<+o00 for0<r<+oo.

If ® € ), then @ is absolutely continuous on every closed interval in [0, +o0) and bijective
from [0, +00) to itself.

Definition 2.2 (Orlicz space) For a Young function @, the set
Lo(R") = {f e LleRr™): / ®(k|f(x)]) dx < +00 for some k > O}
]RVI

is called Orlicz space. If ®(r) = r*,1 < p < 00, then Ly (R”) = L,(R"). If &(r) =0 (0 <r <1)
and O(r) = oo (r > 1), then Ly (R”) = Lo (R”). The space ngc (R") endowed with the natural
topology is defined as the set of all functions f such that f xz € Le(R”) for all balls B C R”.
We refer to the books [20—22] for the theory of Orlicz spaces.

Ly (R") is a Banach space with respect to the norm

Iz :inf{k >0: /R cp(@) dx < 1}.

We note that, from the Fatou lemma,

[o#(ia )=

For a measurable set 2 C R”, a measurable function f, and ¢ > 0, let

m(2,f,t) = |{xe§2: [f(x)’ >t}|.

In the case 2 = R”, we shortly denote it by m(f, ).
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Definition 2.3 The weak Orlicz space
WLo(R") := {f € LP“(R") : ||flwry < +00}

is defined by the norm

Ifllwee = inf{)» >0:sup @(t)m(é,t) < 1},

t>0

For a Young function ® and 0 <s < +00, let
DL(s) = inf{r >0:9(r) > s} (inf@ = +00).
If ® € Y, then &' is the usual inverse function of ®. We note that
CD(CD_l(r)) <r< CD_I(CD(r)) for 0 <r < +oo.
A Young function @ is said to satisfy the A,-condition, denoted by ® € A, if

®2r) <k®(r) forr>0

for some k > 1. If ® € A,, then ® € ). A Young function ® is said to satisfy the

V,-condition, denoted also by ® € Vy, if

1
o(r) = p @), r=0,

for some k > 1. The function ®(r) = r satisfies the A,-condition but does not satisfy the

V,-condition. If 1 < p < 0o, then ®(r) = r” satisfies both conditions. The function ®(r) =

€’ —r —1 satisfies the V,-condition but does not satisfy the A,-condition.
For a Young function &, the complementary function ®(r) is defined by

~ sup{rs — ®(s) : s € [0,00)}, 1€ [0,00),
d(r) =
+00, r = +00.

The complementary function ® is also a Young function and ®=0. If d(r) = r, then
5(;") =0for0<r<1land 5(;’) =+ooforr>1.1fl1<p<oo,1l/p+1/p' =1and ®(r) =r*/p,
then CT)(r) = r”//p/. If ®(r)=¢€" —r -1, then 5(r) = (1 +r)log(l +r) —r. Note that ® € V, if

and only if ® € Ay. It is well known that
r<®(r)d(r) <2r forr>0.

Note that Young functions satisfy the properties

O(at) <ad(t), if0<a<l, d O Nat) > ad'(t), f0<a<l,
a

D(at) > ad(t), fas1 " Vo) <00 l(t), ifasl.

The following analog of the Holder inequality is well known; see [23].

(2.2)

Page 4 of 18
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Theorem 2.4 [23] Fora Youngfunction ® and its complementary function ®, the following
inequality is valid:

Ifgllzy@ny < 21f 1l lIglleg-
The following lemma is valid. See, for example [19, 24, 25].

Lemma 2.5 Let ® be a Young function and B a set in R" with finite Lebesgue measure.
Then

Ixsllwre®mn = IXBllLe®n) = ——F5—=-
® ® o-1(|B|Y)

In the next sections where we prove our main estimates, we use the following lemma,
which follows from Theorem 2.4, Lemma 2.5, and (2.2).

