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1 Introduction

The homogeneous singular integral operator Tq, is defined by

Qx —
rofw v [ R0y

when Q € L}(S"!) satisfies the following conditions:

(a) € isahomogeneous function of degree zero on R” \ {0}, i.e.,
Q(tx) = Q(x) foranyt>0andxeR"\{0}. (1.1)

(b)  has mean zero on §”71, the unit sphere in R”, i.e.,

/ Q(x') do (x') = 0. 12)
sn-1

Using a rotation method, Calderén and Zygmund [1] proved that T is bounded in
LP(R™) for 1 < p < oo if Q is odd or Q € Llog* L(S"™!). In [2], Grafakos and Stefanov gave a
nice survey, which contains a thorough discussion of the history of the operator Tq,.

Forafunction b € Lj,.(R"), let A be alinear operator on some measurable function space.
Then the commutator between A and b is defined by [b, A]f (x) := b(x)Af (x) — A(bf)(x).

In 1976, Coifman et al. [3] obtained a characterization of L”-boundedness of the com-
mutators [b, R;] generated by the Reisz transforms R; (j = 1,...,#) and a BMO function b.
As an application of this characterization, a decomposition theorem of the real Hardy
space is given in this paper. Moreover, the authors in [3] proved also that if € Lip(5"~!),
then the commutator [b, Tq] for Tq and a BMO function b is bounded on L? for 1 < p < oo

©2014 Chen and Ding; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

L]
@ Sprlnger Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2014/1/139
mailto:yanpingch@126.com
http://creativecommons.org/licenses/by/2.0

Chen and Ding Journal of Inequalities and Applications 2014, 2014:139 Page 2 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/139

which is defined by

b Tl <. [ “x =)

re |x—yI"

(bx) - b)) () dy.

In the same paper, Coifman et al. [3] outlined a different approach, which is less direct
but shows a close relationship between the weighted inequalities of the operator T and
the weighted inequalities of the commutator [b, Tq]. In 1993, Alvarez et al. [4] developed
the idea of [3] and established a generalized boundedness criterion for the commutator
of linear operators. The result of Alvarez et al. (see [4], Theorem 2.13) can be stated as
follows.

Theorem A ([4]) Let 1 < p < oo. If a linear operator T is bounded on LP(w) for all w €
Ay (1< g < 00), where A, denotes the weight class of Muckenhoupt, then for b € BMO,
116, TIf lr < Clibllsaolf llr-

Combining Theorem A with the well-known results by Duoandikoetxea [5] on the
weighted I boundedness of the rough singular integral Tq, we know that if Q € L9(S"1)
for some g > 1, then [b, Tg] is bounded on L? for 1 < p < co. However, it is not clear up
to now whether the operator Tq with @ € L'\ ,,, L7(S"™") is bounded on L”(w) for
l<p<ooandall we A, (1<r<oo). Hence, if Q € L' \ Ugpt L9(S"1), the L? bounded-
ness of [b, Tq] cannot be deduced from Theorem A. In this case, Hu [6] used the refined
Fourier estimate, the Littlewood-Paley decomposition, and the properties of Young func-
tions and got the following result.

Theorem B ([6]) Suppose that Q € L(log* L)*(5") satisfying (1.1) and (1.2). Then, for
b € BMO(R") and 1 < p < 00, the commutator [b, Tq] is bounded on L (R") with bound
ClIbl|saro-

Recently, Chen and Ding [7] gave a sufficient condition which contains q>1L‘1(S”’1)
such that the commutator of convolution operators is bounded on L?(R") for 1 < p < 0.
This condition was introduced by Grafakos and Stefanov in [8], and it is defined by

1+a
sup v/5n71|52(y)| <ln |$1.y|) do (y) < o0, (1.3)

EES”’I

where a > 0 is a fixed constant. Let F,(S"!) denote the space of all integrable functions
on 5”1 satisfying (1.3). The result in [7] can be stated as follows.

Theorem C Let Q be a function in L1(S"™) satisfying (1.1) and (1.2). If Q € F,(S™) for

a+l
o

some o > 1, then [b, Tq] extends to a bounded operator from L? into itself for = < p < +1.