Lemma 2.6 For a Young function ® and B = B(x,r), the following inequality is valid:

I llzam < 21BIS7(1BI7) 1f 2o )-
Let T be a sublinear operator, that is, |T(f + g)| < |If| + | Ig|-
Definition 2.7 ($®-admissible singular operator) Let ® any Young function. A sublinear

operator T will be called ®-admissible singular operator, if:

(1) T satisfies the size condition of the form

ol

(2.3)
R1\Bx2r) |V — 2"

XB0or) (@) | T(f xem Bw2) (2)| < Cxpn (2)

forx e R" and r > 0;
(2) T is bounded in Lo (R").

In the case ®(r) = ¥, 1 < p < 00, the P-admissible singular operator will be called the
p-admissible singular operator.

Definition 2.8 (Weak ®-admissible singular operator) Let ® any Young function. A sub-
linear operator T will be called the weak ®-admissible singular operator, if:

(1) T satisfies the size condition (2.3).

(2) T is bounded from L (R") to the weak WL4(R").

In the case ®(r) = ”, 1 < p < co. the weak ®-admissible singular operator will be called
weak p-admissible singular operator.

Remark 2.9 Note that in [14], ®-admissible singular operators and weak ®-admissible
singular operators were introduced and their boundedness on generalized Orlicz-Morrey
spaces was studied. Also in [26], p-admissible singular operators were introduced and
their boundedness on vanishing generalized Morrey spaces was studied.
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Definition 2.10 (Generalized Orlicz-Morrey space) Let ¢(x,r) be a positive measurable
function on R” x (0, 00) and ® any Young function. We denote by M¢ ,(R") the general-
ized Orlicz-Morrey space, the space of all functions f € L'°(R”) with finite quasinorm

”fHM@,V): Sllp (PX,) ”f”L@ B(x,r))-

"nr>0

Also by WM ,(R") we denote the weak generalized Orlicz-Morrey space of all functions
fe WL‘;“(R”) for which

|lf||WM¢,¢= Sup @, 1) " If lweo B <

,r>0

According to this definition, we recover the generalized Morrey space M, , and weak

generalized Morrey space WM, , under the choice ®(r) =77,1 < p < oco:
Mp,(p = M<l>,<p|<1>(r)=r17; WMp,(p = WM¢,¢|CI>(V)=)’P

The vanishing generalized Morrey space VM,, ,(R") which was introduced and studied by
Samko [26] is defined as follows.

Definition 2.11 (Vanishing generalized Morrey space) Let ¢(x,r) be a positive measur-
able function on R” x (0,00) and 1 < p < co. The vanishing generalized Morrey space
VM,,,(R") is defined as the space of functions f € M,,,(R") such that

hm sup ¢(x,7)” / [f(y) |p dy=0.

xeR”

Extending the definition of vanishing generalized Morrey spaces to the case of Orlicz-

Morrey spaces, we introduce the following definitions.

Definition 2.12 (Vanishing generalized Orlicz-Morrey space) The vanishing generalized
Orlicz-Morrey space VMg ,(IR") is defined as the space of functions f € Mg ,(R") such
that

hm sup @, 7) " If | Lo (B = O

0 xeRrn

Definition 2.13 (Vanishing weak generalized Orlicz-Morrey space) The vanishing weak
generalized Orlicz-Morrey space VWM, ,(R") is defined as the space of functions f €
WMo, (R") such that

lim sup @(%, 7) ' |f Il Wig (Bexr) = O-

=0 xeRrrn
If we choose ®(r) =, 1 < p < 0o at Definition 2.12, we get Definition 2.11. The van-
ishing Morrey space VM,,, (R") of the classical Morrey space M, (R") was introduced by

Vitanza in [27] and applied there to obtain a regularity result for elliptic partial differen-
tial equations. Later in [28] Vitanza proved an existence theorem for a Dirichlet problem,
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under weaker assumptions than those introduced by Miranda in [29], and a W32 regular-
ity result assuming that the partial derivatives of the coefficients of the highest and lower
order terms belong to a vanishing Morrey space depending on the dimension. Also Ra-
gusa [30] proved a sufficient condition for commutators of fractional integral operators to
belong to vanishing Morrey spaces VM,,; (R"). About commutator operators in vanishing
Morrey spaces see the papers [30, 31].

Everywhere in the sequel we assume that

1
li = 2.4
0 O-1(r=) infyern ¢ (x, ) 24)
and
1
sup (2.5)

; < 00,
0<r<co @L(r ") infycpn 1)

which makes the spaces VMg ,(R") and VWMg ,(IR”) non-trivial, because bounded func-
tions with compact support belong then to this space.
The spaces VMo ,(R"”) and WVMg ,(R”) are Banach spaces with respect to the norm

Iflvate, = Iflme, = sup @) If Il Beor),

xeR”,r>0

I lvwate,, = IIf llwaite, = sup @) I weg@em)»
xeR”,r>0
respectively. The spaces VM, ,(R") and VWM, ,(R") are closed subspaces of the Banach
spaces M, ,(R") and WM, ,(IR"), respectively, which may be shown by standard means.

3 ®-Admissible singular operators in the spaces VMg,
In this section, sufficient conditions on ¢ for the boundedness of the ®-admissible singular
operator 7' in vanishing generalized Orlicz-Morrey spaces VMo, (R") are obtained.

The known boundedness statement for the Hardy-Littlewood maximal operator M and
the Calder6n-Zygmund singular integral operators K in Orlicz spaces runs as follows. For
details of these results see [12].

Theorem 3.1 [5,20] Let ® any Young function. Then the maximal operator M is bounded
from Lo (R") to WL (R") and for ® € V, bounded in Lo(R”).

Theorem 3.2 [20, 32] Let ® be a Young function. If ® € Ay N V,, then the operator K
is bounded on Lo(R") and if ® € A,, then the operator K is bounded from Lg(R") to
WLo(R").

The following lemma was a generalization of the Guliyev lemma for Orlicz spaces [33—
35], and it was proved in [14].

Lemma 3.3 Let ® any Young function and f € ngC(R”), B = B(xg,7), x0 € R”, and r > 0.
Then for the ®-admissible singular operator T the following inequality is valid:

1 o L, _dt
1T lar S iy | W ateon®™(67) (31)
r
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and for the weak ®-admissible singular operator T the following inequality is valid:

dt

1 o0
T < — oL
I Tf lwrem S T /Zr W | Lo Bao.ty @ (£77) ,

By using Lemma 3.3 the following statement was proved in [14].

Theorem 3.4 Let & any Young function, ¢, ¢, and O satisfy the condition

dt
: “1(—n\""
etiilor(l}f(pl(x,s)d) (£ - <o

1 o0
sup ———————~ /
x€R”,r>0 (pZ(xv r)q>71 (r—n) r

where C does not depend on x and r. Then a ®-admissible singular operator T is bounded
from Mg 4 (R") to Mog, (R") and a weak ®-admissible singular operator T is bounded

from Mg 4 (R") to WMo, (R").

Theorem 3.5 Let ® be a Young function. Let also ¢1, 1, ® satisfy the conditions (2.4)-(2.5)

and

-l
A P

oo
Cs ::/ sup ¢1(x, £)
s

xeR”
forevery § >0, and

1

*© dt
_ )Pt = < Co,
<o2<x,r)c1>—1(r—")/, DT = G

where Cy does not depend on x € R” and r > 0. Then a $-admissible singular operator T
is bounded from VM 4, (R") to VMo, 4, (R") and a weak ®-admissible singular operator T

is bounded from VMg o, (R") to VWM 4, (R").

Proof The statement is derived from Theorem 3.4.

So we only have to prove that

liII(l) sup ¢1(%,7) I lLo@Bam =0 = lir% sup 2%, )" If || Loy (Bexr)) = O

=0 xeRn =0 xeRn

and

}i_{f(l) sup o1, 1) f ey =0 = lir% sup 2 (%, ) " Tf |l wig B = O-

xeR =0 xeRn

In this estimation we follow some ideas of [26] in such a passage to the limit in the case

®(r) = ¥, but we base ourselves on Lemma 3.3.