The condition (1.3) above has been considered by many authors in the context of rough
integral operators. One can consult [9-15] among numerous references for its develop-
ment and applications. The examples in [8] show that there is the following relationship
between F,(S"1) and H'(5"!) (the Hardy space on §"!):

La(s™) c(Ea(s") ¢ H' (") £ | Fu(5™).

g>1 a>0 a>0
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On the other hand, for all t > 0, L(log* L)'**(S"!) ¢ HY(§"). So, for all T > 0,
Mo Fa(S"™) € Llog* L) (S").

The study of vector-valued inequalities for singular integrals with rough kernels has
attracted much attention (for example, see [16]). In 2011, Tang and Wu [17] considered
the vector-valued inequalities (L?(¢7), L?(¢7)), (1 < p,q < 0o0) of the commutator [b, Tq]
with the kernel Q € L(log* L)%(S"!) satisfying (1.1) and (1.2). In this paper, we consider
the vector-valued inequalities for a class of commutators of singular integrals with Q €
F, (8" 1) for some « > 0. Now we state our result as follows.

Theorem 1.1 Let Q be a function in L (S"™) satisfying (1.1) and (1.2) if Q € F,(S™) for
some o > 1. Suppose that 1 < p, q < 00 satisfy

(@) 2<p,gq<ocoandp-q<2(a+1);o0r

(b) 2<p<oo,1<g<2andp-q <2(a+1);o0r

() 1<p,g<2andp -q <2(a+1);0r

(d) 1<p<2,2<g<ooandp -q<2(x+1).
Then [b, Tq] extends to a bounded operator from LP(£9) into itself.
Corollary 1.2 Let Q2 be a function in L' (S"Y) satisfying (1.1) and (1.2). If Q@ € (., F2(S™ ),
then [b, Tq] extends to a bounded operator from LP(£9) into itself for 1 < p,q < oo.

o>1

This paper is organized as follows. First, in Section 2, we give some definitions, which
will be used in the proofs of the main results. In Section 3, we give some preliminary
lemmas for the proof of Theorem 1.1. Then, in Section 4, we give the proof of Theorem 1.1.
Throughout this paper, the letter C stands for a positive constant which is independent
of the essential variables and not necessarily the same one in each occurrence. Moreover,
the notations ‘v’ and ‘A’ denote the Fourier transform and the inverse Fourier transform,
respectively. As usual, for p > 1, p’ = p/(p — 1) denotes the dual exponent of p.

We collect the notation to be used throughout this paper:

" fllr = ( /R @l dx)l/p.

[l = (Z0)

jeL

2 Definitions

Firstly, we need to recall some definitions which will be used in the proof of Theorem 1.1.
Let ¢ € S(R”) be a radial function which is supported in the unit ball and satisfies ¢ (&) =

1for |&] < % The function ¥ (£) = w(%) — (&) is supported in {% < |&] < 2} and satisfies

the identity

Y v(278)=1 fork #0.

JEZ

We denote by A; and G; the convolution operators whose symbols are v/ (27&) and p(27¢),
respectively.
The paraproduct of Bony [18] between two functions f, g is defined by

71(©) = Y _(Af)G; - 3g).

JEL
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At least formally, we have the following Bony decomposition:

fe=m7(@) +me(f) +R(f,g) withR(f,g) = Y (Af)Axg). 2.1)

i€ [k-i|<2

3 Keylemmas
Let us begin with some lemmas, which will be used in the proof of Theorem 1.1. The first

one can be found in [17].

Lemma 3.1 If ¢ € 8(R") with supp(¢p) C x:1/2 < |x| <2 and for | € Z, define the multi-
plier operator S; by Sif (&) = $(27'€)f (£) and S? by S?f = Si(S)). Then, for b € BMO(R"), for
any positive integer k and b € BMO(R"), denote by Sy (respectively Slz;b;k) the kth-order

commutator of S; (respectively S} ). Then, for 1 < p,q < 0o, we have

q/2~\ l/q l/q
M (Z(Z |Sl;b;kﬁ|2> ) < ClIbllamo (ZW) :
jezZ el v jez. v
2\ q/2\ l/q q/2\ 1/q
(i) <Z<Zsl;b;kﬁ,l ) ) < Clibllzmo (Z(ZW) ) ,
jez N iez g jeZ NleZ 24
) q/2\ 1/q 1/q
(ii) (Z(Zbﬁh;kﬂ) ) < Cliblismo (ZW) ,
jEZ el e jeZ w
2\ q/2\ l/q ql2\ 1/q
(iv) (Z(ZSib;kﬂ,z ) ) < ClIbllsmo (Z(ZW) ) :
JjEZ leZ v jeZ el w

where C is independent of j and .

Lemma 3.2 ([19]) Let 1 < p,q < 00, {(3_; Igi;1)Y?}; € LP(€9), and Q2 € L'(S"™). Denote

O—k(x) = |x|7n|Q(x/)|X{2k<‘x‘§2k+l}(x). The}’l
q/2\ 1/q
(Z (Z |gk,;|2) )
keZ v

ql2\ 1/q
(2(zmeer))
jeL

JjEZ “kel

= CllLllz
)2

)

where C is independent of {g j}.

Lemma 3.3 ([7]) For the multiplier Gy (k € Z) defined in Section 2 and b € BMO(R"),
|x _ y|82k8

Gub(o) - Geb()| < €

Ibllzgso for 0< 6 <1,

where C is independent of k and .

Lemma 3.4 ([20]) Forany u € 8 (R") and v € 8'(R"), the following properties hold:
() AAu=0iflj—i]>2,
(i) A(GisAu)=0ifj—i| > 4.
If we replace A; with S;, the above inequalities also hold.


http://www.journalofinequalitiesandapplications.com/content/2014/1/139

Chen and Ding Journal of Inequalities and Applications 2014, 2014:139 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/139

4 Proof of Theorem 1.1
Recall that

Qx—y)
e — y]"

(b, Tolf ) = /R n (b@) - b)) ) dy.

Let ¢ € C°(R") be a radial function such that 0 < ¢ <1, supp¢ C {1/2 < |§] <2} and
Y 17 ¢3(27'€) = 1 for |€] # 0. Define the multiplier S; by SF(E) = p(27E)F(£). Set

Q(x')
0j(x) = WX[Q/‘SWQ/“}(’C)

forjeZ. Set
mi(E)=G,&),  miE) = m&)p(27E).

Define the operator T; and le by

TFE) =m@FE),  TE) = mEFE).

Denote by [b, T;] and [b, le] the commutator of T; and le , respectively. Define the operator
Vi by

Vih(x) = >[5, 81T/t | h(x).
jez

Then we know

[b, Talh(x) = Y Vih().

leZ

Then by the Minkowski inequality, we have, for 1 < p,q < 00,

” (Zl[b,Tglfsl")uq <> (Dw&w)w

SEZ v leZ SEZ

)i

So, to prove Theorem 1.1, it suffices to prove that

p(E ), o)

leZ. “sel SEL

(4.1)

i

It is well known that for some constant 0 < 8 < 1 and any fixed constant 0 < v <1 (see [7]
and [15]),

IVifll2 < Cllbllamo2™ QN If 2, 1<1,

and

IVifll2 < Clibllsmo log ™™ (2 + 2 |If I 2, 1>2
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which gives that

172 172
” ( Iszslz) < Clbllzso2" (Z 1fs|2) , 1<1, (4.2)
SEZ L2 SEZ L2
and
” (mes ) < Cl1bllsao log* VA1 (2 + 21) (Zlf ) , 1>2. (43)
SEL 12 seZ 12
If we can prove that, forany 1< p,g<00,0<§ <1,
lq 981 1/q
” (Z Iszslq) < Cmax {2, = } 12012 181130 (Z W) : (4.4)
SEZ v v

seZ

where C is independent of / and §, we may finish the proof of Theorem 1.1. The proof of
(4.4) will be postponed. Now, we will use (4.2), (4.3), and (4.4) to prove Theorem 1.1. Since

< Z(szﬂw)w

r I<1 “seZ

+Z<Z|szslq)l/q

1>2 “seZ

() "

leZ. “selZ

= 11 + 12,
we will estimate [; and I, respectively. We first estimate ;. For / < 1, taking g = 2 in (4.4),

then interpolating between (4.2) and (4.4), there exists a constant 0 < 6; < 1 such that for
l<p<oo,

() ],

For / <1 and any fixed 1 < p < 0o, interpolating between (4.4) and (4.5), there exists a

< C2%P Q| 1 1bll saro

(Zlfs'z)l/z

sel

(4.5)