To show that sup, g @2 (%, 7) 2| Tf || Lo (B, < & for small 7, we split the right-hand side

of (3.1):

‘/’z(x’ r)71|| Tf||Lq>(B(x,r)) < C[Iﬁ(x; r) +]5 (x) r)])

where 8y > 0 (we may take §p < 1), and

1 1 )P -
b= G, 0 W) )

Page 8 of 18
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and

1 * i) (") .
]5(96, V) = W (/5‘0 Wf ((Pl(x’ t) 1|V||L¢(B(x,t))) dt)

and it is supposed that r < §o. Now we choose any fixed §; > 0 such that

-1 &
sup 1%, )" If Lo Bes) < 2>
veR" oBw) < 5C,

where C and Cj are constants from (3.6) and (3.3). This allows one to estimate the first
term uniformly in r € (0, §¢):

e
sup Cls, (x,7) < =,  0<r<y.
xeR” 2

The estimation of the second term now may be made already by choosing r sufficiently

small. Indeed, thanks to the condition (2.4) we have

1
Js(x, 1) < Cso £l VMo, W;

where cs, is the constant from (3.2). Then by (2.4) it suffices to choose r small enough such
that

1 e
su <
et DG (6,7~ 250 [ vada,

’

which completes the proof of (3.4).
The proof of (3.5) is similar to the proof of (3.4). a

Remark 3.6 The condition (3.2) is not needed in the case where ¢(x, r) does not depend
on x, since (3.2) follows from (3.3) in these cases.

Remark 3.7 Note that from Theorems 3.1 and 3.2 that it is found that the maximal oper-
ator M and the singular integral operator K are the weak ®-admissible singular operators
for any Young function ® and ® € A,, respectively. Also the maximal operator M and
the singular integral operator K are the ®-admissible singular operators for the Young
functions ® € V, and ® € A; N V,, respectively.

From Remark 3.7 we get the following corollaries which were proved in [36].

Corollary 3.8 Let ® be a Young function, ¢1, 2, and © satisfy the conditions (2.4)-
(2.5) and (3.2)-(3.3). Then the maximal operator M is bounded from VMg, (R") to
VWMag,4, (R") and for ® € V,, the operator M is bounded from VM 4, (R") to VMg 4, (R™).

Corollary 3.9 Let ® be a Young function, K be a Calderon-Zygmund singular operator
with standard kernel and ¢y, ¢1, ® satisfy the conditions (2.4)-(2.5) and (3.2)-(3.3). If ® €
Ay N Vy, then the operator K is bounded from VMg 4, (R") to VMo 4, (R") and if ® € A,,
then the operator K is bounded from VMg o, (R") to VWM o, (R").
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4 Commutators of the ®-admissible singular operators in the spaces Mg , and
VMo,
It is well known that the commutator is an important integral operator and plays a key role
in harmonic analysis. In 1965, Calderon [37, 38] studied a kind of commutators appearing
in Cauchy integral problems of Lip-line. Let K be a Calderén-Zygmund singular integral
operator and b € BMO(R"). A well-known result of Coifman et al. [39] states that the com-
mutator operator [b, K|f = K(bf) — bKf is bounded on L,(R") for 1 < p < co. The commu-
tator of Calderén-Zygmund operators plays an important role in studying the regularity of
solutions of elliptic partial differential equations of second order. The boundedness result
was generalized to other contexts and important applications to some non-linear PDEs
were given by Coifman et al. [40].
We recall the definition of the space of BMO(R").

Definition 4.1 Suppose that b € LI°¢(R”), let

1
o= swp o [ [60) = o] dy <o
where
bpr) = ;/ b(y)dy.
[B(x, )| J B
Define

BMO(R") = {b € LY*(R") : ||b]| < 00}.
Modulo constants, the space BMO(R") is a Banach space with respect to the norm || - | .