Lr

constant 0 < 6, < 1 such that for 1 < g < oo,

< C2"%B Q) 11151 saro

(Z lfs|q>1/q

seL

(zvr)”

SEL

)i )i

Therefore we get, for 1 < p,gq < oo,

2

<1

616,81
<> 2%PQ 1kl sao
Lr <1

(Z [fs|'1)1/q

SEL

(Z [fs|’1>1/q

SEL

(Z Iszslq> N

SEL

r

< ClI2l 1 [1bllsmo

g

Page 6 of 14
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Next, we will estimate I, for (a), (b), (c), and (d), respectively. For 2 <[ < oo, taking § =1//
in (4.4), we get, for any 1 < p,q < 00,

1/q 1/q
” (Z Iszslq) < ClIQpl1bllsmo (Z W) (4.6)
SEZ SEZ v
Taking g = 2 in (4.6) gives that for any 1 < r < 0o, we have
12
H (Z Vil ) < ClIQp11bllsmo (Z 14 ) (4.7)
LY

seZ SEZ

We first treat the case (a) : 2 < p,g<ooand p - g < 2(« + 1). Now, for any p > 2, we take
r sufficiently large such that r > p in (4.7). Using the Riesz-Thorin interpolation theorem
between (4.3) and (4.7), we have that for any / > 2,

< Clbllgmol*? logl--1v+D (2 4 2F)

’

(z)

Iz

SEL » SEL »
where 6 = 1273_12’; We can see that if 7 > 00, then 6 goes to 2/p and log#~D"+19 (2 4 21
goes to log(-@~Vv+12/p(9 4 2!y Therefore, we get

< Clbllaaol > log "5 (2.4 2')

(5

SEL

Iz

i3 SEL

yig

< ClIbllgaol ™" (4.8)

I(zw)

se

On the other hand, fix p, for any 2 < g < 00, (4.6) also means that for any A sufficiently
large such that 1 > g,

< ClIK| 2 1Bl Bmo (4.9)

(Z W*)m

S€Z

1/
()],

yig

Using the Riesz-Thorin interpolation theorem between (4.8) and (4.9), we have that

),

SEL

),

sel

2
< Cllbllsmol VP14

(zr)”

SEL

yig

< Cllbllsaol V75

’

2(0—q)

2
VEQI
q(r-2)"

We can see that if A > oo, then 6; goes to 2/q and prle)

where 01 = goes to

D55 This gives that for any fixed 0 < v <1,

() ],

(Z [fs|‘1)1/q

SEL

22
< Cl|bllgmol ™

r

Page 7 of 14
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Thus, by the inequality above, we have, for p - g < 2(« + 1),

2

>2

(Z [fs|‘1>1/q

SEL

(Z wsw)l/

SEL

= C(Zl Rl q) 161l 8am0
1>2
1/q
o)
seZ Lr

yig

< C||blismo

Next, for the case (b) : 2 <p<o00,1<g<2,and p-q <2(x +1). For any p > 2, we have

()

Similarly, fix p, for 1 < g < 2, (4.6) also means that for any A sufficiently small such that

< ClIbllgasol ™" (4.10)

(Zw)”

se

)i )i

l<A<g,
1/2
H (Z Mfm) < ClIQpl1bllsmo (Z 1fs|*> (4.11)
SEZL v SEZ Lv
Using the Riesz-Thorin interpolation theorem between (4.10) and (4.11), we have
la 1-(a+1)v20 Y
H (Z |Ws|q) < Cllbllgol™ s (Z W) :
SsEL r seZ )i
where 9 goes to
[ e Thls gives that for any fixed 0 < v <1,
a 22 ta
” (Z |szs|”) < Cllbllswol ™77 (Z W)
b2

seZ SEZ

Thus, for2 <p<oo,1<g<2,and p-q <2(x + 1), we have

<Z Wq)uq

N4

2

=2

< C||blizmo

(Z mfsw)l/

sel

g

Now, for the case (c): 1< p,g<2and p-q’' <2(x +1). Forany1 < p < 2, we take r sufficiently
small such that 1 <7 < p in (4.7). Using the Riesz-Thorin interpolation theorem between
(4.3) and (4.7), we have that for any [ > 2,

1/2
(e

< ClIbllgmol*? logl--1v+De (2 4 2F)