Remark 4.2
(1) The John-Nirenberg inequality states that there are constants Cy, C, > 0, such that
for all f € BMO(R") and 8 >0

[{x € B: |b(x) - bg| > B}| < C1|Ble”2F/IPl+, vB C R™.
(2) The John-Nirenberg inequality implies that

1
bl ~ sup (
* xeR",r>0 |B(x,r)| B(x,r)

1
|b(y) - bpn|” dy) ’ (4.1)

for 1< p < o0.
(3) Let b € BMO(R"). Then there is a constant C > 0 such that

t
|DB(x,) — BBy | < ClID]« In " for 0 < 2r < t, (4.2)
where C is independent of b, x, r, and ¢.

Definition 4.3 A Young function & is said to be of upper type p (resp. lower type p) for
some p € [0,00), if there exists a positive constant C such that, for all ¢ € [1,00) (resp.
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t €[0,1]) and s € [0, 00),
D(st) < CHD(s).

Remark 4.4 We know that if @ is lower type po and upper type p; with 1 < py < p; < 00,
then ® € Ay N V,. Conversely if ® € Ay NV, then @ is lower type po and upper type p;
with 1< pg < p; < 00 (see [20]).

In the following lemma, which was proved in [13], we provide a generalization of the
property (4.1) from L,-norms to Orlicz norms.

Lemma 4.5 Let b € BMO and ® be a Young function. Let ® is lower type py and upper
type py with 1 < py < p1 < 00, then

”b”* ~ Ssup cD_l (r—Vl) || b() - bB(x,r) ||L¢(B(x,r))'

x€R",r>0

Remark 4.6 Note that the Lemma 4.5 for the variable exponent Lebesgue space L, case
was proved in [41].

Definition 4.7 Let ® be a Young function. Let

td'(t) ' td'(t)

¢ = 1N ) o= Su ‘
te(0,00) D(¢) tE(O,EO) (1)

Remark 4.8 It is well known that ® € A, NV, if and only if 1 < ag < by < 00 (see, for
example, [21]).

Remark 4.9 Remark 4.8 and Remark 4.4 show us that a Young function ® is lower type
po and upper type p; with 1< py <p; < oo ifand only if 1 < ag < be < 00.

Definition 4.10 (®-admissible commutator singular operator) Let ® any Young function.
For a function b, the sublinear commutator operator T}, will be called a ®-admissible com-
mutator singular operator, if:

(1) Tp satisfies the size condition of the form

LORCIUI

X8 )| To(f xR Bx20)) (2)| < CxBar) (2) -
RN\ B(x,2r) ly —z|

forx e R” and r > 0;
(2) Ty is bounded in Lg(R").

In the case ®(r) = ¥, 1 < p < 00, the ®-admissible commutator singular operator will be

called a p-admissible commutator singular operator.
We will use the following statement on the boundedness of the weighted Hardy operator:

Heg(r) = / Oo<1+1n f)g(t)w(t)dt, r e (0,00),
P r

where w is a weight.
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The following theorem was proved in [42].

Theorem 4.11 Let vy, v, and w be weights on (0, 00) and v (t) be bounded outside a neigh-
borhood of the origin. The inequality

sup vo(r)Hg(r) < C sug) vi(r)g(r) (4.3)

r>0

holds for some C > 0 for all non-negative and non-decreasing g on (0, 00) if and only if

B :=supvy(r) /OO (1 +1In ;) M < 00, (4.4)

>0 SUP;sco0 V1 (5)

Moreover, the value C = B is the best constant for (4.3).
Remark 4.12 In (4.3) and (4.4) it is assumed that é =0and 0-00=0.

Lemma 4.13 Let ® be a Young function with 1 < agp < by < 00, b € BMO(R"), T} be a

D-admissible commutator singular operator, then the inequality

4l o t ,_dt
1 Tof 2o Bror) S S5 1(;”) 1+ln; Nl Bxo.en @ (£ ”)7 (4.5)

holds for any ball B(xo, r) and for all f € L'S°(R").

Proof For arbitrary x¢ € R”, set B = B(xo,7) for the ball centered at xy and of radius r.
Write f = fi +f> with fi = f x5 and f> = f xc ,5,- Hence

I Tof le® < I TofillLe® + 1 TofallLe @)

From the boundedness of T}, in L (R") it follows that

I Tohllie® < I Tofillemn
SIblillze® = 101 f Iz 28)-

For x € B we have

by)-b
ns| s [ PO )]0y

[ — y]”
|b(y) — b(x)|
~ —_— 7 d
[3(23) |0 — yI” o)l dy
Then
16(y) - b()|
T, < / )| dy
1 Tifs o) ‘ - |x0_y|,, preeeral A N
by)-b
C(28) Ixo—yl Lo(B)
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|b(-) — bl

) %o —yI”

= |f)| dy

Lo (B)

=11 +12.

Let us estimate [;:

o1 |b(y) — bg|
e

O1(r ) -y
1

(D 1( —n)/ |b(-y) bBHf(y)|/ - tn+1 y
1

CD I(V_n) /Zr /r<x0—y|<t|b(y) bBHf(y)|dyt”*l
1

Seom L por-bllolor:

Applying Holder’s inequality, by Lemma 4.5 and (4.2) we get

15 g [ 100~ bl 0]y 2
() Jor JBGxot) ' e

1 o0 dt
1\ b X0," -b x d
Yo /Zr | Bt = b O’t)|/3<xo,t>lf(y)’ y

1 o0
< )
S o /2 ) 18C) = batco.0 [ 1 a1, I o B0,

1 o Ay
T /2 ) |bB(o.r) = bBiwo.t [ If 126 Bl @7 (£7) —

dt

P L E IV o Beso.en @7 (¢7) =
S 1) r) R

In order to estimate I note that

)|
L~ |b()-bs|,, 4 [J@ =

B) X0 —y|"

By Lemma 4.5, we get

1611 O

O1(r ) Jop) %0 —yI"

LS

On the other hand by Fubini’s theorem we have

Fo)l > odt
/ n dy Rj/ lf(y)| n+l dy
C2p) %0 — V| C(2B) wo-yl &
If )
/21’ /2‘r<|x0—y|<t (y | ytnﬂ
<[] rolag:
2r B(xg,t)

t"+1

dt

e

tn+1

dt
t

(4.6)
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By Lemma 2.6 we get

°° d
ﬁ Md)’é f |lf||L¢<B(xo,:>>q’71(f")—to (4.7)
2

©B) %0 —y|" . t
Therefore using (4.7) at (4.6) we have

11 e
s [ Wiiaan @ ()G

Summing /; and I, we obtain

L <

16l [ t o dt
T <— 1+In- w0, @ (7)) —. 4.8
1 TofollLem S i ), (LTI 1l (gt @ (£7) . (4.8)

On the other hand, by (2.2) we get

-1(,—n -1(.,—n\.,n  dt *© “1(,-n dt
Cbl(r )del(r )r/ tn+1,§/2 Cbl(t )—

2r r t
and then
1 0 dt
S—— () —. 4.9
MMWNQWﬂérw%wm (") *.9)
Finally,
1Tof Nzo@ S 1BNIf Lo 28)
bl [ C1-m Gt
toip ), U ln Nl B0 @7 () —»
and the statement of Lemma 4.13 follows by (4.9). d

Theorem 4.14 Let ® be a Young function with 1 < ag < bg < 00, b € BMO(R"), T}, be a

D-admissible commutator singular operator, ¢1, @2, and ® satisfy the condition

r t<s<00

fm (1 +In E) (ess infgol(x,s)> ot (t’")? < Coy(x, 1)@ (r™"), (4.10)

where C does not depend on x and r. Then the operator T}, is bounded from Mg 4 (R") to
Mg 4, (R"). Moreover,

ITof 1M,y S BN N1, -

Proof The statement of Theorem 4.14 follows by Lemma 4.13 and Theorem 4.11 in the
same manner as in the proof of Theorem 3.4. g

If we take ®(r) = r?, 1 < p < 0o at Theorem 4.14 we get the following result, which was
proved at [43].
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Corollary 4.15 Let 1< p < 00, b € BMOR"), T}, be a p-admissible commutator singular

operator and (¢1, v2) satisfies the condition

/°°<1 In 5) essificccn ®5) 2 r)’

n — n
r tp+1 re

where C does not depend on x and r. Then the operator Ty is bounded from M, (R") to
M, (R™).