Iz

SEL

. (412)

g r

Page 8 of 14
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Page 9 of 14

where 0 = Z(r p . We can see that if 7 — 1, then 6 goes to 2/p’ and log!"*1"*D%(2 4 2!) goes

to log(-e~1 V” 2/1’ (2 + 2!). Therefore, we get

(z)

SEL

—o— 1v+1%

< C|bllpaol™?* log (2+2)

yig

/2
—(+1) v

< Cllbllamol’

(g

SEL

(g

yig

(4.13)

Then, using the previous argument, for any fixed 1 < p <2 and 1< g <2, we get

a+l vl,l,

< C”b”BMOll_(

(zer)”

SEL

()"

yig

Thusif p’ - ¢’ < 2(«a + 1), then

) (Z waw)uq

=2 SsEZ

(Z [fs|‘1)l/q

SEL

< Cl|blismo

g

(4.14)

Finally, for the case (d) : 1<p<2,2<g<o0,and p' - g <2(x + 1), using the previous

argument, we get

(Z |v1fs|q>l/

SEL

2

1>2

< Cl|blismo

(Z [fs|‘1)1/q

SEL

g

Therefore, we prove that

(Z IfSlq)l/q

SEL

L < Clbllamo

L»

for four cases.

Now, we turn our attention to proving (4.4). Since leSl_j = T,Slz_l. for any j,! € Z, we may

write
(6.2, T7S15)f = [0S (TS f) + Sity b TS f) + ST

Thus,

(zer)”

N/

yig

q)l/q

=| (2] st st (Zlzsme
(%Z:;s b, T (ST 1) >1/qm

= L1 +L2 +L3.

i)

q)l/q
)73

(4.15)
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Below we shall estimate L; for i = 1,2,3, respectively. As regards L;, by Lemma 3.1 and

Lemma 3.2, we have, for 1 < p < 00,

se(plgma))

JEL

)i

((2)) ],

se€Z el

(Z [fs|‘1)1/q

SEL

< Cliblismoll LIl 1

< ClIbllgmoll 2]l 1

g

Similarly, we get

Ly, < Cl1bllsmoll2I 12

(Z [fs|q)1/q

SEL

g

Hence, by (4.15), to show (4.4) it remains to give the estimate of L3. We will apply Bony
paraproduct to do this. By (2.1),

fg = 77(Q) + 7 (f) + R(f, ).
We have
b3) (T2 )0
=72 ) (B)) + R(b, TiS} ) (x) + 70 (T;S7 ) ()

and

bS,Z_)-fs(x) = ”(Slz_,fs)(b)(x) + R(b, Slz_}ﬂ)(x) + T (Slz_}fs)(x).
Then we get
16, T)1S i)
= b)(TSE )@ - T (58 6) )
st o8~ T o )@+ [R(5, T2~ TR 52, )) )]
r(TSL£) ) - T (51,£)) 0]

Thus
q\ l/q
f= H (Z 2 Sty p®) = Ti(wsy 1y (0)] )
sel.’ jel ”
g\ l/q
(Z Y SHIR(B.TiSEf) - (R(b,s}_},,g))])
SeL ' jeZ W
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+

q)l/q

=My + My +M3. (416)

(Z

N4

> SElm(TSE) = Ti(m (87 1))

JEL i3

(a) The estimate of M. Recall that m,(f) = ZJGZ(A/)(G,-_gg). For M;, by Lemma 3.4(i),

we know A;Syg = 0 for g € 8'(R”) when |i — k| > 3. Then

(1,57 £ (b)) = Tj(n (S?,,.m(b))(x)

= Y {A(TSEL)®)(Gisb)() - Ti[(AiS]£)(Gisb) | ()]

li-(~)|<2
= Y [Gish TI(ASL L) (). (4.17)
li=(-j)I=2
Then we get
q\ l/q
Mi<y (Z > St ((Grjuicsb, T(A L ST ) ) : (4.18)
kj<2" \sez!jez w
Without loss of generality, we may assume k = 0. By Lemma 3.1, we get
) q/2\ 1/q
m =) (L(Sheeb nienstnr) ) | . (@.19
S€Z “jel )i
Note that
|(Grj3b, T (AL SE ) ()]
= / M(G ~3b(x) — G_ji_3b(y)) A «Sz}f(y)dy‘
o <|x—y|<*! e —y|” s 3 A
< cf R, o b Gy ab) SL0)| dy
= Dy =yl T 7 TS
By Lemma 3.3, we have, forany 0 <§ < 1,
[G1j_sb, T)] Al—jslz_}'fs )|
. —y? |Q(x —y)|
< 29 22 g L At )] d
d ?jflx—y\d/‘*l |x—J’|” | ! l}f;(yi 4
2l |Q(x - )|
<C—Ib —— | ALST )| 4
= C= lIbllamo /y ey ol | AL )| dy
218
= C? ||b||BMOT|Q\,j(|Al—jslz_)fs|)(x)y (4.20)
where
|Q(x - )|
Tiqfs(x) = / S0 dy
2/§|x—y|<2/‘rl |9C—J/|
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and C is independent of § and /. Then, by (4.19), (4.20) and applying Lemma 3.2 and
Lemma 3.1, we have that for 1 < p < oo,

2[5
M; < C? 1511 ar0

<Z <Z| Tiaja(|ALST L) |2>q/2)1/q )

se€Z “jEZ

15

2 ) q/2\ 1/q
= ClIQllu = l1bllsmo (Z<Z|A1,«Sﬁfs|) )
e

seZ " jel

ols q/2\ 1/q
< ClIu - Ibllsa0 (Z(Z!S |) )
)z

sel " jel

A

2 1/q
= ClIQ = 1Bllamo (Zw)

SEL

, (4.21)
Ly

where C is independent of / and §.
(b) The estimate of M. By Lemma 3.4(i), we know for |k| <2, A;4S;_jg =0forg e $ (R")
when |i — (I —j)| = 5. Thus

R(b. TiSif5) = Ty(R(B: SEf5)) (%)
=Y Y (AD)E(TAuxS ) %) - (Z > (AD)(AikSE ))(x)

i€ |k|<2 i€Z |k|<2

Z > ((Ab)Y(TjALST£) @) — T((AD)(AiiSE L)) ()

k==2 |i-(I-j)| <4

Z > [Ab TSt ) ).

k==2 |i-(I-j)|<4

Then we get

MZSZ

|k|<6

Z 512_,‘[A17j+kb, Tj] (Al—j+k512_}‘fs)

jE€Z

(Z

SEL

q)l/q

Without loss of generality, we may assume k = 0. By the equality above and using
Lemma 3.1, sup,.y [|Ai(D) ||l < C||blIsmo (see [21]) and Lemma 3.2, we have, for 1 < p < 0o,

( |Tﬂl,/(|Al—1'512;fs|)|2>q/2)1/qLp

seZ “jel

S(Dtar) ),

SEZ el

2 q/2\ 1/q
< ClIbllamolI 2| 2 ( ( ) )
seZ “jel v

ZW)

SEL

i

M,y < Csup||A (B) | o

< ClIbllgmoll LIl

< ClIbllzmoll LIl 1

(4.22)
Ly
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(c) The estimate of Ms. Finally, we give the estimate of M3. By Lemma 3.4(ii), we know
Si(AgGish) = 0 for g, h € 8 (R") if |j — i| > 5. We get

310 (TSE) - T(m(2,4)))
=87, (Z(Aib)(Gi_g TiSEf) - L(Z(Aib)(Gi_gs%_,ﬂ)»(x)

i€Z i€Z
= Y {SH(AD(GTSEA)) @) - ST ((Ab) (GiaSEf)) )

li=(I=)| =4

Thus, by Lemma 3.1, sup;; | A;(b)]| 1« < C||b||pmo, and Lemma 3.2, we get, for 1 < p < 0o,

(Z (Z| Tiay(|GST ) |2)q/2>1/q

seZ “jeZ

) q/2\ 1/q
< Cllblsaoll 21l 2 <Z<Z|Gl_,-s,2,ﬂ|> )
e

se€Z “jeZ

Ms < Csup” Ai(b) ||Loo
i€Z

r

< CllbllswolI 2l (Z(ZW—»"‘S’Z)W)M w

SEZ “jeL

1/q
< Clbllsmol 2l (Z lfs|‘1>

SEL

(4.23)

g

By (4.16), (4.21)-(4.23), we get

281
— forleZ,
)

L3§Cmax{2, }||b||BMonsz||L1

(Z |}§|4)W

N4

)24

where C is independent of § and /. This establishes the proof of (4.4).
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