The commutator of the maximal operator is defined by

My(f)(x) = sup| BGx, 1) /B [ =bo)l o] .

t>0

The known boundedness statement for the commutator operators [b, K] and M}, on

Orlicz spaces runs as follows.

Theorem 4.16 [44] Let ® be a Young function with1 < agp < bg < 00, b € BMO(R"). Then
the operators [b, K] and My, are bounded on Lg(R").

For the commutator operators [b, K] and M), from Theorem 4.14 we get the following

corollaries, which were proved in [36].

Corollary 4.17 Let ® be a Young function with 1 < agp < by < 00, b € BMO(R") and ¢,
@, and © satisfy the condition (4.10). Then the operators [b, K] and My, are bounded from
M‘P;(ﬂl (Rn) to M¢,¢2 (Rn)

Theorem 4.18 Let ® be a Young function with 1 < ag < bg < 00, b € BMO(R"), T}, be a

®-admissible commutator singular operator. Let also ¢y, o, © satisfy

/00 (1 +1In '—{>g01(x, 1o (t’”)? < Copa(x,r)®7! (r‘”), (4.11)

where Cy does not depend on x € R" and r > 0, and the conditions

1 In; 0 (4.12)
rgl(]) o1 (}"_n) il’lfxERn ©2 (x, r) - '
and
00 q)—l t—n
Csi= / (1+]Int]) sup ¢ (x, t)% dt < 0o (4.13)
8 xeR”

for every § > 0. Then the operator Ty, is bounded from VMg 4, (R”) to VMg 4, (R").

Proof The proof follows more or less the same lines as for Theorem 3.5, but now the ar-
guments are different due to the necessity to introduce the logarithmic factor into the
assumptions.

Page 150f 18


http://www.journalofinequalitiesandapplications.com/content/2014/1/143

Guliyev et al. Journal of Inequalities and Applications 2014, 2014:143 Page 16 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/143

The norm inequality having already been provided by Theorem 4.14, we only have to
prove the implication

T
lim sup Wllg @y =0 = lim sup I Tef Ul s =0. (4.14)
=0 yeRrn <ﬂ1(x, I") =0 yeRn ‘Pz(x» I")
To check that
T
sup ITof Il s <¢e forsmallr,

xeR” @2 (x’ 7‘)

we use the estimate (4.5):

” be”Lq)(B(xr < |b||* / ) dt
4 1+1In- (o
o S pneig ), L)Wk ()

We take r < 8 where &y will be chosen small enough and we split the integration:

T3/ Nz e Ti 2||(Laz(f)(x'r)) < Clsy (%, 7) + Jsy (%, 7)], (4.15)
where
fay 1) 2= -—/60( ) A o B2y
O (r g2 (x,7)
and
Jso (%, 7) := m 5:0 <1 +In ;) LG |[f||L¢(th)dt

We choose a fixed §y > 0 such that

I
sup I 1|2 (Bx,11) .

b t S 8 7
xerr @1(%, 1) 2CCy 0

where C and Cj are constants from (4.15) and (4.11), which yields the estimate of the first
term uniform in r € (0, 8o) : sup,cpn Clsy (x,7) < 5,0 <7 < 8p.
For the second term, writing 1 + In f <1+ |Int|+In %, we obtain

Csy + Cso In 2

T @) = G g )

fllvte,
where cs, is the constant from (4.13) with § = 8y and Gy, is a similar constant with omit-
ted logarithmic factor in the integrand. Then by (4.12) we can choose a small r such that

SUp,cgn /50 (%, 7) < 5, which completes the proof. O

Corollary 4.19 [36] Let ® be a Young function with 1 < ag < bg < 00, b € BMO(R"), and
1, 2, and D satisfy the conditions (4.11), (4.12), and (4.13). Then the operators [b, K] and
My, are bounded from VMg, (R") to VMg 4, (R").
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